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Abstract

For the past four decades the compositional organization of the mammalian genome posed a formidable challenge to
molecular evolutionists attempting to explain it from an evolutionary perspective. Unfortunately, most of the explanations
adhered to the ‘‘isochore theory,’’ which has long been rebutted. Recently, an alternative compositional domain model was
proposed depicting the human and cow genomes as composed mostly of short compositionally homogeneous and
nonhomogeneous domains and a few long ones. We test the validity of this model through a rigorous sequence-based
analysis of eleven completely sequenced mammalian and avian genomes. Seven attributes of compositional domains are
used in the analyses: (1) the number of compositional domains, (2) compositional domain-length distribution, (3) density of
compositional domains, (4) genome coverage by the different domain types, (5) degree of fit to a power-law distribution, (6)
compositional domain GC content, and (7) the joint distribution of GC content and length of the different domain types. We
discuss the evolution of these attributes in light of two competing phylogenetic hypotheses that differ from each other in
the validity of clade Euarchontoglires. If valid, the murid genome compositional organization would be a derived state and
exhibit a high similarity to that of other mammals. If invalid, the murid genome compositional organization would be closer
to an ancestral state. We demonstrate that the compositional organization of the murid genome differs from those of
primates and laurasiatherians, a phenomenon previously termed the ‘‘murid shift,’’ and in many ways resembles the
genome of opossum. We find no support to the ‘‘isochore theory.’’ Instead, our findings depict the mammalian genome as a
tapestry of mostly short homogeneous and nonhomogeneous domains and few long ones thus providing strong evidence
in favor of the compositional domain model and seem to invalidate clade Euarchontoglires.
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Introduction

Human and cow genomes have been shown to possess a

complex architecture, in which compositionally homogeneous and

nonhomogeneous domains of varying lengths and nucleotide

composition are interspersed with one another [1,2]. These

empirically derived compositional architectures are mostly incom-

patible with the ‘‘isochore theory’’ [3–6], according to which the

genomes of warm-blooded vertebrates are depicted as mosaics of

fairly long isochores —typically 300 kb or more—each possessing

a characteristic GC content that differs significantly from that of its

neighbors, and each classifiable by GC content into six or less

isochore families [7–14].

Numerous methods for segmenting DNA sequences into

contiguous compositionally-coherent domains have been proposed

in the literature. These methods differ from one another in the

number and types of parameters used in the segmentation process,

as well as in the levels of user intervention. Unfortunately, even

methods that limit user input to a few parameters yield

incongruent results with one another [15], whereas methods that

rely on subjective user intervention [e.g., 16] preclude indepen-

dent replication of the results and are, thus, unscientific. Through

comparison of performances against benchmark simulations,

Elhaik, Graur, and Josić [2] identified a segmentation method,

DJS [17], that outperformed all others. However, DJS failed to

partition sequences with low compositional dispersion and had

difficulties in identifying short homogeneous domains. To rectify

these inadequacies, Elhaik et al. [15] devised IsoPlotter—a

recursive segmentation algorithm that employs a dynamic

threshold, which takes into account the composition and length

of each segment. Most importantly, IsoPlotter is an unsupervised

algorithm, i.e., it requires no subjective user intervention, and

through benchmark validation, it was shown to yield unbiased

results [15].

The compositional domains identified by IsoPlotter are

contiguous genomic segments, each with a characteristic GC

content that differs significantly from the GC contents of its

adjacent upstream and downstream compositional domains. By

comparing the GC content variance of compositional domains

with that of the chromosomes on which they reside, compositional
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domains can be further classified into two types: ‘‘compositionally

homogeneous domains,’’ or simply ‘‘homogeneous domains,’’ and

‘‘compositionally nonhomogeneous domains’’ or ‘‘nonhomoge-

neous domains.’’ A subset of long homogeneous domains, where

‘‘long’’ is arbitrarily defined as $300 kb, are termed ‘‘isochoric’’

domains (sensu [12]). By segmenting the human genome with

IsoPlotter, we found that one-third of the genome is composed of

compositionally nonhomogeneous domains and the remaining is a

mixture of many short compositionally homogeneous domains and

relatively few long ones [15]. ‘‘Isochoric’’ domains cover less than

a third of the human genome. Similar results were obtained for the

cow genome [1].

Here, we characterize the compositional architecture of ten

completely sequenced mammalian genomes and an avian out-

group, and attempt to identify quantitative trends in the evolution

of homogeneous and nonhomogeneous domains. Seven attributes

of compositional domains are used, many of which were

previously used to characterize compositional architectures

[1,18–28]. Each genome is defined by: (1) the number of

compositional domains, (2) compositional domain-length distribu-

tion, (3) density of compositional domains, (4) genome coverage by

the different domain types, (5) degree of fit to a power-law

distribution, (6) compositional domain GC content, and (7) the

joint distribution of GC content and length of the different domain

types. Our results are interpreted in light of two currently

competing phylogenetic hypotheses depicting the evolution of

eutherian mammals for which traditional phylogenetic tools

provided ambiguous answers [e.g., 29, 30] (Figure 1). Further,

our results support the so-called ‘‘murid shift’’ hypothesis, and

suggest that homogeneous and nonhomogeneous domains are

biologically different.

This evolutionary study represents a dramatic departure from

earlier studies that either extrapolated from a few genes to the

entire genome [e.g., 10, 31, 32], used unreliable proxies to infer

the composition of domains [e.g., 31, 33], or used irreproducible

methodologies [e.g., 16, 34]. Our results will be compared with

claims made by proponents of the ‘‘isochore theory.’’ Sadly, we

are forced yet again to confront the ‘‘isochore theory,’’ because

despite its being refuted numerous times [e.g., 18, 35, 36, 37],

proponents of the theory and those invested in it continue to

pursue the notion of isochores aggressively, relentlessly, and

vociferously [e.g., 31, 38, 39–46]. It seems that T. H. Huxley’s

dictum on ‘‘the great tragedy of science’’ being ‘‘the slaying of a

beautiful theory by an ugly fact’’ does not easily apply to the

concept of ‘‘isochores.’’

Results

All mammalian genomes in our study are similar in size, ranging

from 2 Gb in horse to 3.4 Gb in opossum. At 1 Gb, the size of the

chicken genome is considerably smaller than the average

mammalian genome. The genomic characteristics of the compo-

sitional domains for the 11 species under study are listed in

Table 1.

Compositional domain abundance
Genome statistics for compositional, homogeneous, nonhomo-

geneous, and ‘‘isochoric’’ domains are shown in Table 1. In Table

S1 we present the same data partitioned by individual chromo-

somes. The mean number of compositional domains in a

mammalian genome in our sample is approximately 96,000, with

opossum having the largest number of domains (107,000), and rat

having the smallest (,63,000).

On average, over two thirds of all mammalian domains are

homogeneous, but this proportion varies with taxon (Table 1).

Opossum has the smallest fraction of homogeneous domains

(59%) followed by murids (62%). By contrast, pig (71%) and

horse (74%) genomes are the most enriched for homogeneous

domains. Isochoric domains constitute only a tiny fraction of the

compositional domains, from 0.7% in horse and dog to 2.1% in

rat.

Length distribution of compositional domains
The mean compositional-domain length varies from

,25,700 bp in primates to ,38,500 bp in murids (Table 1).

The median length is much smaller in all taxa, indicating an

extreme skewed distribution towards very short domains. For

example, half of the compositional domains in rat are shorter than

9,216 bp. The mean and median lengths of homogeneous and

nonhomogeneous domains within a taxon are practically indistin-

guishable. The largest homogeneous domain among all species is

one 10.5-megabase (Mb) long (GC content of 36%) found in the

opossum genome. In the human genome, the largest homogenous

domain is about half that length (5.2 Mb).

Almost all the distributions of homogeneous domain lengths in

all studied species (Figure 2) are significantly different from each

other (Kolmogorov-Smirnov goodness-of-fit test, p,0.01), howev-
er, this is due to the large sample sizes. The magnitude of the

differences between homogeneous and nonhomogeneous domain

lengths is very small in all species (area overlap.98%, Cohen’s d,
0.05) with the chicken genome exhibiting borderline similarity

(area overlap 97%, Cohen’s d,0.05).

A comparison of the cumulative distributions of domain lengths

indicates that the top percentile in murids consists of domains

larger than 511 kb, whereas the top percentile in the laurasiather-

ian genomes consists of domains larger than 281 kb (Figure 3). In

mammalian genomes, the proportion of long homogeneous

domains ($300 kb), i.e., ‘‘isochoric’’ domains, out of all domains

is 1% and twice that in murids (2.02%). Similar cumulative

distributions were observed for compositional and nonhomoge-

neous domains (Figure S1).

Author Summary

The non-uniformity of DNA composition in mammalian
genomes has been known for over four decades. Many
attempts have been made to provide a concise description
of this heterogeneity and to identify the evolutionary
driving forces behind this compositional phenomenology.
The first concise description of the genome suggested an
isochoric structure according to which the mammalian
genome consists of a mosaic of long, compositionally
homogenous DNA sequences. With the advent of genome
sequencing, this description was found to be inappropri-
ate. We have recently proposed an alternative ‘‘composi-
tional domains’’ model that depicts the human and cow
genomes as composed of mixture of compositionally
homogeneous and nonhomogeneous domains. Most of
these domains are very short. Since its proposal, this
model has been validated in plethora of invertebrate
genomes. Here, we test the validity of this model on
eleven mammalian and avian genomes using seven
attributes of compositional domains and discuss their
evolution. We also use these attributes to decide between
two competing phylogenetic hypotheses. Our findings
provide strong supporting evidence for the ‘‘composition-
al domains’’ model and indicate that rodents are not as
close to primates as envisioned by the Euarchontoglires
hypothesis.

Comparative Analysis of the Genomic Architectures of Mammalian Genomes
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Compositional domain density
Domain density measures the average number of compositional

domains per Mb. When divided into GC-poor and GC-rich

compositional domains it ranges from 0 to 90 domains/Mb for

GC-poor domains and up to 121 domains/Mb for GC-rich

domains (Figure 4). Homogeneous domains are more dense for

both GC-poor (0–57 domains/Mb) and GC-rich (0–98 domains/

Mb) domains compared to nonhomogeneous GC-poor (0–43

domains/Mb) and GC-rich (0–64 domains/Mb) domains, respec-

tively. In regions of low domain densities, the density of GC-rich

domains is higher than the density of GC-poor domains. That is,

genomic regions with fewer domains are more likely to be GC-

rich, whereas denser genomic regions are more likely to harbor

GC-poor domains (Figure S2a).

On average, murid chromosomes are the least dense (26

domains/Mb), whereas the horse genome is the most dense (49

domains/Mb). The chromosomal domain densities of opossum

are as low as murids for homogeneous domains (21 and 16

domains/Mb, respectively) and as high as primates for nonho-

mogeneous domains (13 domains/Mb). The overall chromo-

somal domain densities position opossum (34 domains/Mb)

between murids (26 domains/Mb) and other mammals (43

domains/Mb).

Similar patterns were observed when comparing the composi-

tional domain densities of GC- rich and GC-poor domains (Figure

S3); the opossum and primate genomes have the highest density

for GC-rich domains (21 and 18 domains/Mb, respectively). By

contrast, the opossum’s genome low density for GC-poor domains

(10 domains/Mb) is lower even than that of murids (16 domains/

Mb). The overall domain density in opossum (31 domains/Mb) is

between that of murids (25.5 domains/Mb) and primates (,38.5

domains/Mb).

Domain density largely varies among chromosomes and

chromosome types. Density differences between chromosomes

can reach 100% (Figures 4, S2) with sex chromosomes having a

lower density than the average autosome (Table S1). These results

indicate that the processes that shaped the inter-chromosomal

domain organization acted non-uniformly on all chromosomes

and their effect on domain lengths was highly variable in different

lineages implying the existence of a compositional constraint on

chromosomal heterogeneity.

Genomic coverage of compositional domains
In Figure 5, we show the relative genomic coverage of

compositional domains as a function of domain homogeneity

and length. The genomic coverage by homogeneous domains

Figure 1. Phylogenetic trees illustrating two competing hypotheses concerning the relative kinships of murids, laurasiatherians,
and primates to one another.
doi:10.1371/journal.pcbi.1003925.g001
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Table 1. Genome statistics for compositional, homogeneous, nonhomogeneous, and ‘‘isochoric’’ domains.

Species Human Chimpanzee Orangutan Mouse Rat Horse Dog Cow Pig Opossum Chicken

Whole genome Sequenced
genome size (Gb)

2.8 2.8 2.7 2.6 2.5 2.0 2.3 2.2 2.5 3.4 1.0

Mean GC
content

40.80 40.70 40.70 41.80 41.90 41.10 41.00 41.70 41.80 37.70 41.30

Compositional
domains

Number of
domains

107,571 107,359 105,688 67,223 63,137 112,350 104,885 96,410 90,881 107,356 39,450

Domain density
(per MB)

38.7 39 38.8 26.3 25.5 48.1 45.3 43.2 38.6 31.5 40.1

Mean domain
length (bp)

25,865 25,637 25,764 38,060 39,233 20,787 22,097 23,144 25,938 31,788 24,965

Median domain
length (bp)

7,808 7,840 7,936 9,216 9,376 7,456 7,744 7,872 7,744 7,616 9,216

Mean GC
content (%)

42.7 42.7 42.6 43 43.3 43.3 43.6 44 44 39.6 43

Median GC
content (%)

41.8 41.8 41.6 42.8 43.1 42 42 43 42.9 38.4 41.7

Homogeneous
domains

Number of
domains

74,579 73,172 72,384 41,783 38,945 83,169 73,141 70,850 64,228 63,393 28,141

Fraction out of
all compositional
domains (%)

69.3 68.2 68.5 62.2 61.7 74 69.7 73.5 70.7 59 71.3

Domain density
(per MB)

26.8 26.6 26.6 16.3 15.7 35.6 31.6 31.8 27.2 18.6 28.6

Mean domain
length (bp)

29,668 29,708 29,820 48,190 50,257 24,027 25,569 26,842 31,292 43,197 28,854

Median domain
length (bp)

8,384 8,480 8,512 10,880 11,264 8,064 8,448 8,576 8,576 8,960 11,104

Mean GC
content (%)

42.3 42.2 42.1 43.5 43.6 42.7 42.7 43.7 43.7 38.7 41.5

Median GC
content (%)

40.8 40.8 40.6 43.3 43.4 40.9 40.8 42.4 42.6 37.4 40.3

Fraction of
genome
covered (%)

79.5 79 79.3 78.7 79 85.6 80.7 85.2 85.3 80.2 82.4

Length of largest
domain (Mb)

5.2 6.5 4.3 5.2 7.6 3.8 7.4 4.8 6.1 10.5 4

Nonhomogeneous
domains

Number of
domains

32,992 34,187 33,304 25,440 24,192 29,181 31,744 25,560 26,653 43,963 11,309

Fraction out of
all compositional
domains (%)

30.7 31.8 31.5 37.8 38.3 26 30.3 26.5 29.3 41 28.7

Domain density
(per MB)

11.9 12.4 12.2 9.9 9.8 12.5 13.7 11.5 11.3 12.9 11.5

Mean domain
length (bp)

17,269 16,923 16,949 21,422 21,486 11,553 14,095 12,893 13,037 15,335 15,287

Median domain
length (bp)

6,784 6,784 6,912 7,424 7,456 6,176 6,528 6,464 6,368 6,464 6,496

Mean GC
content (%)

43.7 43.7 43.7 42.4 42.8 44.9 45.6 44.8 44.5 41 46.8

Median GC
content (%)

43.2 43.2 43.1 42.2 42.7 44.4 44.3 44.1 43.8 39.7 46.1

Fraction of
genome
covered (%)

20.5 21 20.7 21.3 21 14.4 19.3 14.8 14.7 19.8 17.6

Length of largest
domain (Mb)

2.3 1.9 2.1 7.3 7.5 1.2 2.2 1.3 2 2.9 1.8

‘‘Isochoric’’
domains

Number of
domains

1,071 1,052 1,084 1,312 1,317 811 721 872 1,030 1,705 281

Comparative Analysis of the Genomic Architectures of Mammalian Genomes
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ranges from ,79% in primates and murids to ,85% in horse. By

defining ‘‘isochoric’’ domains as compositionally homogeneous

domains longer than 300 kb, we find that the genomic coverage by

‘‘isochores’’ in mammals is a trifling 27%, compared to 16% in the

chicken. Murids and opossum have the largest genomic coverage

by ‘‘isochoric’’ domains (34% and 37%, respectively). Relaxing the

‘‘isochore’’ definition to include homogeneous domains larger than

100 kb, as proposed by Nekrutenko and Li [47], slightly increases

the ‘‘isochoric’’ portion of the genome to 38%. These results, in

themselves, are sufficient to invalidate the ‘‘isochore theory’’ or at

least diminish its applicability.

Are domain lengths power-law distributed?
The distribution of domain lengths in the human genome is

commonly depicted as a power-law distribution over a large range

of length scales [e.g., 18, 48, 49]. A distribution is said to follow a

power-law if its histogram is a straight line when plotted on a log-

log scale [50,51]. To gauge the power-law model, we used two

approaches: first, we compared the cumulative distributions of

homogeneous domain lengths to the maximum likelihood power-

law fits. In all cases, the complementary cumulative distribution

function P(x) and their maximum likelihood power-law fits deviate

from a straight line, and the p-value is sufficiently small

(Kolmogorov-Smirnov, p,0.01) that the power-law model can

be ruled out (Figure 6). In other words, there is a very small

probability that the data can be modeled by a power-law. An even

weaker fit was obtained using compositional domains and

nonhomogeneous domains (Figure S4). Next, we tested the

power-law behavior of domain lengths using the random group

formation model. We found that the same deviations from a

power-law-like behavior were also predicted by the random group

formation model [52] (Figure S5).

The deviations of the data from power-law behavior are caused

by the excess of short domains and low frequency of long domains.

These findings are at odds with earlier contentions that the

mammalian genome is a mosaic of long homogeneous domains

with very few short domains [e.g., 12, 49, 53]. However, we note

that earlier results are not based on the length distribution of

actual domains as some authors chose to avoid the excess of short

domains – that cause the deviation from power-law – by

concatenating them to form artificially long domains [e.g., 54,

55]. We believe that the decision as to whether or not neighboring

domains should be concatenated should rely solely on their

homogeneity rather than on attempts to make the data fit a

preconceived model.

Moreover, if domain lengths are truly drawn from a power-law

distribution, the power-law model should fit the data over more

than three orders of magnitude [50]. In reality, the power-law fit is

quite poor and should thus be rejected (Figures 6, S4, S5). Our

findings are in agreement with previous studies that rejected the

power-law behavior of compositional domains, although they

relied on a small dataset and incomplete genomic sequences [56–

61]. We reported similar findings in three ant genomes [19–21].

Compositional domain GC content
The GC contents of the homogeneous and nonhomogeneous

domains in eutherians exhibit a non-normal distribution (Lilliefors

goodness-of-fit test, p,0.05) with a mean of 42–44% and a

standard deviation of 5.7–8.5%. The GC distributions of

compositional domains of the same type are significantly different

from one another, particularly between related taxa (Kolmogorov-

Smirnov goodness-of-fit test, p,0.01); however, this is due to the

large sample sizes. Similar to the patterns observed in composi-

tional domain lengths, the small differences in the GC contents of

homogeneous and nonhomogeneous domains allow grouping the

species into five taxonomic groups: Primates, Laurasiatheria,

Muridae, opossum, and chicken (Figure 7). Of these groups, only

the Primate and Laurasiatheria exhibit a high degree of similarity

in compositional domain length distribution. Murids and opossum

have the most variable GC distribution (38% area nonoverlap)

(Figure 7).

With the exception of the murid genomes (c<0.29), the low

frequency of short GC-poor domains and the abundance of

medium GC-rich domains causes mammalian GC distributions to

be highly right-skewed (0.56,c,0.77) (Figure 7, Table S2).

Opossum (c<1.12) and chicken (c<0.86) are the most right-

skewed of all species, due to the high abundance of short GC-rich

and medium-short GC-rich domains, respectively.

Table 1. Cont.

Species Human Chimpanzee Orangutan Mouse Rat Horse Dog Cow Pig Opossum Chicken

Fraction out of
all compositional
domains (%)

1 1 1 2 2.1 0.7 0.7 0.9 1.1 1.6 0.7

Fraction out of all
compositionally
homogeneous
domains (%)

1.4 1.4 1.5 3.1 3.4 1 1 1.2 1.6 2.7 1

Mean domain
length (bp)

652,728 656,232 651,933 656,374 634,304 587,228 633,831 570,266 675,778 749,900 554,962

Median domain
length (bp)

481,504 485,408 483,488 484,592 480,704 436,864 450,496 455,872 509,888 516,480 421,408

Mean GC
content (%)

38.3 38.3 38.1 40.6 40.7 38.2 37.8 38.8 39.5 36.6 39.4

Median GC
content (%)

37.5 37.5 37.5 39.9 40 37.5 37 38 39 36.4 38.8

Fraction of
genome
covered (%)

25.1 25.1 26 33.7 33.7 20.4 19.7 22.3 29.5 37.5 15.8

doi:10.1371/journal.pcbi.1003925.t001
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To further study the GC content fluctuations within composi-

tional domains, we looked at their compositional variability.

Compositional variability is measured from the standard deviation

(GCs) of the GC content of each domain calculated over short

nonoverlapping windows within the domain (see Materials and

Methods). Figure 8 presents two-dimensional joint distribution of

Figure 2. Pairwise comparisons of domain-length distributions for five taxa. Homogeneous-domain lengths are shown above the diagonal;
nonhomogeneous-domain lengths are below, where the distribution curves of the species on the X-axis are solid and those on the Y-axis are dashed.
On the diagonal we compare homogeneous and nonhomogeneous domain length distributions within a taxon. The first value in each plot is the p-
value of significant (Kolmogorov-Smirnov goodness-of-fit test) and the colors represent the actual p-value after correcting for multiple testing using
the FDR method (black.0.05 and pink,0.05). The second and third values are effect size calculated as the nonoverlapping percentage of the two
distributions and Cohen’s d using the Hedges’ g estimator, respectively.
doi:10.1371/journal.pcbi.1003925.g002

Figure 3. The cumulative distribution of homogeneous domain lengths in log scale. For simplicity, the mean distributions of primates,
murids, and laurasiatherians are shown. In the inset, the majority of the domains of medium-short length.
doi:10.1371/journal.pcbi.1003925.g003
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homogeneous domain GC content and GCs. Interestingly, the
GCs values of most mammalian domains are narrowly distributed

around 11% GCs and, with the exception of opossum that exhibits

a smaller variation. In other words, GC-rich domains are more

erratic in their composition (high GCs) than GC-poor domains

(low GCs). The high compositional variability of horse and dog is

also reflected in the wide range of GCs values compared with

those of the Cetartiodactyla species.

The opossum is exceptional in exhibiting a GCs gradient

toward smaller GCs. The opossum compositional makeup

characterized by its low GC content and narrow GCs distribution

appears to be an intermediate between mammals and murids. The

narrow GCs distribution in the murid genomes is also confound-

ing. The murid joint distributions are largely symmetric about the

x-axis (Figure 8), suggesting that the evolutionary processes that

shaped the compositional organization of the genome were

symmetrical. Similar trends were obtained for the nonhomoge-

neous domains (Figure S6).

The joint distribution of compositional domain GC
content and length
The two-dimensional joint distributions of homogeneous

domain GC content and length are shown in Figure 9. These

measures are not correlated (r=,0). As shown before, the

Figure 4. Compositional domain densities of all chromosomes. Box plots summarize medians, quartiles, and range.
doi:10.1371/journal.pcbi.1003925.g004

Figure 5. Genomic coverage of four compositional domain types. Homogeneous domains are in blue shades; nonhomogeneous domains
are in green shades. Domains longer than 300 kb are in dark shades; domains shorter than 300 kb are in light shades. Compositionally homogeneous
domains longer than 300 kb (i.e., isochoric domains) are in dark blue.
doi:10.1371/journal.pcbi.1003925.g005
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majority of domains in all genomes are short (6–8 kb), and their

GC content distributes close to the mammalian genome mean GC

content. With the exception of murids, homogeneous domains are

significantly more AT-rich than nonhomogeneous domains

(Kolmogorov-Smirnov goodness-of-fit test, p,0.01). The genomic

landscape topologies of primates, laurasiatherian, and murids are

Figure 6. The cumulative density function P(x) of compositional homogeneous domain lengths (x) (points) plotted on a log-log
scale. The dashed lines represent the maximum likelihood power-law fits to the data.
doi:10.1371/journal.pcbi.1003925.g006

Figure 7. Pairwise comparisons of domain GC content distributions for five taxa. Homogeneous-domain lengths are shown above the
diagonal; nonhomogeneous-domain lengths are below, where the distribution curves of the species on the X-axis are solid and those on the Y-axis
are dashed. On the diagonal we compare homogeneous and nonhomogeneous domain GC content distributions within a taxon. The first value in
each plot is the p-value of significant (Kolmogorov-Smirnov goodness-of-fit test) and the colors represent the actual p-value after correcting for
multiple testing using the FDR method (black.0.05 and pink,0.05). The second and third values are effect size calculated as the nonoverlapping
percentage of the two distributions and Cohen’s d using the Hedges’ g estimator, respectively.
doi:10.1371/journal.pcbi.1003925.g007
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remarkably similar with short (103–104 bp) GC-rich domains 1.3–

1.7 times more frequent than GC-poor domains and medium-large

(105–106 bp) GC-rich domains 1–2 times more frequent than GC-

poor domains (Table S2). This ratio is opposite for both domain size

groups (0.7 and 0.32, respectively) in opossum, which implies a

major domain fusion process that affected the tetrapod genome.

Domains in the murid genome have a distinct length

distribution compared to other mammals. The murid genome

Figure 8. A two dimensional joint distribution of homogeneous domain GC content and its standard deviation (GCs). Each domain GC
content and GCs are represented by a point on the map. The frequency of different points is represented by colors ranging from red (highest
frequency) to blue (lowest frequency). The mean GC content of the mammalian genome is marked by horizontal line.
doi:10.1371/journal.pcbi.1003925.g008

Figure 9. A two dimensional joint distribution of homogeneous domain GC content and length in a log scale. Each domain’s GC
content and length are represented by a point in the map. The frequency of different points is represented by colors ranging from red (highest
frequency) to blue (lowest frequency). The mean GC content of the mammalian genome is marked by horizontal line.
doi:10.1371/journal.pcbi.1003925.g009
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has an abundance of over 2,500 medium-long (105–106 bp) and

long (.106 bp) GC-rich domains compared to all other genomes

(,500–1,591) (Table S2). By comparison, in the AT-rich opossum

genome, GC-poor domains are twice more frequent than GC-rich

domains. The opossum genome is particularly enriched in over

3,500 medium-long and long GC-poor domains compared with

only 486 GC-rich domains. Similar results were observed for

nonhomogeneous domains (Figure S7).

Compositional domains and phylogenetic hypotheses
Table 2 summarizes the supporting evidence for the two

phylogenetic hypotheses contrasting the validity of Euarchonto-

glires clade based on the defined genetic attributes. Although the

attributes are not independent, qualitatively they provide a strong

support for the second hypothesis that places Primates with

Laurasiatheria to the exclusion of Muridae, thereby invalidating

clade Euarchontoglires (Figure 1).

Discussion

One of the most fascinating features of mammalian genomes is

the uniformity of GC content over hundreds and hundreds of

thousands base-pairs termed short- and long-range correlations,

respectively. Although these structures have been known for over

three decades [3], only few explanations were proposed in an

evolutionary framework. Most of the explanations for the long-

range correlations were related to the ‘‘isochore theory.’’ The

‘‘isochore theory’’ posits the mammalian genome is composed of a

mosaic of isochores, long homogeneous domains (typically $

300 kb) that cover the majority of the genome of ‘‘warm-blooded’’

vertebrates; whereas only a small portion of the genome consists of

non-‘‘isochoric’’ regions. The ‘‘cold-blooded’’ vertebrate genome

was described as less compositionally heterogeneous and devoid of

GC-rich isochores [5,12]. Although the theory failed to explain the

compositional patterns later found in fish and reptiles [e.g., 43,

62], its importance has been in stimulating follow-up studies that

attempted to correlate various biological phenomena with

compositional and organizational features. Eventually, following

conflicting findings [e.g., 15, 36, 37, 62, 63], ambiguity as to the

interpretation of the theory predictions [18] and contradictory

revisions of the theory’s main principles [e.g., 55](Table S3), the

original theory was de facto abandoned by most scientists (with the

exception of its proponents), leaving open the basic questions:

how, when, and why in the course of evolution, did mammalian

genomes acquire their current composition and organization?

The most effective approach to understanding the composi-

tional organization of human and mammalian genomes is by

comparative analysis – preferably a large-scale one. In a previous

analysis of the human genome, Elhaik et al. [15] proposed a

compositional domain model to explain its genomic architecture.

The compositional domain model portrays the human genome as

a mixture of mostly short and very few long homogeneous and

nonhomogeneous domains in a ratio of 2:1. Under this model,

‘‘isochoric’’ domains consist of only a small fraction of all

compositional domains [15]. Here, we extended the analysis to

ten mammalian genomes and tested whether the outcomes fit

within the isochoric or the compositional-domain models using

seven genomic attributes. Our findings are discussed under two

different phylogenetic hypotheses, for which traditional phyloge-

netic analyses provided ambiguous answers (Figure 1). Table 2

summarizes the evidence in support of either hypothesis.

The mammalian genome is covered by a complex medley of

nonhomogeneous domains of various lengths (32%), short (103–

104 bp) homogeneous domains (36%), medium-short (104–105 bp)

homogeneous domains (26%), medium-long (105–106 bp) homoge-

neous domains (4%), and only a miniscule fraction of 0.16% long

(106–107 bp) homogeneous domains (Table S2). On average,

homogeneous domains longer than 300 kb, i.e., isochores, consti-

tute less than 2% of all domains and cover less than 28% of the

mammalian genome (Table 1). Short homogeneous domains have

wide GC content distributions and the GC content of long

homogeneous domains is distributed slightly below the mammalian

genome mean GC content (Figure 9)m whereas the GC content of

long nonhomogeneous domains is distributed slightly above it.

Table 2. A summary of the supporting evidences for the two phylogenetic hypotheses (Figure 1) using seven genetic attributes as
selection criteria.

Genomic attributes of

compositional domains

Hypothesis I: Muridae clusters with

Primates within clade Euarchontoglires

Hypothesis II: Laurasiatheria clusters with Primates to the exclusion of

Muridae

Abundance Murid nonhomogeneous domain counts
are closer to those of primates (Table 1).

Murid homogeneous domain counts are closer to those of opossum (Table 1).
Murids and opossum have the smallest fraction of homogeneous domains among
all mammals (Tables 1, S1).

Murids and opossum share similarities in mean homogeneous and non homogeneous
domain lengths (Table 1).

Length Murids and chicken exhibit similarity in the distribution of homogeneous domain
lengths (Figure 2, Table 1). Short- and medium-length domains (,1 Mb) have similar
length distributions in primates, laurasiatherians, and opossum - distinct from murids
(Table S2, Figure 3). The murid and opossum genomes have the largest proportion of
long homogeneous and nonhomogeneous domains among all species (Table S2).

Density Domain densities in murid genomes are more similar to those of opossum than to
mammals (Figure 4, S2-S3, Table 1).

Genome coverage The Euclidean distance between the proportion of domains covering the genome
show that murids are closer to opossum than to primates (Figure 5).

GC content The mean GC content of all domain types in
murids is similar to that of primates (Figure 7).

The joint distribution of
GC content and length

GC content of short domains exhibit similar
topology in murids and primates (Figure 9,
Table S2).

GC-rich medium-short domains are more frequenct than GC-poor domains in murids
and opossum.

doi:10.1371/journal.pcbi.1003925.t002

Comparative Analysis of the Genomic Architectures of Mammalian Genomes

PLOS Computational Biology | www.ploscompbiol.org 10 November 2014 | Volume 10 | Issue 11 | e1003925



Under the ‘‘isochore model’’ where the vast portion of the

genome was considered to be composed of long homogeneous

domains, their length distribution was thought to display a power-

law distribution [18,49,53,64]. We demonstrated that the power-

law model is inconsistent with the data due to the high abundance

of short domains and the scarcity of long domains (Figures 6, S4,

S5). Short domains are major components of the mammalian

genome and cannot be dismissed as ‘‘false positives‘‘ [55]. Overall,

our results support the compositional domain model and limit the

applicability of the isochore model to less than 30% of the average

mammalian genome.

Homogeneous or ‘‘relatively homogeneous’’ [9] domains were

speculated to be biologically different from nonhomogeneous

domains [7,18,55], yet we found only minor differences between

and within chromosomes, most of which stemmed from the

differences in the proportions of the two domain types (Tables 1,

S2). Interestingly, with the exception of murid genomes, we found

that homogeneous domains are significantly more AT-rich than

nonhomogeneous domains (Figures 9, S7), which may suggest

biological importance. To support such hypothesis, additional

biological properties should be used to test whether or not this

distinction is biologically meaningful.

Most genome characteristics within higher taxa follow phylo-

genetic relatedness. For example, the genomes of the three

primates are very similar to each other, as are the genomes of the

two murids. The genome characteristics of the Pegasoferae (horse

and dog) differ slightly from those of cetartiodactyls (cow and pig),

possibly adding support for the validity of clade Pegasoferae

(Figure 1). However, the possibility that the similarity between

horse and dog is due to the poor quality of their genomic

sequences cannot be excluded. We have evidence obtained by

comparing a draft of the cow genome (build 3.1) with the finished

version (build 4.0) [1] that draft genomes contain an abundance

(,90%) of short compositional domains (,10 kb), thus rendering

drafts genomes artificially similar to one another.

Overall, the laurasiatherian genomes are more similar to the

primate genomes than the murid genomes, which, in turn, are

more similar to the opossum genome than to any other genome

(Table 2). The murid genome is distinguished from the primate

and laurasiatherian genomes mainly by its narrow GC content

distribution (Figure 7), larger GC-rich domains (Figures 2, 3),

smaller GC content standard deviation for both GC-poor and -

rich domains (Figure 8), and the unique shape of its joint

distribution of compositional domain GC content and length

(Figure 9). Differences in the compositional patterns between

murids and other mammals were previously termed the ‘‘murid

pattern’’ [65] or ‘‘murid shift’’ [66]. The ‘‘shift’’ was attributed to a

smaller variation in the composition of isochoric domains

compared to other mammals [66]; however, we found that the

differences between the murid lineage to other mammals are

found in the entire murid genomes and are not unique to

‘‘isochoric’’ domains. A possible explanation to the ‘‘shift’’ may be

in the different evolutionary origin of murids (Figure 1b).

Moreover, the similarity between the murid and opossum genomes

suggests the effect was not unique to murids and may have

originated in the eutherian ancestor.

The two phylogenetic hypotheses tested here differ in the

validity of clade Euarchontoglires. According to the first hypoth-

esis (Figure 1a), murids arose relatively late in mammalian

evolution and are grouped with Primates under Euarchontoglires.

Considering the relatively fast mutation rate of the murids [67],

the most parsimonious explanation would be that their genomic

organization is a derived state, possibly as a result of a ‘‘shift’’ or a

genomic transition that affected the entire linage. Under this

hypothesis, the genomic transition resulted in the fusion of nearly

half of the short domains of extreme GC content together with

other domains. Elongated domains were created due to the

decrease in GC content variability and the fusion of neighboring

domains. Subsequently, domain density was reduced and the

compositional fluctuations were ‘‘flattened’’ resulting in higher

homogeneity between domains. The process dramatically de-

creased the proportion of short domains (52%) that are highly

frequent in other mammalian genomes (60%). Conversely, these

fusions increased the proportion of longer domains (medium-

short = 40%, medium-long= 7.5%, long = 0.28%) compared to all

other mammalian domains (medium-short = 36%, medium-

long = 4%, long = 0.15%). The proportion of long GC-poor

domains increased as well but in smaller proportion than GC-

rich domains. Further evidence for this transition can be found in

the frequency distribution of GC content standard deviation that is

relatively devoid of heterogeneous domains compared to other

mammalian genomes (Figure 8). Moreover, Muridae have ge-

nomes that are markedly homogeneous in both poor- and GC-rich

domains, as opposed to mammalians genomes that are highly

heterogeneous in their GC-rich domains and homogeneous in

their GC-poor domains (Table S2). We note that genome

elongation could also result from segmental duplication; however,

we do not know of a segmental duplication that acts selectively on

segments with certain composition.

According to the second hypothesis (Figure 1b), murids arose

early in the mammalian evolution and their genomic architecture

reflects an ancestral state. The ‘‘typical’’ mammalian genome thus

evolved from this ancestral pattern leading to a wider composi-

tional distribution and shorter domains. This view is supported by

the similar genomic structure (Tables 1, S2) and genome

homogeneity shared between the murid and opossum genomes.

A similar hypothesis was tested by Mouchiroud, Gautier, and

Bernardi [68]; however, because they assumed the existence of

isochores that cover the mammalian genome, their conclusions are

limited to few ‘‘isochoric’’ domains.

Unfortunately, the representation of marsupial mammal as

outgroup yielded more questions than answers as opossum

reflected either unique genomic characteristics or oscillated

between murid and non-murid characteristics (Tables 1–2). Thus,

although the results showed a high resemblance between murids

and opossum in support of the second hypothesis (Table 2),

additional evidence would be necessary before ruling out the first

hypothesis (Figure 1). It is possible that with the accumulation of

additional genomic sequences of intermediate species this question

would be answered. In light of these findings, it will be intriguing

to identify which evolutionary mechanisms shaped the transitions

that affected the murid and opossum genomes. Understanding

these biological mechanisms and their evolutionary implications is

a key factor in reconstructing the evolutionary history of

mammalian genome evolution.

Materials and Methods

Data
Nine eutherian genomes that are either fully sequenced or have

reliable genomic drafts were included in this study: human (Homo
sapiens build 37.1), chimpanzee (Pan troglodytes build 2.1),

orangutan (Pongo abelii build 1.2), mouse (Mus musculus build

37.1), rat (Rattus norvegicus build 4.1), horse (Equus caballus build
2.1), dog (Canis familiaris build 2.1), pig (Sus scrofa build 2.1), and

cow (Bos taurus build 4.1). The gray short-tailed opossum

(Monodelphis domestica build 2.1) was used as an outgroup to

the eutherians, and chicken (Gallus gallus build 2.1) was used as
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an outgroup to the mammals. Genomes were downloaded from

http://www.ncbi.nlm.nih.gov/Genomes/. Nulls, i.e., unknown,

undetermined, or ambiguous characters in the genomic sequences,

were discarded.

Phylogenetic hypotheses
There are two phylogenetic hypotheses in the literature for the

taxa under study (Figure 1). The two hypotheses are supported by

molecular data though differ in their outcome. The difference

between the two phylogenetic trees concerns the relative kinship of

murids (mouse and rat) and laurasiatherians (horse, dog, cow, and

pig) to primates (human, chimpanzee, and orangutan). In the first

scheme [e.g., 29, 69, 70–72], primates cluster with the murids

within clade Euarchontoglires (Figure 1a). In the second scheme

[e.g., 30, 73], primates cluster with the laurasiatherians to the

exclusion of murids (Figure 1b). The clustering of Perissodactyla

(horse) and Carnivora (dog) into Pegasoferae to the exclusion of

Cetartiodactyla (cow and pig) is accepted by both alternative

phylogenies [69].

Genome segmentation into compositional domains
Version 2 of IsoPlotter [15] of the IsoPlotter+ pipeline [28] was

obtained from https://github.com/sean-dougherty/isoplotter/

and used to partition each of the genomes into compositionally

distinct domains. IsoPlotter recursively maximizes the difference in

GC content between adjacent segments, as measured by the

Jensen-Shannon divergence statistic [17]. The halting criterion

was obtained via a dynamic threshold calculated in real-time

according to the length of each segment and the standard

deviation of its GC content. The compositional domains inferred

by the segmentation procedure were classified into homogeneous

and nonhomogeneous as in Elhaik et al. [15]. For convenience,

domains are sometimes divided by order of magnitude of their

length into: short (103–104 bp), medium-short (104–105 bp),

medium-long (105–106 bp), and long (106–107 bp) domains.

The mean GC content of all mammalian genomes in this study

(40.9%) was used as a critical value. A compositional domain was

defined as GC-rich or GC-poor if its GC content was higher or

lower, respectively, than the critical value.

Comparisons of the distributions of domain length and
domain composition
For each species and for each domain category, log domain-

lengths were sorted and smoothed. Smoothing was carried by

dividing the log domain-lengths into 1,000 groups of equal size

and then using the mean domain length of each group to calculate

a histogram with 38 bins ranging from 8 to 16. To test whether or

not two distributions are different, we used the Kolmogorov-

Smirnov goodness-of-fit test and the False Discovery Rate (FDR)

correction for multiple tests [74]. Because the differences between

the distributions were highly significant due to the huge sample

sizes, we also calculated the effect size, first by using the

nonoverlapping percentage of the two distributions, and then by

using Hedges’ g estimator of Cohen’s d [75]. If the area overlap

was larger than 98% and Cohen’s d was smaller than 0.05, we

considered the magnitude of the difference between the two

distributions to be too small to be biologically meaningful.

The distributions of domain GC contents were calculated in a

similar manner. To smooth the GC content distributions, domain

GC contents were divided into 1,000 groups of equal size, and the

mean domain GC content of each group was used to calculate a

histogram with 38 bins ranging from 0 to 1. The remaining

calculations were carried as described above.

To test whether the GC-content distributions of homogeneous

and nonhomogeneous domains fit a normal distribution, we used

the Lilliefors (1967) test. This test is a two-sided goodness-of-fit test

suitable when a fully-specified null distribution is unknown and its

parameters must be estimated. It tests the null hypothesis that

domain GC contents come from a distribution in the normal

family, against the alternative that they do not come from a

normal distribution.

We also estimated the standardized skewness (c) of the GC

content distributions using the ‘‘skewness’’ function in Matlab,

which first centralizes the distribution by subtracting it from its

mean, calculates its third (k3) and second (k2) moments, and then

computes the skewness, so that: GC0=GC – m(GC), k3= m(GC0
3),

k2= m(GC0
2), and c= k3/k2

1.5.

Fit to power-law distribution
We used two approaches to test the fit of the domain-length

distributions to power-laws. First, the minimum domain length

and the power-law exponent were estimated for the domain

lengths of each genome according to the goodness-of-fit based

method described in Clauset, Shalizi, and Newman [51]. The

observed domain lengths were then compared to the domain

lengths generated from the parameters previously estimated, and

the similarity between the two distributions was calculated using

the Kolmogorov-Smirnov statistic [76]. Based on the observed

goodness-of-fit, we calculated a p-value that quantifies the

probability that the data were drawn from the hypothesized

distribution. We used the Matlab scripts plfit.m (version 1.0.5),

plpva.m (version 1.0.6), and plplot.m (version 1.0) in www.santafe.

edu/,aaronc/powerlaws/(Clauset, Shalizi, and Newman [51].

Second, Baek and et al. [52] showed that the random group

formation (RGF) model is a form of general distribution, free from

system-specific assumptions, of which pure power-laws are a

special case. We used this model to test the data fitting into the

power-law model using the online application http://www.tp.

umu.se/,garuda/Comp.html.

Supporting Information

Figure S1 The cumulative distribution of medium-short

(104–105) and medium-long (105–106) nonhomogeneous

(a) and compositional (b) domain sizes in log scale. For

simplicity, the mean distributions of primates, murids, and

laurasiatherians are shown.

(TIF)

Figure S2 Compositional domain densities of A) homo-

geneous and B) nonhomogeneous domains over all

chromosomes. Box plots summarize medians, quartiles, and

range.

(TIF)

Figure S3 Frequency of domain density for (a) homo-

geneous domains, (b) nonhomogeneous domains, and

(c) compositional domains. GC-poor domains (red), GC-rich

domains (blue), and all domains (black) are plotted.

(TIFF)

Figure S4 The cumulative density function P(x) of

compositional domain (a) and nonhomogeneous domain

(b) sizes (x) (points) plotted on a log-log scale. The solid

lines represent the maximum likelihood power-law fits to the data.

(TIF)

Figure S5 A comparison of compositional (a), homoge-
neous (b), and nonhomogeneous (c) domain lengths in
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the cumulative representation C(k). The horizontal axis is

plotted as k/k0, where k0, is the size of the smallest domain size

group. Although the distributions are clearly different for all the

animals, the deviation from a power-law (dashed line) and the ‘‘fat

tails’’ are shared features.

(TIFF)

Figure S6 A two dimensional joint distribution of

nonhomogeneous domain GC content and its standard

deviation (GCs). Each domain GC content and GCs are

represented by a point on the map. The frequency of different

points is represented by colors ranging from red (highest

frequency) to blue (lowest frequency). The mean GC content of

the mammalian genome is marked by horizontal line.

(TIF)

Figure S7 A two dimensional joint distribution of

nonhomogeneous domain GC content and size in a log

scale. Each domain GC content and its size are represented by a

point in the map. The frequency of different points is represented

by colors ranging from red (highest frequency) to blue (lowest

frequency).

(TIF)

Table S1 Chromosome statistics for compositionally
homogeneous, nonhomogeneous, and ‘‘isochoric’’ do-
mains.
(DOC)

Table S2 Categories of compositional domains by
length and GC content.
(DOC)

Table S3 List of 49 publications by Professor Giorgio
Bernardi and colleagues in which isochores are defined
as compositionally homogeneous genomic stretches
longer than 300 kb*#.
(DOC)
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