
A Comparative Study and Benchmarking on

XML Parsers

 Abstract Due to its flexibility and efficiency in transmission

of data, XML has become the emerging standard of data transfer

and data exchange across the Internet. XML document must

always be checked for well formedness before data transfer and

exchange can take place. To choose the right parser for an

organization respective system is crucial and critical; since

improper parser will lead to degradation in performance and

decrease in productivity. In this paper, we will do an extensive

comparative study and benchmarking on the popular XML

parsers found in the market today. In addition, we also propose a

non-validating SAX based XML parser, xParse. We

implemented our technique and present the performance results,

which prove the viability of our approach.
 Keywords XML, XML Parser, benchmark test, comparative

study.
1. Introduction

eXtensible Markup Language (XML) has become the de

facto for data exchange and data transfer via the web medium

[1]. However, XML would not be able to perform as desired

before it has been parsed. Hence, the importance of XML

parser, one of the core XML technologies, has become

significant in this matter.

Currently there are a lot of XML parsers, and most of them

evolve, improve and become sophisticated. Though all the

parsers serve the same purpose, they vary in terms of

specification, performance, reliability and also conformance

to standards. If a wrong choice has been made, it is highly

possible to leads to the problem of excessive hardware

requirement, which will resulted in productivity degradation

[2].

In this paper, comparative studies and extensive research

on the features and information about the selected parsers are

made. Furthermore, we also propose a non-validating SAX

based XML parser, xParse, which is built on top of Java

platform. Experiments to benchmark the performance of

xParse with the two leading parsers in the market, Xerces (a

Java based parser) and .NET parser (a Microsoft based parser)

are to be conducted.

Our paper is organized as follows. Section 2 gives the

background studies and literature reviews from the previous

work done in this field. Section 3 presents the overview of

xParse. Section 4 discusses on the experimental setup,

findings and benchmark results. Section 5 concludes with

conclusions and suggests future works.

2. Literature Reviews

2.1. Introduction to XML parser

XML parser plays the roles in reading, detecting its well

formedness, and validating the XML documents against its

schema. It can be classified along two independent

dimensions: (1) validating versus non-validating [3], and (2)

stream-based versus tree-based [4].

A validating parser uses a Document Type Definition

(DTD) or a schema to verify that a document is properly

constructed while a non-validating parser only require that the

document must be well formed [5, 6]. Thus, a non-validating

parser is relatively simpler compare to a validating parser.

A parser can read the XML document components via

Application Programming Interfaces (APIs) in two

approaches. For stream-based approach (also known as

event-based parser), it reads through the document and signal

the application every time a new component appears. As for

tree-based approach, it reads the entire document into a

memory resident collection of object as a representation of

original document in tree structure [7, 8]. As a result,

tree-based approach is not suitable for large-scale XML data

because it can easily run out of memory.

Simple API for XML (SAX), StAX and XMLPull are

stream-based approach API while Document Object Model

(DOM), JDOM, ElectricXML, DOM4j are categorized as

tree-based API. Most of the major XML parsers support both

SAX and DOM. However, there are a few parsers that only

support SAX, and at least a couple that only support their own

proprietary API like ElectricXML and XMLPull parser.

A brief comparison of XML parser’s APIs, with respect to

their characteristics are depicted in Table 1.
2.2 Related Work

A study towards different XML parsers is beneficial when

comes to determine the strength and weaknesses of the

products. Various studies have been conducted which

compare on conformance to standards, speed, memory usage

and so on.

Su Cheng Haw

Faculty of Information Technology,

Multimedia University

63100 Cyberjaya

schaw@mmu.edu.my G. S. V. Radha Krishna Rao

Faculty of Information Technology,

Multimedia University

63100 Cyberjaya

gsvradha@mmu.edu.my

ISBN 978-89-5519-131-8 93560 - 321 - Feb. 12-14, 2007 ICACT2007

Table 1. Comparison on XML Parser’s APIs
APIs Advantages Disadvantages

DOM - Easy navigation
- Entire tree loaded into

memory
- Random access to XML

document

- Rich set of APIs

- XML document must be
parsed at one time

- It is expensive to load entire
tree into memory

SAX - Entire document not loaded

into memory which

resulting in low memory

consumption

- Allows registration of

multiple ContentHandlers

- No built-in document

navigation support

- No random access to XML

document

- No support for modifying

XML in place

- No support for namespace

scoping

StAX/

Pull

- Contains two parsing

models, for ease or
performance

- Application controls

parsing, easily supporting

multiple inputs

- Powerful filtering
capabilities provide

efficient data retrieval

- No built-in document

navigation support
- No random access to XML

document

- No support for modifying

XML in place and is still in

an immature state

Electric

XML

- Light weighted

- Fast in performance

- No support for validating

- Still in immature state

Michael and Elliotte have respectively conducted a SAX

conformance test using W3C XML conformance Test Suite on

a number of parsers. They compare based on the features

supported such as well-formedness, validation, namespaces,

XML schema, open source, exception handling, fatal error and

so on. Based on their studies, Xerces emerges as the most

conformant parser to SAX standard [6, 9].

Anex conducted a study to evaluate seven XML parsers on

the conformance test, parsing speed and memory usage using

OASIS Test Suite [10]. The study reveals that IBM java is an

‘outstanding’ parser where else Microsoft XML (MSXML)

falls under ‘good’ ranking category.

Karre et al. conducted an empirical assessment on five java

based parsers to measure each parser strengths and weakness

based on three factors: (1) features (well-formedness, validity

and namespaces), (2) percentage of acceptance and rejection

rate for correct and incorrect XML documents, and (3) parsing

speed. He concludes that Xerces is the best parser fulfill

factors (1) and (2) while Aelfred which built on top of Java

API for XML Processing (JAXP) has the fastest parsing speed.

Some other recent works include performance tests

conducted by Mohseni and Sonoski respectively. Performance

test conducted by Mohseni indicates that MSXML rivals other

parser having the shortest loading time [11]. Sosnoski carried

out a test on DOM based parsers using XMLBench. He tested

on the execution speed and memory usage for a set of XML

documents ranging from small-scale to large-scale file sizes.

The test result shows that Xerces outperforms among the

others [12]. Besides, Xerces parser is also voted as the best

XML parser of the year by XML-Journal/Web Services

Journal Readers' Choice Awards [13].

Since Xerces and MSXML outperform the rest of the

parsers in most cases, we have decided to concentrate

benchmarking our proposed parser, xParser against these two

parsers.
3. Overview of xParse

xParse, a non-validating SAX parser is implemented under

Java platform based on the following setting:-

• Get a new instance of SAXParserFactory

SAXParserFactory factory =

SAXParserFactory.newInstance();

• Create the parser

SAXParser xParse =

factory.newSAXParser();

• Parse the XML file

xParse.parse(filename, this);

xParse fulfill the XML 1.0 specification requirements [14]

except for parsing an internal DTD. With the rapid evolvement

of XML schemas to replace DTDs, we think that supporting

DTD parsing is no longer necessary [2]. Nevertheless, the

limitation of xParse is that the XML input document must be

in UNICODE.

xParse adopts the event-driven style of parsing. Figure 1

shows the entire XML document is transform into a series of

SAX events. As the parser sequentially encounters each

component such as element, text, attribute, comment,

processing instruction, entity reference, declaration and so on,

it reports to its delegate. Next, its delegate will process

according to the implemented associated method. Figure 2

shows a sample of XML document.

Figure 1. xParse Processing Model

Figure 2. A Sample of XML Document

xParse

<?xml version="1.0"
encoding="UTF-8"?>
<root>

 <paper ID = “128”>

 <author>Haw</author>

 <author>Radha</author>

 </paper>

 <paper>

 ….

</root>

startDocument()

startElemet(root)

startElement(paper)

characters(ch, start,length)

startElement(author)

…

endElement(root)

endDocument()

XML document

SAX Events

<?xml version="1.0" encoding="UTF-8"?>

 <paper ID = "128">

 <author>Haw</author>

 <author>Radha</author>

 </paper>

ISBN 978-89-5519-131-8 93560 - 322 - Feb. 12-14, 2007 ICACT2007

Based on the sample document in Figure 2, xParse will

report the events of :-

(1) Start parsing document

(2) Found start tag of element paper

(3) Found attribute ID of element paper, with value 128

(4) Found start tag of element author

(5) Found text with value Haw

(6) Found end tag of author

(7) Found start tag of element author

(8) Found text with value Radha

(9) Found end tag of author

(10) Found end tag of paper

(11) End parsing document

The overall flow of xParse is illustrated in Figure 3.

S t a r t

P a r s e X M L f i le

X M L f i l e f o u n d ?

C h e c k f o r w e l l -
f o r m e d n e s s

W e l l - f o r m e d ?

C h e c k f o r
n a m e s p a c e

N a m e s p a c e
s t r u c t u r e d ?

S u m m a r y

E n d

E r r o r m e s s a g e

N o

Y e s

Y e s

Y e s

N o

N o

Figure 3. Overview of xParse System Flow

4. Benchmarking and Testing

4.1. Experimental Setup

XML Test 1.0 [15] is used as the benchmarking tools to

evaluate the following model of XML parsers:
Table 2. XML Parsers Used for Benchmarking

Xerces

2.6.2

.NET

1.1

xParse

Tree-based DOM DOM -

Stream-based SAX PULL SAX
Before running the test, the following setting and software

are pre-requisite and version we used are hereby stated:
• jdk1.5.0 (Bundled with JAXP which contains Xerces

2.6.2 XML parser)

• Microsoft .NET Framework 1.1

• Jakarta ANT

All experiments are conducted on 1.7 GHz Pentium IV

processor with 1.024 GB SDRAM running on windows XP

system. Figure 4 shows the testing environment for XML Test

1.0.

Figure 4. XML Test 1.0 Testing Environment

4.2. Results and Discussion

To analyze the benchmark results, we group them into four

sets of test cases as below:

• SAX/Pull test – Compare the performances of the

streaming based parsers, using 1000 transactions

XML invoice document (about 900KB).

• DOM test (without serialization) – Compare the

performances of DOM based parsers, using 100

transactions XML invoice document (about 90KB).

• XML parsers comparison – Compare the parsing

time against various file sizes for DOM and SAX

based parsers of Xerces Java, .NET and xParse using

the modified invoice dataset.

• xParse performance analysis – Measuring the parsing

time of xParse against various file sizes using Orders

dataset obtained from University Washington

repository [16].

Figures 5 to 7 depict the test results. In Figures 5(a) and

5(b), the testing results are obtained by using the following

setting. For SAX 1 and DOM 1 configuration respectively, the

percentage of selection is 25%, followed by SAX 2 and DOM

2, where percentage of selection is 50% and SAX 3 and DOM

3, which is set to 100%. Selection is percentage of lineitems

retrieved in the access phase (a phase which data is extracted

from the elements and attributes of parts of the document into

the application program). From the results, Xerces SAX

parser outperforms .NET Pull parser.

In addition, the parsing time for DOM and SAX based

parsers are shown in Figure 6(a) and 6(b) respectively. No

matter parsing invoice document of 100 transactions (90KB),

200 transactions (181KB) or 400 transactions (356KB),

Xerces Java emerges to be the fastest DOM based parser.

Interestingly, .NET pull parser performs better for the SAX

ISBN 978-89-5519-131-8 93560 - 323 - Feb. 12-14, 2007 ICACT2007

Figure 5. Test Results on (a) SAX/Pull Test (b) DOM Test

Figure 6. Test Results on (a) DOM Parsers’ Performance (b) SAX Parsers’ Performance

Figure 7. Test Results on (a) SAX Parsers’ Performance by Altering the Selection Criteria (b) xParse Parsing Time

parser category as compared to Xerces and xParse. This is

because .NET pull parser has the ability to skip over unwanted

content if involving parsing phase only [17]. However, xParse

performs impressively when the file size is large. Thus, it can

support large-scale dataset efficiently. On the other hand, in

Figure 7(a), we observed that Xerces Java outperformed .NET

0

10

20

30

40

50

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
/s

e
c

)

Xer ces

.NET

Xerces 47.48 23.66 11.84

.NET 42.12 21.24 10.66

SAX 1 SAX 2 SAX 3 0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
/s

e
c
)

Xerces

.NET

Xerces 57.005 55.09 51.82

.NET 48.495 47.79 46.92

DOM 1 DOM 2 DOM 3

 (a) (b)

0

200

400

600

800

1000

1200

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

File Size (MB)

P
a
rs

in
g

 T
im

e
 (

m
s
)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
/s

e
c
) .NET

Xerces

.NET 2278.00 1265.02 818.99 425.10

Xerces 1915.00 1223.48 840.07 439.57

0% 5% 10% 25%

 (a) (b)

1696 2024

5660

8154

20428

33528

0

5000

10000

15000

20000

25000

30000

35000

40000

Xerces .NET
Parser

P
a
rs

in
g

 T
im

e
 (

m
s
)

100 Transactions 200 Transactions 400 Transactions

44 52

188
219

250

437

516

344

103
87

207
176

0

100

200

300

400

500

600

.NET Xerces xParser

Parser

P
a
rs

in
g

 T
im

e
 (

m
s
)

100 Transactions 200 Transactions 400 Transactions 1000 Transactions

 (a) (b)

ISBN 978-89-5519-131-8 93560 - 324 - Feb. 12-14, 2007 ICACT2007

when the selection is set to 10% onwards. Figure 7(b) shows

the parsing time for xParse increase linearly against increasing

file size of XML document as compared to most other parsers

which increase drastically against the increasing file size (as

shown in Figure 6(b)). Hence, xParse parser is suitable for

supporting the large-scale dataset.

 From the result summarized, it is clear that Xerces

outperforms .NET parser from most of the test cases carried

out. However, if parsing large-scale dataset is required, xParse

may be the best choice.

5. Conclusions and Future Work

There have been a handful of studies and researches

towards XML parsers. Nevertheless, most of them are not up

to date. As XML parser is a technology, which is changing

rapidly for the moment, there is no single study or research

that would valid forever.

The result of the study indicates that Xerces Java has been

the best parser in terms of performance. However, xParse

outperformed in terms of supporting large-scale of dataset

efficiently. Nevertheless, performance is not the only criteria;

there are lots of factors to be considered when choosing XML

parser, such as organization’s need, API support, platforms

and license fees.

Since the testing and benchmarking only involve in

evaluating two most popular parsers, the .NET and Xerces

parser, the study can be further extended in future. Some of the

future approaches could includes 1): Compare the

performance of new and established APIs DOM, SAX, StAX,

Pull or electric XML together in a set of benchmarking tool,

and 2): Compare and study the conformance of parsers to

some of the new features such as support to new APIs and

eXtensible Stylesheet Language Transformation (XSLT)

ability.

Acknowledgments

We would like to thank Tzy Yee Yeoh and Chen Wai Lor for

partially supporting this study.

REFERENCES
[1] S.C. Haw and G.S.V.R.K.Rao, “Query Optimization Techniques for

XML Databases”, International Journal of Information Technology,

Vol. 2, No. 1, 2005, pp. 97-104.

[2] Nicola, M. and John, J., “XML Parsing: a Threat to Database

Performance” International Conference on Information and Knowledge

Management, 2003, pp. 175-178.

[2] Slominski, A., “Design of a Pull and Push Parser System for Streaming

XML”, Indiana University, Technical Report TR550, 2001.

[4] Zisman, A., “An Overview of XML”, Computing & Control

Engineering Journal, 2000.

[5] Karre, S. and Elbaum, S., “An Empirical Assessment of XML Parsers”,

6th Workshop on Web Engineering, 2002, pp. 39-46.

[6] Michael, C., “XML Parser Comparison”, 2000,
 http://www.webreference.com/xml/column22/2.html

[7] Tong, T. et al, “Rules about XML in XML”, Expert Systems with

Applications, Vol. 30, No.2, 2006, pp. 397-411.
[8] Kiselyov, O., “A better XML parser through functional programming”,

LNCS 2257, 2002, pp. 209-224.

[9] Elliotte, R.H., “SAX Comformance Testing”, XML Europe, 2004

[10] J. Anez, “Java XML Parsers- A Comparative Evaluation of 7 Free

Tools”, Java Report Online, 1999.

[11] Mohseni, P., “Choose Your Java XML Parser”, 2001,

 http://www.devx.com/xml/Article/16921

[12] Sosnoski, D.M., “XMLBench”, 2005

 http://www.sosnoski.com/opensrc/xmlbench

[13] XMLJ News Desk, “Journal Readers choice Award”, 2004

 http://xml.sys-con.com/read/44008.htm

[14] XML 1.0 Specification, W3C, http://www.w3.org/TR/REC-xml/

[15] XML Performance Team, “XML Test 1.0”, 2005

http://java.sun.com/developer/codesamples/webservices.html#Performa

nce

[16] University of Washington Repository,

 http://www.cs.washington.edu/research/xmldatasets/
[17] Sun’s white paper,

 http://java.sun.com/performance/reference/whitepapers/XML_Test-1_0.pdf

ISBN 978-89-5519-131-8 93560 - 325 - Feb. 12-14, 2007 ICACT2007

