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A comparative study among 
machine learning and numerical 
models for simulating groundwater 
dynamics in the Heihe River Basin, 
northwestern China
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Groundwater is unique resource for agriculture, domestic use, industry and environment in the Heihe 

River Basin, northwestern China. Numerical models are effective approaches to simulate and analyze 
the groundwater dynamics under changeable conditions and have been widely used all over the world. 

In this paper, the groundwater dynamics of the middle reaches of the Heihe River Basin was simulated 

using one numerical model and three machine learning algorithms (multi-layer perceptron (MLP); 

radial basis function network (RBF); support vector machine (SVM)). Historical groundwater levels and 

streamflow rates were used to calibrate/train and verify the different methods. The root mean square 
error and R2 were used to evaluate the accuracy of the simulation/training and verification results. 
The results showed that the accuracy of machine learning models was significantly better than that 
of numerical model in both stages. The SVM and RBF performed the best in training and verification 
stages, respectively. However, it should be noted that the generalization ability of numerical model is 
superior to the machine learning models because of the inclusion of physical mechanism. This study 

provides a feasible and accurate approach for simulating groundwater dynamics and a reference for 

model selection.

With the rapid development of information science and technology, groundwater models have been widely used 
in exploration of groundwater dynamics, quantitative assessment of groundwater resources1,2. A wide variety of 
models have been developed and applied for simulating groundwater dynamics which can be characterized as 
numerical (physical descriptive models) and empirical models. A major disadvantage of empirical models is the 
insu�cient capability when confronting the dynamical behavior of the groundwater system changes. Many phys-
ically based numerical models for simulating groundwater system have been developed over the last 30 years3–8. 
Unfortunately, the numerical models have their own limitations such as requiring a large quantity of accurate data 
which can never be ascertained with absolute accuracy (e.g., the physical properties of aquifer). Furthermore, 
the computation resources can hardly satisfy the increasing re�nement and complexity of numerical models. 
In recent years, machine learning methods (e.g., Arti�cial Neural Networks (ANNs)9, Support Vector Machine 
(SVM)10) have been used for forecasting in hydrologic research domains. Carlos et al. applied random forest algo-
rithm to spatially predict the water retention of soils and achieved good performance on predicting volumetric 
water contents11. Gradient boosting12 is a dominant learning method for the Classi�cation and Regression Tree 
(CART). Gradient Boosting Decision Tree (GBDT) has been successfully applied in various prediction prob-
lems13. Kenda et al. presented a research applying data-driven modeling methods (Regression Trees, Random 
Forests and Gradient Boosting) to predict groundwater level changes with su�ciently well performance using 
data collected in Ljubljana aquifer14. A model based on machine learning for predicting timely stream�ow data 
was developed and tested in Idaho and Washington in four diverse watersheds with highly accurate and reliable 
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predictions compared to the recorded data15. A method was proposed by combining Extreme Learning Machine 
and Quantum-Behaved Particle Swarm Optimization and assessed with daily runo� data of Xinfengjiang reser-
voir in China16. Worland et al. compared the ability of eight machine learning models and four baseline models to 
estimate the annual minimum 7-day mean stream�ow in ungagged basins and concluded that machine learning 
methods can produce more accurate predictions in ungagged basins than baseline models17. Taormina et al. pre-
sented a research of applying Forward Neural Networks (FNNs) for long term simulations of groundwater levels 
in a coastal uncon�ned aquifer and suggested to regard FNNs as an alternative for numerical models18. �e main 
advantage of this approach is that it does not require the complex nature of the underlying process of the physical 
systems as in numerical models.

Groundwater plays a signi�cant role as sources of supply for domestic, industrial and agricultural purposes. 
Groundwater resources have been overexploited in many parts of the world19, especially in arid and semi-arid 
regions with highly variable precipitation and considerably high evapotranspiration. �e depleted groundwater 
resources lead to environmental side e�ects including groundwater level declines, drying up of wells, increased 
pumping costs, land subsidence, decreased well yields, reduction of water in streams and lakes and water quality 
degradation20,21. Furthermore, population growth and climate extremes have signi�cant in�uence on the qual-
ity and quantity of groundwater resources. �erefore, it is very important to sustainably manage groundwater 
resources in conjunction with surface water resources. Peng et al. analyzed the e�ects of water sources manage-
ment strategies on water balance in North China and found reduced agriculture water consumption and sus-
tained groundwater levels due to the decreased irrigation water use22. Sadeghi-Tabas et al. presented an attempt 
to link the multi-algorithm genetically adaptive search method (AMALGAM) with a numerical model to manage 
groundwater resources and found that “modeling - optimization - simulation” procedure was capable to obtain 
a set of optimal solutions23. For the e�ective management of groundwater resources, it is of great signi�cance to 
simulate the groundwater dynamics accurately and reliably. Accurate assessments of groundwater levels allow 
water managers, engineers, and stakeholders to develop better strategies for groundwater management and bal-
ance the needs of urban, agricultural, industrial and other demands and analyze the bene�ts and costs of water 
conservation.

In this study, a physically based numerical model (MODFLOW, Modular �ree-dimensional Finite-di�erence 
Ground-water Flow Model) and three machine learning methods were applied to simulate the groundwater 
dynamics of the middle reaches of Heihe River Basin, northwestern China. Collected data from 1986 to 2010 
were divided into calibration/training and veri�cation periods. �e same data were used to calibrate/train dif-
ferent models. �e objectives of our work are: (1) to explore the e�ectiveness of machine learning methods on 
simulating groundwater dynamics in arid basins; (2) to explore the applicability of machine learning methods and 
numerical models by comparing their results. �e remainder of this paper is organized as follows: Section 2 pre-
sents methodologies for simulating the groundwater dynamics. Section 3 describes the study sites, the involved 
data and the processing of the data. �e model structures, settings, hyperparameters and model performance 
criteria are presented in Section 4. Section 5 and 6 present the results, discussions and conclusions.

Methods
Multi-layer perceptron. ANNs are mathematical structure inspired by the biological neural networks pro-
posed by McCulloch24. Multi-layer perceptron (MLP) is a class of feedforward ANN with input/output layers 
and several hidden layers. Nonlinear activation functions are used in the neurons to extract, learn and remember 
the nonlinear features and sub features from the inputs. Backpropagation is a family of methods which is always 
used to update the parameters in the ANN by calculating the gradient of a loss function with respect to all the 

Figure 1. Schematic diagram demonstrating the architecture of backpropagation neural network. xi, hj and 
yk represent the nodal values in the input layer, hidden layer and output layer, respectively; n, N and m are the 
number of nodes in the input layer, hidden layer and output layer; wji is the weight connecting the input xi and 
the jth neuron in the hidden layer; wkj is the weight connecting the jth neuron in the hidden layer (hj) and the 
output yk; bj and bk are the biases in the hidden layer and output layer; f1 and f2 are the activation functions in the 
hidden layer and the output layer.
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parameters and back propagating the training errors9,25. Arbib summarized several researches which proved that 
any continuous functions can be approximated by feedforward neural network with one hidden layer26.

In this study, a feedforward MLP with one hidden layer was constructed and trained by backpropagation with 
gradient decent optimization algorithm (Fig. 1). �e transfer function consists of a hyperbolic tangent sigmoid 
function in the hidden layer and a linear function in the output layer which is a most commonly used form. 
Detailed descriptions of MLP can be found in27,28.

Radial basis function network. RBF network is generally a three-layer ANN using RBF as activation func-
tions in the hidden layer. In the �rst layer (input layer), the number of neurons is identical to the input vectors. 
�e radial basis functions in the hidden layer map the input vectors into a high dimension space. �e neurons 
in the output layer of the network is calculated based on a linear combination of the hidden layer outputs (Eq. 
(1)). �e characteristic feature of RBF is that the responses increase (or decrease) monotonically with Euclidean 
distance between the center and the input vectors. �e architecture of RBF network is the same as MLP (shown in 
Fig. 1). Backpropagation is also used to update the parameters29.
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Multiquadric, �in-Plate Spline and Logistic29.

Support vector machine. �e SVM is proposed by Vapnik based on statistical learning theory31. SVM uses 
the concept of VC dimension and minimum structural risk to optimize and to obtain learning and generalization 
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Where w is a weight vector; b represents bias; Ф denotes a nonlinear transfer function which maps the input 
vectors into a high dimensional feature space. Vapnik31 introduced a convex optimization problem with an 
ε-insensitivity loss function to obtain the optimization for Eq. (2).
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Where ξ and ξ* are slack variables which involve “so� margin” to deal with infeasible constraints; C is a pos-
itive constant to penalize training errors by the loss function over the error tolerance ε and prevent over�t-
ting. �e optimization problem is usually solved by Duality �eory using Lagrangian multipliers and imposing 
Karush-Kuhn-Tucker (KKT) optimality condition. �e structure of the estimator is supported by the input vec-
tors which have nonzero Lagrangian multipliers under the KKT condition. Many algorithms have been proposed 
to solve the dual optimization problem of SVM32,33.

Numerical model. In this study, MODFLOW3 is used to simulate the groundwater dynamics as a representa-
tion of numerical models for the purpose of comparison with machine learning methods. MODFLOW numer-
ically solves the three-dimensional groundwater �ow equation (Eq. (5)) using �nite-di�erence method with 
determined initial and boundary conditions de�ned in Eqs. (6), (7), (8) and (9).
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Where Kx, Ky and Kz are values of hydraulic conductivity along the x, y, and z coordinate axes (L•T−1); h is the 
hydraulic head (L) which can be converted to groundwater level; W represents source and/or sink term of water 
(1/T) with W<0.0 for �owing out of the groundwater system, and W>0.0 for �owing into the system; Ss denotes 
the speci�c storage of the aquifer (1/L); t is time (T); h0 is the initial hydraulic head (L); Ω denotes the study area; 
n is normal direction of a hydraulic boundary; Г1 denotes the top boundary condition of the study area; Г1 and Г2 
are the Dirichlet boundary condition and Neumann boundary condition; and q(x, y, z, t) is the normal discharge 
per unit width (L2(d•L)−1). Solution of the groundwater �ow equation is achieved by �nite-di�erence method in 
which the groundwater �ow system and simulation time are discretized into grids and stress periods, respectively. 
Each stress period is a period of simulation within which speci�ed stress data are constant.

Study sites and data descriptions
Study sites. �e Heihe River Basin which located in the middle of Qilian Mountain is the second largest 
inland river basin in the northwest of China. �e basin extends ~821 km with an area of ~14 × 104 km2. �e mid-
dle reaches of the Heihe River Basin (38 °38′N-39°53′, 98 °53′E-100°44′E; Fig. 2) with an area of ~9016 km2 was 
selected as the study area. �e groundwater resource in this area has been overexploited for agricultural, indus-
trial, and domestic use. �e water system of the Heihe River Basin is composed of 35 independent rivers among 
which most of the mountainous rivers dry up because of irrigation water withdrawal and recharging to the aquifer 
in front of the mountains. �e major rivers in the study area are the mainstream of the Heihe River and the Liyuan 
River. �e Heihe River �ows in the study area through the Yingluo Gorge hydrologic station and �ows out of the 
study area through the Zhengyi Gorge hydrologic station (Fig. 2).

Data. Various kinds of data including Digital Elevation Model (DEM), land use data, groundwater pumping 
yields, groundwater levels, stream�ow rates, etc., were used in this study. All the available data were used to 
construct the numerical model; however, only time-variant data (i.e., stream�ow rates, groundwater pumping 
rates, agricultural irrigation, and groundwater levels) were used to establish the machine learning models. Land 
use data were obtained through visual interpretation of Landsat TM/ETM+ images in 198634, 200035 and 200736. 
Historical data of groundwater levels from 42 monitoring wells (light blue dots in Fig. 2) were collected by the 
Gansu Provincial Bureau of Hydrology and were used in the study. �e irrigation data were obtained from annual 
water resource management reports published by the Zhangye Municipal Bureau of Water Conservancy. Annual 
runo� at Yingluo, Gaoya and Zhengyi hydrologic stations (yellow triangle in Fig. 2) were collected from the 
Gansu Provincial Bureau of Hydrology. �e data of groundwater exploitation during the modeling period were 

Figure 2. Map of the middle reaches of the Heihe River Basin. (Note: the map was generated using ESRI’s 
ArcGIS 10.2 (http://desktop.arcgis.com/en/arcmap/); the satellite imagery was provided by Cold and Arid 
Regions Sciences Data Center at Lanzhou (http://westdc.westgis.ac.cn).
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obtained from China Census for Water. All the above-mentioned data were obtained from the “China Western 
Environment and Ecology Science Data Center” (http://westdc.westgis.ac.cn).

Data processing. Elevation, irrigation, streamflow rates and pumping yields were processed to drive 
the numerical model. �e elevation of the surface and bottom of the study area was obtained from the DEM 
which provided by the CGIAR-CSI GeoPortal. �e resolution of the elevation was processed to 1 km from 90 m. 
Time-variant data were transformed into monthly stress periods (time interval) from January 1986 to December 
2010. �e calibration and veri�cation periods were chosen as 1986–2008 and 2009–2010 because of the availabil-
ity of relatively complete historical records. �e main channels, tributaries and the divisions of the Heihe River 
were implemented using the Stream�ow-Routing (STR) package37. �e stream�ow rates measured at the Yingluo 
Gorge hydraulic station and Liyuan River were assigned to the STR package to simulate the rivers. Basic param-
eters (Stream state, top elevation of the streambed, bottom elevation of the streambed, width of the stream chan-
nel) were derived from38. �e agricultural irrigation was implemented using Recharge (RCH) package3 which 
combined the surface water and groundwater irrigation. �e groundwater exploitation was simulated using the 
Well package3 by assigning pumping rates which were calculated from the extraction records.

Only time-variant data including stream�ow rates, groundwater pumping rates, agricultural irrigation, and 
groundwater levels were used to construct the machine learning models. �e time-series dataset was divided 
into two parts in accordance with the two stages in the numerical model building process: training and testing. 
�e training and testing periods were 1986–2008 and 2009–2010, respectively. �e input and output data were 
summarized in Table 1 from which we could �nd existence of di�erent units and ranges which would have in�u-
ence on the results. �erefore, a normalization procedure was conducted for the machine learning methods to 
nondimensionalize the data to eliminate the e�ects of dimension as shown in Eq. (10). �e data were normalized 
to the range of (−1, 1) a�er the procedure.

x
y y x x

x x
y

( ) ( )
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Where x is the original data; x* represents the data a�er nondimensionalizing; xmin and xmax are the minimum and 
maximum value of x; ymin and ymax are the lower and upper bound of the normalized data.

Model development
Numerical model settings. The study area was numerically discretized by quadrate grids. The 
�nite-di�erence grid consisted of 132 rows and 160 columns with a uniform cell size 1 × 1 km (Fig. 3). Only one 
layer was simulated with the surface and bottom elevation deriving from39,40. �e initial hydraulic heads were 
determined using the monitoring groundwater level data in 89 groundwater wells observed in January 1986 and 
were spatially interpolated by applying Kriging interpolation method in ArcGIS.

Groundwater �ow in the aquifer is governed by the boundary conditions. �e lateral hydraulic boundaries of 
the study area were coincided with earlier studies39,41,42 and de�ned by the natural boundaries (Fig. 3). A no-�ow 
boundary was de�ned between A-E, because a groundwater divide was present at this boundary. E was the outlet 
of HeiHe River in the middle reach which was coincident with the Zhengyi Gorge reservoir. �e groundwater 
�ow from the mountain to the model domain through D-E cannot be exactly quanti�ed. No-�ow boundary 
was de�ned between D-E as the hydraulic conductivity in the hard rock was signi�cantly smaller than that of 
the basin sediments according to a previous study43. �e most complicated hydraulic boundary was the south 
boundary (between A and D) in the study domain. Because of various lateral in�ows, including several gully 
�ows, deep lateral seepage from mountains and the Heihe River in�ow, the boundaries were separated into sev-
eral sections according to the hydraulic conditions along the boundary. As shown in Fig. 3, constant �ux cells 
were de�ned between A-B and C-D where groundwater �ows into the model domain from mountains and the 
�xed-�ow boundary was realized using Well Package in MODFLOW; no-�ow boundary were speci�ed between 
B-C. �e top boundary was atmospheric air-soil interface. �e bottom boundary condition at the base of aquifer 
was de�ned to no-�ow boundary. �e discretization of the groundwater system is shown in Fig. 3.

Unit Range

Inputs

Pumping rates (m3/day) (−1 × 104, 0)

Recharge rates (m/day) (0, 1 × 10–2)

Stream�ow rates at Yingluo Hydrologic station (m3/day)
(7 × 105, 
2 × 107)

Stream�ow rates of Liyuan River (m3/day) (0, 4 × 106)

Outputs

Groundwater levels (m.a.s.l)
(1 × 103, 
1.5 × 103)

Stream�ow rates at Gaoya Hydrologic station (m3/day)
(2 × 104, 
1.5 × 107)

Stream�ow rates at Zhengyi Gorge Hydrologic station (m3/day) (0, 1.5 × 107)

Table 1. Input and output data for machine learning models.
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Development of machine learning methods. All the machine learning methods were carried out in 
MATLAB 2017a environment running on a Intel Core i5, 2.5 GHZ CPU with DDR3L, 1600MHz RAM. �e 
number of input layer neurons and output layer neurons were set based on the dimension of the input data and 
output data. �e dimensions of input data include pumping rates and recharge rates of 21 irrigation districts (light 
red polygon in Fig. 2) and stream�ow rates of two rivers (blue polyline in Fig. 2). �e dimensions of the output 
data include groundwater levels observed at 42 boreholes (light blue dots in Fig. 2) and stream�ow rates from 
two hydrologic stations (yellow triangle in Fig. 2). �erefore, the number of neurons in the input layer and output 
layer were both 44. As for the MLP, the hyperbolic tangent sigmoid transfer function and linear transfer function 
were applied in the neurons of the hidden layer and output layer, respectively. �e number of hidden neurons 
was identi�ed by trial and error procedure which started with two hidden neurons initially and increased to 10 
with a step size of 1 at each trial. For each set of hidden neurons, the network was trained to minimize the Mean 
Square Error (MSE) at the output layer. Levenberg-Marquardt algorithm was used to update the values of weights 
and biases. �e training was stopped when there was no signi�cant improvement in the performance. �e parsi-
monious structure that resulted in minimum error and maximum e�ciency during training was selected as the 
�nal form of MLP. As for the RBF network, the Gaussian radial basis function and linear transfer function were 
applied in the neurons of the hidden layer and output layer, respectively. �e number of hidden neurons was also 
identi�ed by trial and error procedure which started with two hidden neurons and increased to 70. For each set of 
hidden neurons, the worst performing vector is added to the hidden layer as a Gaussian transfer function center 
to improve performance. �en the linear transfer function in the output layer was readjusted to minimize the 
MSE. As for the SVM, Gaussian function (also called radial basis function) was used as kernel function to com-
pute the Gram matrix. Sequential minimal optimization (SMO)44 was used to solve Eqs. (3) and (4). �e output 
of SVM regression predictor was a one-dimensional vector. �erefore, 44 SVM regression models were trained 
using all 44-input data for each output vector. A�er training the machine learning methods, the machine learning 
models (MLP model, RBF model and SVM model) were generated for the study area.

Performance criteria. As recommended by45, the Root Mean Square Error (RMSE) and Coe�cient of 
Determination (R2) were used as objective functions to assess the groundwater level simulations through the cali-
bration (training), veri�cation (testing) stages (as shown in Eqs. (11) and (12)). �e RMSE measures the average 
magnitude of the error between model simulations (M) and observations (O). As shown in Eq. (13), the errors are 
squared before averaged, large errors take a relatively high weight. �erefore, RMSE is useful when large errors 
are undesirable and R2 measures the predictive ability of models.
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Where N represents the total number of observations; O is the average of observations.
In the development of data-driven models (e.g., MLP, RBF, SVM), the most important issue is to guarantee the 

generalization ability of the models. �erefore, the generalization ability (GA) is evaluated as follows:46

Figure 3. �e numerical discretization and boundary conditions for the middle reaches of the Heihe River 
Basin.
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GA
RMSE in prediction stage

RMSE in training stage (13)
=

�e GA values are unity if the models simulate the groundwater system perfectly. However, if the models are 
over calibrated/trained, the GA values exceed unity. GA values less than unity indicates that the model is under 
calibrated/trained.

Besides, the elapsed time in data preparation, calibration and computation should be recorded as a criterion 
to assess di�erent models. However, the elapsed time in data preparation process was not considered because of 
the same input and output data in di�erent models. �erefore, the elapsed time in calibration and computation 
is considered in this study.

Results and discussions
A physically based numerical model (MODFLOW) and three machine learning methods (MLP, RBF and SVM) 
were applied to construct the groundwater models. �e models were calibrated/trained and veri�ed using two 
datasets of observed groundwater level and stream�ow rates. �e results of calibration/training, veri�cation and 
generalization ability from each model were demonstrate in this section. �e RMSE and R2 were used to evaluate 
the results. Furthermore, the comparisons between di�erent models were conducted to explore the applicability 
of machine learning methods and numerical models.

Model calibration/Training. �e numerical model was calibrated from January 1986 to December 2008 
with monthly stress periods. �e hydraulic parameters and hydraulic boundary conditions were calibrated using 
two types of data, consisting of observed groundwater level from 42 boreholes and stream�ow rates measured at 
Gaoya and Zhengyi Gorge hydrologic stations. �e calibration makes the simulated results match the observed 
groundwater level data from the monitoring wells as much as possible. �e observed and simulated groundwater 
level at all the observation wells (42 boreholes) is shown in Fig. 4(a) with the RMSE value of 5.61 m and R2 value of 
0.52. Figure 4(b) shows the comparison between the observed and simulated monthly stream�ow rates at Gaoya 
and Zhengyi Gorge hydrologic stations with RMSE value of 1.76 × 106 m3/day and R2 value of 0.51. �e results 
indicated a reasonable match for the numerical model in the calibration period.

�e monthly data from 1986 to 2008 was used to train the MLP, RBF network, and SVM. �e trained ground-
water levels from machine learning models are shown in Fig. 5. In the training stage, the RMSE and R2 values 
for MLP, RBF network, and SVM models are 0.99 m and 0.71, 0.84 m and 0.75, 0.83 m and 0.76. �e results from 
SVM model are slightly better than those of MLP and RBF models. �e results from MLP model is the worst with 
RMSE value of 0.99 m and R2 value of 0.71. �e RMSE discrepancy is reasonable considering the relatively large 
di�erence between the highest and lowest groundwater level with about 230 m. �e RMSE and R2 value for MLP, 
RBF, and SVM models are 1.09 × 106 m3/day and 0.66, 1.16 × 106 m3/day and 0.66, 1.16 × 106 m3/day and 0.66 
at Gaoya hydrologic station and Zhengyi Gorge hydrologic station (Fig. 6). According to45, the results could be 
considered acceptable when R2 values greater than 0.5. �e results indicate that the machine learning methods are 
reasonable for simulating (learning) the groundwater dynamics for the middle reaches of the Heihe River Basin.

Verification. �e calibrated numerical model was veri�ed using the data of 2009 and 2010. �e stress period 
and the hydraulic parameters and boundary conditions were identical to the calibration period. �e calculated 
groundwater level of the last time step from calibration period were used as the initial heads of the veri�cation 

Figure 4. (a) Comparison of the observed and simulated groundwater level in calibration period. Blue dots 
refer to the scatter plot of the observed and simulated groundwater level, the red dashed line denotes a perfect 
match where “simulated groundwater level = observed groundwater level”; (b) Comparison of the observed and 
simulated stream�ow rates at Gaoya (upper) and Zhengyi (lower) Gorge hydraulic stations in calibration period. 
�e blue curve refers to the simulated stream�ow rates, the red curve denotes the observed stream�ow rates.
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period. �e comparison between observed and simulated groundwater levels and stream�ow rates are shown in 
Fig. 7(a,b), respectively. �e RMSE value and R2 value for the groundwater levels are 5.84 m and 0.51, respectively. 
�e calculated stream�ow rates of Gaoya and Zhengyi Gorge hydrologic stations shown in Fig. 7(b) match the 
observed stream�ow rates considerably. Inspection of the comparison between calculated and observed ground-
water levels and stream�ow rates during the calibration and veri�cation periods elucidates that the assumptions 
of boundary conditions made for the study area are appropriate and the establishment of the groundwater model 
for the middle reaches of the Heihe River Basin is feasible.

Figure 8 shows the comparison the observed and simulated groundwater levels for machine learning models 
in veri�cation period. �e models trained in the training stage were used to predict by applying new input data. 
�e RMSE and R2 values were calculated using the model outputs and new observations. �e RMSE and R2 values 
are 1.69 m and 0.66, 1.12 m and 0.71, 1.71 m and 0.65 for MLP, RBF, and SVM models, respectively. �e stream-
�ow rates predicted by machine learning models are shown in Fig. 9. �e RMSE value and R2 value for MLP, RBF, 
and SVM models calculated from stream�ow rates at Gaoya and Zhengyi Gorge hydrologic stations are 1.69 × 106 
m3/day and 0.54, 1.21 × 106 m3/day and 0.79, 1.17 × 106 m3/day and 0.83. In the veri�cation period, the model 
based on RBF network performs the best. �is may due to the local transfer function and relatively large number 
of neurons in the hidden layer. �e ANN methods (MLP and RBF network) are always based on an assumption 
of unlimited samples which can never be satis�ed. �e origin of SVM is based on limited samples and follows the 
structural risk minimization which adequately balanced the accuracy and generalization ability. SVM maps the 
input vectors into high-dimensional feature space by support vector and manage the problem following the linear 
optimization algorithm which avoids local minimum and Curse of Dimensionality.

Figure 5. Comparison of the observed and simulated groundwater level for (a) MLP model; (b) RBF model; 
and (c) SVM model. Blue dots refer to the scatter plot of the observed and simulated groundwater level, the red 
dashed line denotes a perfect match where “simulated groundwater level = observed groundwater level”.

Figure 6. Comparison of the observed and simulated stream�ow rates at Gaoya (upper) and Zhengyi (lower) 
Gorge hydraulic stations for (a) MLP model; (b) RBF model; and (c) SVM model. �e blue curve refers to the 
simulated stream�ow rates, the red dashed curve denotes the observed stream�ow rates.
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Generalization ability. �e generalization ability was evaluated by Eq. (13) which indicates that GA values 
are greater if the model concentrates on learning the given training data rather than a more general system and 
that the higher the index values are, the weaker the generalization ability becomes. GA values (Table 2) calculated 
from groundwater level for MLP, RBF, and SVM models are 1.7, 1.3, and 2.1 which implies that the generalization 
ability of the RBF model is superior to that of MLP and SVM models. GA values calculated from stream�ow rates 
for MLP, RBF, and SVM models are 1.55, 1.04, and 1.00. �e overall values of GA which averages the two values of 
indices are 1.63, 1.18, and 1.53 which indicates that the generalization ability of RBF model is the lowest. Similar 
to the machine learning models, the generalization ability of numerical model was also evaluated by calculating 
GA values. �e GA values calculated from groundwater level and stream�ow rates for numerical model are 1.04 
and 1.11 with the average of 1.08.

Comparisons. �e comparison of numerical model and machine learning models in the calibration/training 
stage was conducted and shown in Table 3. RMSE and R2 values were used to evaluate the accuracy of the sim-
ulated groundwater levels and stream�ow rates compared to the observations. In this study, the RMSE and R2 
values imply that the accuracy of machine learning models is better than that of numerical model for the given 
data. Furthermore, the time elapsed in constructing the model is divided into two parts which are calibration/
training time and computation time. �e calibration of numerical model usually costs the hydrologist months to 
balance lots of aspects, processes and parameters. However, the machine learning methods only cost experts’ days 
to determine the hyperparameters a�er data preparation. �is is also the main reason why the calibration of the 
models is described in detail. Among the machine learning methods, the reproduction capability of groundwater 
levels and stream�ow rates of RBF network and SVM is superior to that of MLP which may be caused by di�erent 
transfer functions, network structures, and minimizing methods. �e comparison between numerical model 
and machine learning methods in the veri�cation/prediction stage is shown in Table 4. �e performance of RBF 
model is better than that of numerical model, MLP model, and SVM model which indicates that RBF network is 
applicable to simulate groundwater systems. �e comparison of generalization ability between di�erent models 
is shown in Fig. 10. �e generalization ability of numerical model calculated from groundwater levels is better 
than those of machine learning methods. �e generalization ability of SVM model calculated from stream�ow 
rates performs the best among the all the models. It is noted that the overall generalization ability of the numerical 
model is superior to those of machine learning methods with lower generalization ability index value. �e rela-
tively less di�erence of generalization ability calculated from groundwater levels and stream�ow rates indicates 
the stability of the numerical models. On the one hand, the RMSE value in calibration stage of numerical model 
which act as denominator in Eq. (13) is relatively large. On the other hand, the dynamics simulated by numerical 
model are based on the groundwater �ow equation (Eq. (5)) with the same boundary conditions and parameters 
which dominates the groundwater movements. On the contrary, the machine learning methods are mappings 
between the inputs and outputs based on statistics without deduction of physical process. In the machine learning 
methods, the RBF model performs the best in generalization ability which is also close to the numerical model.

Conclusions
In this paper, the groundwater dynamics in the middle reaches of Heihe River Basin were simulated by numerical 
models and machine learning methods. Historical data of groundwater levels and stream�ow rates were used to 
calibrate/train and verify/test the models. �e RMSE and R2 values were used to evaluate the simulated results 
of the constructed model which indicated that the calibrated model could considerably reproduce the trend 
and values of historical observations. Furthermore, a comparison was conducted to discover pros and cons of 
di�erent models. �e results showed that the performances of machine learning models on simulating historical 
data was superior to those of numerical model with RBF model performed the best. �e computation cost of 

Figure 7. (a) Comparison of the observed and simulated groundwater level in veri�cation period. Blue dots 
refer to the scatter plot of the observed and simulated groundwater level, the red dashed line denotes a perfect 
match where “simulated groundwater level = observed groundwater level”; (b) Comparison of the observed 
and simulated stream�ow rates at Gaoya (upper) and Zhengyi (lower) Gorge hydraulic stations in veri�cation 
period.
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Figure 8. Comparison of the observed and simulated groundwater levels for (a) MLP model; (b) RBF model; 
(c) SVM model. Blue dots refer to the scatter plot of the observed and simulated groundwater level, the red 
dashed line denotes a perfect match where “simulated groundwater level = observed groundwater level”.

Figure 9. Comparison of the observed and simulated stream�ow rates at Gaoya (upper) and Zhengyi Gorge 
(lower) hydraulic stations for (a) MLP model; (b) RBF model; (c) SVM model. �e blue curve refers to the 
simulated stream�ow rates, the red dashed curve denotes the observed stream�ow rates.

Numerical 
model

MLP 
model

RBF 
model

SVM 
model

Groundwater level 1.04 1.70 1.33 2.06

Stream�ow rates 1.11 1.55 1.04 1.00

Overall 1.08 1.63 1.18 1.53

Table 2. Comparison of generalization ability.

Numerical 
model MLP model RBF model SVM model

RMSE
Groundwater level (m) 5.61 0.99 0.84 0.83

Stream�ow rates (m3) 1.76 × 106 1.09 × 106 1.16 × 106 1.16 × 106

R2
Groundwater level 0.52 0.71 0.75 0.76

Stream�ow rates 0.51 0.66 0.66 0.66

Time
Calibration months days days days

Computation 1898 s 716.9 s 4.2 s 1.0 s

Table 3. Comparison in the calibration/training stage.
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machine learning models in training and prediction stages were much less than those of numerical model in 
calibration and veri�cation stages. However, the generalization ability of the numerical model was better than 
that of machine learning methods because of the physical based mechanism. �erefore, machine learning models 
are applicable to the scenarios which require numerous executions without considering the physical mecha-
nisms (e.g., real-time models, sensitivity/uncertainty analysis, and optimizations). �e developed models and 
the results of this study may be useful for the accurate groundwater management, decision making, and model 
selection. Future research should be focused on exploring applicability of deep learning methods or tree-based 
machine learning algorithms in hydrologic �eld and application of the developed models to manage groundwater 
resources.
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