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a  b  s  t  r a  c t

Combinatorial optimization  problems are  usually  modeled  in a  static  fashion. In  this  kind of problems,  all
data  are  known  in advance,  i.e. before  the  optimization  process has started. However,  in practice, many
problems  are  dynamic,  and change  while the  optimization  is  in progress. For example,  in the  dynamic
vehicle  routing  problem (DVRP),  new orders  arrive when  the  working  day plan  is in progress.  In  this
case, routes must  be  reconfigured  dynamically  while executing  the  current  simulation.  The  DVRP  is an
extension of a conventional routing  problem, its main interest  being  the  connection  to many  real word
applications (repair  services,  courier  mail services,  dial-a-ride services,  etc.).  In  this  article, a DVRP  is
examined,  and solving methods based on particle  swarm  optimization  and  variable  neighborhood  search
paradigms are  proposed.  The performance of both  approaches  is evaluated  using a new  set of benchmarks
that we  introduce here  as  well  as  existing  benchmarks  in the  literature.  Finally,  we measure  the behavior
of both  methods  in terms  of dynamic adaptation.

© 2011 Elsevier  B.V.  All  rights  reserved.

1. Introduction

Thanks to recent advances in information and communication
technologies, vehicle fleets can now be managed in  real-time. When
jointly used, devices like geographic information systems (GIS),
global positioning systems (GPS), traffic flow sensors and cellu-
lar telephones are able to provide real-time data, such as current
vehicle locations, new customer requests, and periodic estimates
of road travel times. If suitably processed, this large amount of data
can be used to reduce the cost and improve the service level of
a modern company. To this end, revised routes have to  be timely
generated as soon as new events occur [1]. In this context, dynamic
vehicle routing problems (DVRPs) are getting increasingly impor-
tant [2–5].

The VRP [6] is a  well-known combinatorial problem which con-
sists in designing routes for a  fleet of capacitated vehicles that
are to service a set of geographically dispersed points (customers,
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stores, schools, cities, warehouses, etc.) at the least cost (distance,
time, or any other desired factor). It is possible to define several
dynamic features which introduce dynamism in the classical VRP:
roads between two  customers could be blocked off, customers
could modify their orders, the travel time for some routes could
be increased due to bad weather conditions, etc. This implies that
Dynamic VRPs constitute in fact a  set of different problems, which
are  of crucial importance in  today’s industry, accounting for a  sig-
nificant portion of many distribution and transportation systems.

The main goal of this work is to  present a  comparative study
between particle swarm optimization (PSO) and variable neigh-
borhood search (VNS) for the resolution of the DVRP with dynamic
requests; in  this case, the terms “dynamic requests” refer to the
fact that some customers are unknown when the optimization pro-
cess begin, i.e. their orders and positions will be known only after
the vehicles are already in  route. These two algorithms have been
chosen as representative of the two main classes of metaheuristics:
trajectory- and population-based algorithms. PSO has already been
pointed out as an appropriate method to tackle dynamic continuous
problems [7–9] as well as adapted to  solve combinatorial optimiza-
tion problems like VRP [10], while VNS has proved to  be one of  the
most successful methods for solving different types of  static VRP
[11,12] and other similar trajectory-based mechanisms have been
successfully explored to  tackle dynamic VRP [13]. In addition, we
also propose a  new DVRP benchmark, which is aimed at upgrading
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the  existing instances in  terms of enhancing problem complexity
and scalability.

The remainder of this article is  organized as follows. Section 2
describes the static and the dynamic VRP and its specific features.
The resolution scheme is presented in Section 3, which includes
both the event scheduler as well as the description of our algo-
rithms. Computational results are analyzed in  Section 4, and finally
Section 5 presents conclusions and opens some lines for further
research.

2. The dynamic vehicle routing problem

The conventional VRP can be mathematically modeled by using
an undirected graph G =  (C, E), where C is a vertex set, and E is
an edge set. They are  expressed as C =  {c0, c1, . . .,  cn}, and E =  {(ci,
cj)|ci, cj ∈ C, i < j}.  Furthermore, a set V of m homogeneous vehicles
each with capacity Q  originate from a single depot, represented by
the  vertex c0 and must service all the customers represented by
the set C. The quantity of goods qi requested by each customer i

(i > 1) is associated with the corresponding vertex. We define on E a
non-negative distance, travel time or cost matrix D  = (dij) between
customers ci and cj. The goal is to find a feasible set of tours with the
minimum total traveled distance. The VRP thus consists in  deter-
mining a set of m vehicle routes of minimal total cost, starting and
ending at a depot, such that every vertex in C  is  visited exactly once
by one vehicle. The sum of the items associated with the vertexes
contained in it never exceeds the corresponding vehicle capacity
Q. The capacity means the quantity of items (goods) that the vehi-
cle could carry during its travel. Let be a solution S =  R1,  . . .,  Rm a
partition of C representing the routes of the vehicles to service all
the customers. The cost of a  given route Rj = {c0,  c1, . . .,  ck+1}, where
ci ∈ C and c0 = ck+1 (denote the depot), is given by:

Cost(Rj) =

k
∑

i=0

di,i+1 (1)

and the cost of the problem solution (S) is:

FVRP(S) =

m
∑

j=1

Cost(Rj)  (2)

Where the total demand of any route cannot exceed the vehicle
capacity:

Demand(Rj)  =

k
∑

i=1

qi × yj
i

� Q j (3)

where qi is the associated quantity of the customer ci (items to be
delivered/picked up), Qj is  the capacity of the vehicle j,  and

yj
i
=

{

1, if ci is  served by the vehicle j
0,  otherwise

(4)

We will consider a service time ıi (time needed to unload/load
all goods), required by a  vehicle to  load the quantity qi at ci.  It
is required that the total duration of any vehicle route (travel
plus service times) may  not surpass a given bound T, so, a route
Rj =  {c0, c1, . . .,  ck+1}  is feasible if the vehicle stops exactly once in
each customer and the travel time of the route does not exceed
a prespecified bound T corresponding to  the end of the working
day

Time(Rj) =

k
∑

i=0

di,i+1 +

k
∑

i=1

ıi ≤ T (5)

There may  exist some restrictions such as the capacity of each
vehicle, total traveling distance allowed for each vehicle, time

Fig. 1. A dynamic vehicle routing case.

windows to  visit the specific customers, and so forth. The basic
VRP deals with customers which are known in  advance; all other
information such as the driving time between the customers and
the service times at the customers are also usually known prior to
the planning.

The dynamic vehicle routing problem (DVRP) [5] is strongly
related to  the static VRP, as it can be  described as a  routing prob-
lem in which information about the problem can change during
the optimization process. As conventional static VRPs are NP-hard,
DVRP also belongs to the class of NP-hard problems. It is  a discrete-
time dynamic problem, and can be viewed as a  series of P instances;
each instance is a static problem, which starts at time t and must be
solved within a  specific deadline �t. We summarize that as follows:

P =  {(Pi, ti, �t)/i =  0, 1, . . . ,  imax} (6)

With this information the duration of the instance i is ti+1 − ti.  The
maximum number of instances imax can be infinite if the problem
is open-ended. A new instance Pi+1 is generated by the action of
the environment change �i on the instance i.  This is  expressed
by Pi+1 = �i ⊕ Pi.  This change in the environment can be due to
several factors; for example, travel times can be time [14] or
traffic-dependent [16],  orders may  be withdrawn or changed [17],
some clients may  be  unknown when the execution begins [18],  etc.
In this work we study this last problem class, which is commonly
referred to in  the literature as DVRP with dynamic requests, and
we follow the model proposed in  [19]. In this model, a  partial
static VRP should be solved each time a  new request is received.
A simple example of a  dynamic vehicle routing situation is  shown
in Fig. 1. In the example, two  un-capacitated vehicles must service
both known and new request customers.

Designing a real-time routing algorithm depends to  a  large
extent on how much the problem is dynamic. To quantify this
concept, [20,21] have defined the degree of dynamism of a  problem
(dod). Without loss of generality, we assume that  the planning
horizon is  a given interval [0, T], possibly divided into a finite
number of smaller intervals. Let ns and nd be the number of static
and dynamic requests, respectively. Moreover, let  �i ∈ [0, T] be  the
occurrence time of service request i. Static requests are such that
�i =  0 while dynamic ones have �i ∈]0, T]. The degree of dynamism is
defined as:

dod =
nd

ns + nd
(7)

which may  vary between 0 and 1.  If it is  equal to 0, all requests
are known in  advance (static problem), while if it is equal to  1, all
requests are dynamic (completely dynamic problem).

Background.  We can consider different variants of DVRP that
could inherit from the classical ones. However, some of them have
been really adapted to the dynamic context. As stated before, our
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Fig. 2. Resolution framework for the DVRP.

model is based on the capacitated VRP with dynamic requests (CVR-
PDR) introduced in  [19],  which was further refined by  Montemanni
et al. [4] and Hanshar et al. [2].  Other variants add other properties
related to traveling time and/or traffic constraints [14,16,22].  They
can also try to anticipate the arrival of future demands through sta-
tistical information on their availability time in order to improve
decision making [23].  One of the most popular variant of the con-
sidered problem is  the dynamic vehicle routing problem with time
windows DVRPTW [24,25,3], inspired by the vehicle routing prob-
lem with time window (VRPTW). The DVRP with pick-up and
deliveries (DVRPPD) has also been proposed in  [26–28].  Other vari-
ants introduce additional objective functions, such as the dynamic
traveling repair problem (DTRP), where the goal is to  minimize the
expected time that the demand spends in the system (i.e. the aver-
age time a customer must wait before its request is completed), as
opposed to the expected distance that the vehicle travels.

3. Resolution framework

The resolution strategy consists of two main components: the
event scheduler (which receives new orders, commits vehicles,
and constructs partial instances) and the solving algorithm (which
finds a feasible solution at each time step). Fig. 2 represents this
flowchart.

3.1. Event scheduler

The event scheduler manages the working day simulation and
creates partial instances. It serves as an interface between the
arrival of new orders and the optimization procedure. Based on the
division of the working day into time slices and on the degree of
dynamism, the event scheduler creates partial static problems and
runs in sequence the solving algorithm on these problems. From
the solutions provided by  the algorithm, the event manager finally
decides about commitments.

The idea of dividing the working day into several discrete time
slices was proposed by Montemanni et al. [4].  The goal is to bind
the time given to  each partial static problem, hence providing an
orderly way to service new requests. A different strategy is to
include each new customer in the solution as soon as its request
is received [24],  which may  be necessary when urgent requests
must be served, as well as when customers have time windows con-
straints. However, an early inclusion of customers in the solutions
does not guarantee that better solutions will be obtained. Concern-
ing this point, Montemanni et al. [4] already showed that splitting
the working day in more time slices does not necessarily lead to
better results in this problem.

The first partial static problem created for the first time slice (i.e.
at the beginning of the working day) consists of all orders remaining

from the previous working day. These customers can be consid-
ered as being left unattended the day before and are known as
static customers. The total number of them is determined using the
dod parameter. The next partial problems will consider all orders
received during the previous time slice as well as those which have
not  been committed to drivers yet. In  our simulation, each vehicle
starts from the location of the last customer committed to it, with a
starting time corresponding to the end of the servicing time for this
customer, and with a  remaining capacity which equals the capacity
left after serving all customers previously committed to it.

At  the end of each time slice, the solutions found for the cor-
responding partial problem are examined, and customer orders ci

with a processing time  ti within the next time slice must be com-
mitted to their respective vehicles. Note that the ti is  the moment
in which ci should be served according to its position in  the route; it
is calculated as the departure time from the previous customer ci−1
plus the distance between ci−1 and ci.  An exception to this commit-
ment strategy is represented by return journeys to the depot, which
happens only in  two circumstances: when all the customers have
been served, or when the vehicle has used all its capacity. In prac-
tice, a  vehicle will wait at its last committed customer if neither
of the two  conditions described above are satisfied. In this DVRP
model, the commitment cannot be withdrawn, i.e. once an order
has been assigned to a  driver, the commitment cannot be changed.
On the other hand, uncommitted customers can be replanned to
another route and/or in another position in the same route. As
proposed by Montemanni et al. [4],  the pseudo-code of the event
scheduler module is presented in  Algorithm 1. The working day T

is split into nts time slices, each one with Tts = T/nts duration. The set
UnServedOrds initially contains the orders known from the previous
day. The variable Tstep is initialized to 0, while at the beginning of the
working day the location of all the vehicles is set at the depot. A par-
tial problem (PartialProblem) is created in  each loop step and solved

Algorithm 1. Event Scheduler Procedure

Tstep:=0
// Set each vehicle starting position at  the  depot and initialize variables
for vj ∈ V do

(xj,  yj):=(depotx, depoty)
capj:=C

distj:=0
commitj:=false

end for

// Add static customers
UnServedOrds:={ci |  �i =  0}

// Main loop
while UnServedOrds /=  ∅ do

PartialProblem:= buildProblem(UnServedOrds, V)
Run the solving method on PartialProblem

// Commit orders
CommOrds:={ci |  ti ∈ [Tstep, Tstep + Tts[}
commit(CommOrds)
//  Update simulation time
Tstep:=Tstep + Tts

UnServedOrds:=UnServedOrds \ CommOrds

//  Add orders that appeared in  the last time slice
UnServedOrds:=UnServedOrds

⋃

{ci | �i ∈  [(Tstep − Tts), Tstep[}
// Update vehicle positions, capacities, and travel times
for vj ∈ V ∧ vj gives service to Rk do

commitj:=true

updatePosition(xj, yj)
updateCapacity(capj)
updateTravelTime(distj)

end for

end while

// Send all  vehicles back to  the depot
for vj ∈ V do

(xj,  yj):=(depotx, depoty)
end for
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with the procedures that will be described in  Sections 3.3 and 3.4.
The appropriate commitments (CommOrds) are done accordingly
to the solution of PartialProblem.  UnServedOrds is  updated together
with starting positions, capacities and travel times of the vehicles.
These operations are  repeated until UnServedOrds /= ∅. When all
customers are serviced, the vehicles return to  the depot.

In  our work, we avoid the problem of detecting environment
changes by the partitioning of the working day into time slices, and
assuming that the scheduler checks the arrival of new requests at
the end of each time slice.

3.2. Solution representation

The representation used in  our work is dedicated to  dynamic
routing problems and both algorithms, PSO and VNS, use the same
representation. We propose a simple discrete representation which
expresses the route of m vehicles over the n customers to serve.
The representation allows the insertion of dynamic customers in
the already planned routes. Since the problem is dynamic and cus-
tomer requests arrive along time, it is necessary to have some kind
of knowledge on the state of each customer (served/not served)
and its time of  service. On  the other side, we keep some informa-
tion about each vehicle. This information is related to  its current
position in the service region, its remaining capacity, its traveled
distance, and its status (committed/not committed). The represen-
tation of each route Rk is a  permutation of n customers as follows:

Rk :  (c0, c1, c2,  . . . , ci, . . . , cn, cn+1)  (8)

For each customer ci, we assign the following information:

• (xi, yi): coordinates of the customer ci.
• si:  boolean variable which indicates if the customer ci has been

already served or not.
• ti: processing time of the customer ci (time in which the customer

is served).

Furthermore, for each route Rk served by the vehicle vj we keep
these information:

• (xj, yj): coordinates of the vehicle vj .
• capj: remaining capacity of the vehicle vj .
• distj: distance traveled by the vehicle vj .
• commitj:  boolean variable which indicates if the vehicle vj has

been committed or  not.

3.3. Dynamic adapted PSO  for DVRP

The  particle swarm optimization (PSO) algorithm was proposed
by J. Kennedy et al.  [29,30],  follows a  collaborative population-
based search, which models over the social behavior of bird flocking
and fish schooling. A particle is defined by  its position �xi,  the posi-
tion of its personal best solution found so far �pi, and its velocity �vi.
Furthermore, each particle knows the best solution found so  far by
any of its neighbors �pg . Different particle topologies are explored
in [30], but the standard neighborhood is  the global neighborhood.
The algorithm proceeds iteratively, updating first all velocities, and
then all particle positions as follows:

�vi = ω�vi + ϕ1 × r1(�pi − �xi)  + ϕ2 ×  r2(�pg − �xi) (9)

�xi = �xi + �vi (10)

The first equation is used to calculate the ith particle’s new
velocity by taking into consideration three terms: the particle’s pre-
vious velocity, the distance between the particle’s best previous and
current position, and finally, the distance between swarm’s best
experience and ith particle’s current position. Then, following the

second equation, the ith particle moves towards a  new position. The
role of the inertia weight ω is to regulate the trade-off between the
global and local exploration abilities of the swarm. The parameters
ϕ1, ϕ2 control respectively, the relative attraction to the personal
best and global best found solutions. Finally, r1, r2 are a random
variables drawn with uniform probability from [0, 1].

The algorithm is slightly modified to take into account the
dynamic aspect of the problem (arrival of new customers). It  has
been argued that PSO may  be a particularly suitable candidate for
this type of problems and, over the past decade, a large number
of PSO variants for continuous dynamic optimization problems
have been proposed [7–9,31].  In order to  have better response to
environmental changes, Khouadjia et al. have designed in  [32] an
adaptive particle swarm optimization (APSO) for solving DVRP. The
adaptation of this algorithm consists in  the usage of swarm’s mem-
ory.

3.3.1. Adaptive memory

Some studies produced in the area of dynamic optimization deal
with the non-stationary feature by regarding each change as the
arrival of a new optimization problem that has to be solved from
scratch like [33]. However this simple approach is  impractical in
some problems like DVRP, because solving a problem from scratch
without reusing information from the past is  meaningless, due to
the fact that vehicles are already on routes and are servicing cus-
tomers. Better solutions could be  achieved by using an optimization
algorithm that is  capable of continuously adapting the solution
to  a  changing environment, reusing the information gained in the
past. A  number of authors have addressed the issue of transferring
information from the old environment to the new environment
by enhancing the algorithms [34,35].  Usually, the approaches are
enhanced with some sort of memory that might allow to store
good solutions and reuse them later as necessary. This memory
may be provided implicitly by using redundant representations, or
explicitly by introducing an extra memory and formulating strate-
gies to store in and retrieve solutions from that  memory. The latter
alternative seems to be more promising.

For the dynamic vehicle routing problem, Rochat and Taillard
[15] propose a  Tabu Search enhanced with adaptive memory. This
latter stores the routes of the best solutions visited during the
search. New solutions are then created by combining routes taken
from different solutions taken from this memory. New solution pro-
duced by the tabu search is  included in the memory if the memory
is not filled yet, or the new solution is  better than the worst solution
stored in  memory, in which case the latter is  removed.

Our approach is closely related to  the just mentioned ones. In
PSO this explicit memory is  intrinsic to  the algorithm, since each
particle is  defined by its current position and its best position so
far. In  order to  have a  better response to  environment changes, we
propose a  dynamic adapted particle swarm optimization (DAPSO).
The adaptability of the algorithm consists in  using the information
gathered previously on the search space. When the environment
changes, this mechanism allows the algorithm to restart the search
from the best solutions found during the previous searches.

For the adjustment to  the new environment, our algorithm
selects the best positions found so far  in  the population and re-
positioning the particles in  the search space according to these
positions. The result of this mechanism is that the stored candidate
solutions will produce outposts at different locations. If  the optima
return to  the same proximity in  the search space, the memory
points can self-adjust to the translocated optima. After a  change in
the environment, the current position and the best particle position
are re-evaluated and the best solution becomes the active current
position. This mechanism is  expected to give better response to the
dynamic environment.
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3.3.2. Velocity vector

The velocity vector �vi of the particle is initialized for each new
dimension by a  random number between [1, m], where m is the
number of the planned routes. The normalization of particle veloc-
ity in index sequence allows to have feasible solutions. For each
dimension of position vector �xi, if  the customer is  served, we cannot
change neither the tour nor the position of this latter in the already
established vehicle routes. The updating process is very similar to
the ejection chain method that  has been applied successfully to vehi-
cle routing [36]. It consists in  generating a  compound sequence of
interrelated simple moves between routes, leading from one solu-
tion to another. The customers are moved from their route and
inserted into another one according to  the cheapest cost insertion.
Each customer is placed in the position which minimizes the cost
of its insertion into the route.

3.3.3. DAPSO algorithm

Pseudo-code of the DAPSO procedure for solving DVRP is  pre-
sented in Algorithm 2.  The initial population of DAPSO is obtained
by generating a random permutation of customers which were left
over from the previous working day as defined by the dod param-
eter. At each time step tstep,  the current position of each particle is
initialized from the solution(s) found in  the adaptive memory.

Algorithm 2. Pseudo-code of DAPSO for the DVRP

INPUT: VRP instance that corresponds to  the set of customers arrived
during the last time slice ts .
// Reuse the best solutions found by  the swarm (Adaptive memory)
for Each particle i  do

//  Initialize the current position of the  particle with its best position
found so far if it is  better

if  f ( �pi)  ≤ f ( �xi) then

�xi:=�pi

end if

end for

// PSO Main Algorithm
for Each particle i  do

//  Insert the new customer requests in the current position
�xi:=Insert(�xi ,  New customer orders)
//  Initialize the best position
�pi:=�xi

Evaluate f  (�pi)
end for

repeat

for Each particle i  do

Update velocities:
�vi:=ω�vi + ϕ1 × r1(�pi − �xi)  + ϕ2 × r2(�pg − �xi)
Move to the new position:
�xi:=�xi + �vi

Evaluate f ( �xi)
//  Update personal best
if f ( �xi) ≤ f ( �pi) then

�pi:=�xi

end if

// Update global best
if f ( �xi) ≤ f ( �pg ) then

�pg :=(�xi)
end if

end for

until termination criterion reached

3.4. VNS for DVRP

Variable neighborhood search (VNS) is  a  well-known trajectory-
based metaheuristic algorithm proposed by  Hansen and Mladen-
ović [37]. Trajectory methods are characterized by  the usage of one
single solution at each time, as opposed to population-based meta-
heuristics, which manage a  set of solutions at each time step. VNS
is based on the principle of systematically changing neighborhoods
in order to escape from local optima.

VNS consists in  defining a  succession of neighborhood structures
N1(s), N2(s), . . .,  Nn(s), which define neighborhoods around a  solu-
tion s in  the search space. At  each iteration, another solution s′ is
picked up  from the current neighborhood Nk(s) and it is improved
via the local search routine; this provides a  new local minimum
s′′.  If a better local optimum has been found, i.e. f(s′′) ≤ f(s), s′′ is
chosen as the new current solution and the search continues in
N1(s′′); otherwise, the search moves in  the next iteration to the
next neighborhood Nk+1.

In order to adapt VNS for a particular problem, it is  necessary
to define the set of neighborhood structures and to  establish the
local search procedure which is applied to the solutions. Both our
neighborhoods and the local search are  related to move operators
specific to the VRP. We propose four different neighborhoods Nk(s)
for our canonical VNS algorithm. The neighborhoods are defined as
follows:

1. N1(s)  is  the set of solutions which results of swapping any 2
customers in  the solution s.

2. N2(s) is the set of solutions which results of �-exchange [38]
operator with (1, 0) and (1, 1) moves. It results in customers
either being shifted from one route to another for the (1, 0) move,
or being exchanged between routes for the (1, 1)  move. The inser-
tion of a  customer is  done using the cheapest cost insertion (i.e.
the position that minimizes the cost of the insertion).

3. N3(s)  is  the set of solutions which results of applying 2-Opt [39]
to any subroute of the solution s.

4. N4(s) is  the set of solutions which results of using 2-Opt* [40] in
any two  subroutes of the solution s.

It is important to notice that our neighborhoods allow the algo-
rithm to  escape from local minima, as constraints are  not  enforced
at this stage; this means that a  solution s′ picked up from the
neighborhood does not  need to comply with the capacity and
depot working day restrictions. Section 3.5 explains the local search
method for the VNS. A repair procedure makes this new solution
feasible before its evaluation. This repair procedure is  necessary
since the neighborhood operators can generate unfeasible solu-
tions.

Initial solutions are generated using the Savings algorithm [41].
In order to avoid determinism in  the construction of initial solu-
tions, we use a  parameter  to calculate the savings as s(i, j) = d(0,
i) +  d(0, j) −  d(i, j), where  ∼  [0, 1] [42].  The same strategy is
followed to  insert dynamic customers in the solution: a  partial
solution including only new customers is built using the Savings
algorithm and these routes are  added to the current solution.

The VNS algorithm as applied to  VRP is  given in Algorithm 3.
Algorithm 3. VNS for the DVRP

INPUT: VRP instance which corresponds to  the  set of customers who
are known at  Ts

if Ts < 0 then {no dynamic orders appeared yet}
s:=buildSavingsInitialSolution()

else  {potential dynamic orders waiting to  be scheduled }

s:= getLastTimeSliceSolution()
s′:= buildSavingsPartialSolution(New customer orders)
s:= merge(s, s′)

end if

while termination conditions not met  do

k:=1
while k < kmax do

// Select one solution from the current neighborhood
s′:= pickAtRandom(Nk(s))
// Apply local search procedures
for all local search heuristic lsj do {See Section 3.5 for further

details}
s′′:= apply(lsj , s′′)

end for
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Algorithm 3. (Continued.)
s′′:= repair(s′′)
// Update current solution and/or neighborhood
if  f (s′′) ≤ f  (s) then

s:=s′′

k:=1
else {n is the number of neighborhoods}

k:=(k + 1)modn

end if

end while

end while

3.5. Hybridizing DAPSO and VNS with 2-Opt and 2-Opt*

Over the last years, interest in hybrid metaheuristics has risen
considerably among the combinatorial optimization research com-
munity, as best results for academic and industrial problems are
usually obtained by hybrid algorithms. We  use a  low-level relay
hybridization schema (LRH) for both algorithms. In [43], Talbi
describes this class of hybrids as algorithms in which a given meta-
heuristic is embedded into another one.

We have used the 2-Opt heuristic as a  local search for DAPSO.
The heuristic is  applied after the move of particles. The 2-Opt oper-
ator reverses a  subroute of a  given route Rk by selecting two arcs
a = [c1,  c2] and b = [c′

1,  c′
2] and substituting them by a′ = [c1, c′

2]  and
b′ = [c′

1, c2]  (see example in  Fig. 3). The already traveled segment
of tour is left untouched. The heuristic is operated on each route
and only for the segments with unserved customers.

Our  VNS model uses a  local search strategy which is a  result of
consecutively combining four local search operators: �-exchange
with (1, 1) moves, �-exchange with (1, 0) moves, 2-Opt and 2-
Opt*. The 2-Opt* heuristic selects two arcs a =  [c1,  c2] ∈ R˛ and
b = [c′

1, c′
2] ∈ Rˇ and constructs two new arcs so that a = [c1, c′

2]
and b = [c′

1, c2]  (see an example in Fig. 4). The motivation here is
giving VNS a method which explicitly exchanges subroutes instead
of merely single customers; besides, 2-Opt* is a  suitable operator
for DVRP, since it allows exchanging the remainder of two  routes
while not affecting already committed customers. For each heuris-
tic, all possible moves are  checked and the best one is  performed,

Fig. 3. Example of the 2-Opt heuristic applied to  arcs  a  and b in one single route.

Fig. 4. Example of the 2-Opt* heuristic applied to  arcs a and b belonging to  two
different routes.

i.e. the one which reduces the solution cost the most. Each local
search is  applied with probability PLS equal to  1.

The local searches are designed in a  manner in which we can
avoid the whole route evaluation. An efficient way to evaluate the
set of candidates is  the evaluation �(s, m) of the objective func-
tion, where s is the current solution and m is  the applied move.
This incremental evaluation consists in evaluating only the trans-
formation (s, m) applied to  a  solution s  rather than the complete
evaluation of the neighbor solution f(s′) =  f(s  ⊕ m).  This is  an impor-
tant issue in terms of efficiency and must be taken into account in
the design of high-achieving metaheuristics especially in  dynamic
optimization context [43].

3.6. Metaheuristics in static and dynamic VRP

Both DAPSO and VNS are designed using state of  the art tech-
niques which have been successfully tested in the static VRP.
However, achieving good performance in a dynamically changing
environment poses new challenges to our algorithms, as new con-
siderations should be taken into account. First, convergence times
are much more significant in  the dynamic case; if two  algorithms
reach solutions of similar quality in a static environment, the algo-
rithm which converges fast is more likely to  achieve good solutions
if the available optimization time is limited. By fast convergence
times we refer to  the algorithm being able of finding a  good solu-
tion in a  quick manner, and by no means to premature population
convergence in  an evolutionary algorithm. Second, execution time
is another important issue here, since vehicles wait and depend on
the algorithm results in order to take decisions on changing their
routes. Last but not least, final solutions are highly influenced by
decisions which were taken early in  the optimization process (com-
mitment of vehicles to routes and customers); this means early
choices are essential to latter solution quality. Therefore, the perfor-
mance of algorithms in the dynamic VRP cannot be directly inferred
from the static version: a  new focus and further studies are needed
for a  proper evaluation of algorithms and solutions.

4. Experimental results and discussion

This section is  devoted to the experimental evaluation of DAPSO
and VNS algorithms. The adopted benchmarks will be described in
Section 4.1.  Section 4.2 details some algorithms parameters, while,
in Section 4.3,  the results achieved by the algorithms will be pre-
sented.

4.1. Benchmark description

In order to compare our algorithms with other approaches on
DVRP [2],  a  number of parameters need to be set in the classical
benchmarks. To standardize the benchmarks,2 Montemanni et al.
[4] fixed some parameters that can affect the final travel distances.
The first is  nts, the number of time slices in  the optimization process.
This parameter subdivided the day into discrete time  periods, in
which optimization is  carried out on each one in succession. Mon-
temanni et al. [4] have tested several values (10, 25, 50) for this
parameter on different instances, and found that setting nts = 25
leads to the best trade off between the objective value and com-
putational cost. Montemanni et al. have defined the dynamic and
static demands by their available time. They introduce the cut-off
time Tco,  the demands which arrive after Tco ×  T  are  postponed to
the following day, while those that arrive before this time are con-
sidered as dynamics. The Tco is set to 0.5. Besides, they consider an

2 http://www.fernuni-hagen.de/WINF/inhalte/benchmark data.htm.

http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm
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advanced commitment time  Tac to give the driver an appropriate
reaction time after having been committed in  the new orders. The
Tac is set to 0.

We  propose here, for the first time, a  large set of new instances
for dynamic vehicle routing problems (k-series).  The goal is  to stan-
dardize DVRP instances and also to propose new ones which are
harder to solve. So, the benchmark data set contains large size
instances for DVRP, larger than the standard Kilby’s problem set
[19] (21 instances, where the number of customers ranges between
50 and 385, although in the literature only instances up  to  199 are
solved). Another important difference with Montemanni’s proposal
[4] is the usage of a  fixed number of evaluations (further details in
Section 4.2),  while he used CPU time as termination condition. CPU
time is highly dependent on hardware, and not a suitable standard
to compare with existent algorithms. Finally, we use a  different
way to measure the degree of dynamism on the system: Monte-
manni proposes splitting the working day in two halves of equal
length, whereas we define dod depending on the proportion of
unknown customers. The k-series instances are generated via a VRP-
generator.3 These instances are k100, k250, and k500, where the
number of customers can be inferred from its name. For example,
f71 corresponds to Fisher’s instance with 70 customers to serve
and one single depot. As k-series has different variants, we choose
to indicate if the instance is with a single or multi-depots. In this
work, we deal with single depot instances. Thus, the instance k100

means that there are 100 customers to serve and one single depot.
Each instance also contains the following data:

• Length of the working day: we will refer to this parameter as T.
• Appearance time of each request: it contains, for each request,

the moment of the working day when the order becomes known
by the dispatcher.

• Duration of each request: it represents, for each request, the time
required to serve the corresponding customer.

• Number of vehicles: it contains the dimension, in number of vehi-
cles, of the available fleet to serve customers. The number of
vehicles is set to ensure that it is  possible to  serve all the orders
for the problems considered. The customers arrive with a  uniform
distribution during the working day.

In this work, we deal with pickup problems. The driver of the vehicle
is not concerned with what he is  transporting, but only the quantity
that he will pick from the customer. we fix the above mentioned
parameters that can affect the final travel distances as follows:

• As tested by Montammani et al. [4],  we  adopt to  set nts to 25. This
parameter subdivides the day T into 25 discrete time slices.

• For Kilby’s instances we  set the cutoff time Tco to  0.5 in  order to
determine the known customers, while in  k-series instances, the
degree of dynamism dod is  fixed to  0.5; this means that a half
of  the customers is considered as static, while the other half is
dynamic. The optimization begins to  plan routes with the known
static customers at time t =  0.

4.2. Algorithm parameters

We  have used the following parameters in  our algorithms.

4.2.1. Stopping criterion

The stopping criterion is  a fixed number of evaluations for the
both k-series and Kilby’s instances. One evaluation of a solution
is either an evaluation of a  single particle, or an evaluation of a

3 The VRP generator is  available on  the following links: http://dolphin.lille.inria.fr,
http://neo.lcc.uma.es/dynamic.

Table 1

Number of evaluations assigned to  each instance as stopping criterion with nts = 25.

Instances Static Dynamic (one
time slice)

Dynamic (complete day)

k100 1200 600 25  ×  600 = 15000
k250 1200 600 25  ×  600 = 15000
k500 2400 1200 25  ×  1200 = 30000

VNS solution. For  k-series,  we have taken into account the num-
ber of necessary evaluations that the algorithms spend in order to
reach the optimum and converge in  the static case with the entire
instance. We  think that if the algorithm can solve the entire instance
in a  fixed number of evaluations, so with the half number of  these
evaluations it could solve a  partial part of it in dynamic context.
In Table 1, we give the number of evaluations assigned to  each
instance in  the static and dynamic cases.

For Kilby’s instances we  have fixed the number of evaluations at
500 evaluations per time slice (25 × 500 = 12500), while Refs. [4,2]
use the CPU time as termination condition.

4.2.2. DAPSO parameters

The DAPSO population size  is  100. The values of the parameter
ω is  fixed to 1.0, whereas ϕ1, ϕ2 take value in  the range [0.5, 1].

4.3. Performance assessment

This section presents the results obtained both in  the new k-

series instances and the Kilby benchmark. The DAPSO algorithm
was implemented on ParadisEO4 [43]. The experiments were run
on Intel Xeon 3 GHz with 2 GB memory. The VNS algorithm was
coded in Java 1.5.0, and runs on Intel Core 2 Quad 2.6 GHz machines
with 4 GB memory.

First, we present a study on the k-series instances in Section
4.3.1. Next, we  compare with state of the art algorithms in  Section
4.3.2. We continue with a  study on several degrees of dynamism
in  Section 4.3.3 and finish with an analysis of our results regarding
specific measures for dynamic optimization problems in Section
4.3.4.

4.3.1. K-series instances

We  have performed 30 independent runs of each experiment.
The results are shown in  Table 2, which includes the best achieved
fitness, the average, the standard deviation, as well as the running
time for each instance and each algorithm measured in minutes.
Bold entries indicate where the best solution has been obtained.

In  order to  be able to compare our results accurately, we
have also performed statistical significance tests. We  use a
Kolmogorov–Smirnov test to check whether distributions are nor-
mal or not and a  Levene test to check the data homocedasticity
(homogeneity of variances); if both tests are positive, ANOVA is
used, otherwise we  perform a  Kruskal–Wallis test to  compare the
medians of the algorithms [44]. As a  result, all our experiments have
a  confidence level of 95% (p-value ≤0.05). Table 3 is  marked with
“+” sign if there are statistical differences between a  certain pair of
algorithms, and with a “−” sign otherwise.

4.3.1.1. Results on the static instances. In the first place, we  study
the behavior of algorithms on  the static problem, i.e. considering
all the customers in the instance as static (dod = 0). VNS behaves
significantly better than DAPSO for the three instances, as it finds
the best known solution in  the three instances. Our statistical study

4 http://paradiseo.gforge.inria.fr.

http://dolphin.lille.inria.fr
http://neo.lcc.uma.es/dynamic
http://paradiseo.gforge.inria.fr
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Table  2

Solutions obtained by DAPSO and VNS on  static and dynamic instances.

Instance Algorithm Solution Static Dynamic Time

k100 DAPSO Best 1497.70 1819.01

Average 1563.80 1871.25 6.15
Std-Dev 30.13 29.55

VNS Best 1448.18 1874.37
Average 1529.49 2084.47 0.74
Std-Dev 36.71 102.14

k250  DAPSO Best 6038.08 7658.27
Average 6722.67 8194.08 41.89
Std-Dev 277.08 99.82

VNS Best  5869.38 6845.82

Average 6187.80 7251.54 13.23
Std-Dev 270.88 249.44

k500  DAPSO Best 20396.5 26347.8
Average 21157.28 27592.34 223.29
Std-Dev 312.16 383.07

VNS Best 18582.83 24082.73

Average 20108.49 24939.88 130.83
Std-Dev 1457.51 520.99

(see Table 3) reflects that  there is a statistical difference between
DAPSO and VNS for the three instances.

4.3.1.2. Results on the dynamic instances. DAPSO obtains better
results than VNS for k100, while it is  outperformed by  VNS in k250

and k500. All these results are statistically significant, as shown in
Table 3. An interesting issue is the fact that DAPSO achieves worse
results in the dynamic case as well as in the static case for k250

and k500. This is  due to  the number of evaluations not allowing a
convergence of the algorithm (see Table 1 in Section 4.2). Further-
more, DAPSO has a  slow evolution, and this affects its performance.
However, we  should take into account the number of allowed eval-
uations as a constraint of the changing environment.

When it comes to the instance size, the VNS algorithm outper-
forms DAPSO in the case of the two bigger instances (k250 and
k500). This can be observed in Fig. 5b and c, where VNS is  able to
converge much quicker and reaches better solutions. The case is
the opposite for the instance k100 (see Figure 5a), in  which DAPSO
has a good performance from the beginning until the end of the
simulation. It must also be noticed that the bound fitness values
represented in  Figure 5 have been computed running our algo-
rithms on the static instance which results of each time slice. These
bounds are not attainable by the dynamic algorithms in  any case,
but we find them useful as reference values for the behavior of our
algorithms.

Table 3

Statistical results of comparing our algorithms with a  multiple comparison test.

Dynamism Instance Algorithm Test result

DAPSO VNS

Static k100 DAPSO − +
VNS  +  −

k250  DAPSO − +
VNS +  −

k500  DAPSO − +
VNS  +  −

Dynamic k100  DAPSO − +
VNS  +  −

k250  DAPSO − +
VNS +  −

k500 DAPSO  − +
VNS  +  −

4.3.2. Kilby’s instances

We are also interested in  comparing our algorithms with those
already proposed in the literature. A comparison of the solution
quality in terms of minimizing travel distances is done between
DAPSO, VNS, and other metaheuristics as Ant System (AS)  [4],
Genetic Algorithm (GA2−Opt), and Tabu Search (TS),  both of  them
proposed in [2]. The benchmark dataset consists of  21 instances,
where the number of customers ranges in [50, 199] and the ser-
vice area may  consist of uniformly distributed customers, clustered
customers, or a  combination of the both (semiclustered instances).
Further details about area topologies can be found in Hanshar’s
work.

Table 4 shows and compares the results obtained by the five
algorithms. For  each instance, 30 runs of our algorithms have been
considered. The best, the average distances, and running time in
minutes of the different algorithms are reported. Bolded entries
indicate where the best solutions were obtained. We provide in
total seven new best solutions on Kilby’s instances: DAPSO finds
five new best solutions, while VNS gives two  new best ones. APSO is
able to  provide new best solutions in all types of instances regarding
their topology: uniform (c75 and c199), cluster (c120) and semi-
cluster (f71 and tai75b). The two new best solutions found by VNS
can be classified as cluster (c100b) and semicluster (tai100c). While
DAPSO obtains more new best solutions, VNS achieves a  shorter
total traveled distance over the 21 instances. The Genetic Algorithm
implemented by Hanshar [2] outperforms the other metaheuristics
over 9 instances. AS and TS provide respectively 1 and 4  of  the best
solutions on Kilby’s instances.

It is  also significant to notice that each AS execution lasts 25 min
in a  Pentium 4 1.5 GHz and each GA and TS execution lasts 12.5 min
in  a Pentium 4 2.8  GHz, which results in a  total execution time of
525 and 262.5 min  respectively. These results are improved by  both
DAPSO (113.07 min) and VNS (9.28 min). These execution times can
be  normalized according to the processor used in each case. For  that
purpose, we used a set of benchmarks [45]. When comparing with
PSO, AS normalized time is  115.63 min, while GA  and TS normalized
time is 151.73 min  (both of them slower than PSO time 113.07 min).
Comparing with VNS, the normalized times are  60.69 min  in the
case of AS and 73.5 min  for GA and TS, which are also improved by
our VNS (9.28 min).

4.3.3. Study on the changes of degree of dynamism (dod)

We have performed a study on the behavior of our algo-
rithms in  relation to  different degrees of dynamism. The dods
take their values in range [0.5, 1]. If the dod is 0.5, the
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Fig. 5.  The evolution of each algorithm mean trace for each instance; each of them shows also the optimum value for each time slice as obtained by running our algorithms
over  the static subproblems. Each square on the left figure is enlarged in the right figure. (a)  k100 instance. (b) k250 instance. (c) k500 instance.

problem is semi-dynamic, while with a dod equal to  1, the
problem is completely dynamic. We  have done experiments
only  on the k-series instances. The aim is  to  present the dod
effect on the quality of the obtained solutions in  term of min-
imizing the fitness function, and the average of the served
customers during the working day. For each instance, 30 runs
of DAPSO and VNS are considered. We  kept respectively the
same benchmark and algorithm parameters as in Sections 4.1
and 4.2.

Table 5 reports the obtained results on the different degrees of
dynamism for the DAPSO and VNS algorithms. It  indicates the best
found solution, the average, and the percentage as well as the range
of served customers. When we increase the degree of  dynamism,
it is  easy to see that the percentage of served customers decreases.
This is  due to  the fact that  as the problem is bounded by the length of
the working day T,  the vehicles have to  go back to the depot before
its closing. In general, customers that arrive at the end of the work-
ing day are  unserved. For a  dod equal to 0.5, results are  analyzed in
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Table  4

Numerical results obtained by DAPSO and VNS compared to AS, GA2−Opt ,  and TS.

Instances Metaheuristics

DAPSO VNS AS GA2−Opt TS

Best Average Time Best Average Time Best Average Best Average Best Average

c50 575.89 632.38 1.65 599.53 653.84 0.12 631.30 681.86 570.89 593.42 603.57 627.90
c75  970.45 1031.76 2.49 981.64 1040.00 0.25 1009.36 1042.39 981.57 1013.45 981.51 1013.82
c100  988.27 1051.5 5.81 1022.92 1087.18 0.41 973.26 1066.16 961.10 987.59 997.15 1047.60
c100b 924.32 964.47 3.58 866.71 942.81 0.30 944.23 1023.60 881.92 900.94 891.42 932.14
c120 1276.88 1457.22 6.88 1285.21 1469.24 0.55 1416.45 1525.15 1303.59 1390.58 1331.22 1468.12
c150 1371.08 1470.95 11.74 1334.73 1441.37 0.84 1345.73 1455.50 1348.88 1386.93 1318.22 1401.06
c199 1640.40 1818.55 17.97 1679.65 1769.95 1.30 1771.04 1844.82 1654.51 1758.51 1750.09 1783.43
f71  279.52 312.35 3.45 304.32 325.18 0.27 311.18 358.69 301.79 309.94 280.23 306.33
f134a 15875.00 16645.89 3.38 15680.05 16522.18 0.29 15135.51 16083.56 15528.81 15986.84 15717.90 16582.04
tai75a 1816.07 1935.28 1.66 1806.81 1954.25 0.22 1843.08 1945.20 1782.91 1856.66 1778.52 1883.47
tai75b 1447.39 1484.73 1.62 1480.70 1560.71 0.18 1535.43 1704.06 1464.56 1527.77 1461.37 1587.72
tai75c  1481.35 1664.4 2.09 1621.03 1746.07 0.20 1574.98 1653.58 1440.54 1501.91 1406.27 1527.72
tai75d 1414.28 1493.47 2.12 1446.50 1541.98 0.19 1472.35 1529.00 1399.83 1422.27 1430.83 1453.56
tai100a 2249.84 2370.58 4.59 2250.50 2462.50 0.34 2375.92 2428.38 2232.71 2295.61 2208.85 2310.37
tai100b 2238.42 2385.54 4.43 2169.10 2319.72 0.34 2283.97 2347.90 2147.70 2215.93 2219.28 2330.52
tai100c 1532.56 1627.32 3.04 1490.58 1557.81 0.31 1562.30 1655.91 1541.28 1622.66 1515.10 1604.18
tai100d 1955.06 2123.9 4.42 1969.94 2100.38 0.37 2008.13 2060.72 1834.60 1912.43 1881.91 2026.76
tai150a 3400.33 3612.79 9.15 3479.44 3680.35 0.79 3644.78 3840.18 3328.85 3501.83 3488.02 3598.69
tai150b 3013.99 3232.11 9.1 2934.86 3089.57 0.73 3166.88 3327.47 2933.40 3115.39 3109.23 3215.32
tai150c 2714.34 2875.93 6.46 2674.29 2928.77 0.62 2811.48 3016.14 2612.68 2743.55 2666.28 2913.67
tai150d 3025.43 3347.6 6.95 2954.64 3147.38 0.66 3058.87 3203.75 2950.61 3045.16 2950.83 3111.43
Total  50190.87 53538.72 113.07 50033.15 53341.24 9.28 50876.23 53794.02 49202.73 51089.37 49987.8 52725.85

a For this instance, the plan of the service area is in scale 10 times larger than the Fisher’s instance.

Table 5

Solutions obtained by DAPSO and VNS over different degrees of dynamism. Bold marks the best algorithm regarding the best solution cost, the average solution cost, the
number  of customers that could be served, and the range of served customers respectively.

Dod Inst. Algorithm Best Average Custom. Range

0.5 k100 DAPSO 1819.01 1871.25 100% [100–100]
VNS 1950.47 2129.68 100% [100–100]

k250 DAPSO 7658.27 8194.08 100% [250–250]
VNS 6903.29 7221.88 100% [250–250]

k500 DAPSO 26347.80 27592.34 100% [500–500]
VNS 24082.73 24939.88 100% [500–500]

0.6  k100 DAPSO 2167.89 2295.47 100% [100–100]
VNS 2313.35 2571.78 99.9% [99–100]

k250 DAPSO 8145.35 8706.67 100% [250–250]
VNS 7361.08 7781.98 100% [250–250]

k500 DAPSO 27535.21 28761.64 99.4%  [495–498]
VNS 27354.50 28861.12 99.0% [493–498]

0.7  k100 DAPSO 2267.38 2491.69 96.7% [96–98]
VNS  2436.85 2680.72 95.5% [94–96]

k250  DAPSO 8856.33 9165.44 99.6%  [249–250]
VNS 8239.43 9244.82 99.6%  [248–250]

k500 DAPSO 27662.10 28477.72 97.07%  [483–488]
VNS 26101.17 28209.95 96% [478–482]

0.8  k100 DAPSO 2141.93 2381.81 89.45% [89–90]
VNS  2214.75 2647.02 88.5% [87–91]

k250  DAPSO 8221.32 8914.49 94.32%  [235–237]
VNS 8666.36 9365.09 93.8% [232–236]

k500 DAPSO 25618.20 27133.46 91.6%  [454–465]
VNS 24327.26 27185.13 90.14% [449–451]

0.9  k100 DAPSO 2070.50 2283.56 79.32% [79–80]
VNS  2348.79 2647.33 79.7%  [77–82]

k250  DAPSO 7944.94 8459.35 86.5%  [215–218]
VNS 8184.28 9098.23 86.1% [212–218]

k500 DAPSO 24545.60 25442.21 84%  [415–424]
VNS 23242.42 25640.75 82.41% [410–413]

1  k100 DAPSO 2028.51 2191.45 69.29% [68–71]
VNS  2289.09 2581.81 70.3%  [68–74]

k250  DAPSO 7063.96 7727.19 76.96%  [191–193]
VNS 7567.24 9010.27 76.5% [188–194]

k500 DAPSO 21485.20 22546.13 74%  [357–376]
VNS 22147.62 23764.54 73.09% [362–366]
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Fig. 6. Evolution of accuracy and stability across time slices for each instance. (a)  Accuracy over 25 time slices for k100. (b) Stability over 25 time slices for k100. (c)  Accuracy
over  25 time slices for  k250. (d) Stability over  25  time slices for k250. (e)  Accuracy over 25 time slices for k500. (f) Stability over 25  time slices for k500.

Section 4.3.1. From a  dod upper than 0.6, the percentage of served
customers for DAPSO is  better or  equal to VNS percentage in  all
cases, except in the instance k100 for a dod equal to 1. DAPSO algo-
rithm is able to find solutions which cover more served customers.
We can explain this by  the diversity of the solutions brought by
DAPSO as a population based metaheuristic. At the opposite VNS
covers less customers leading to the fact that the traveled distance
is lower than that of DAPSO.

4.3.4. Performance measures

The goal of optimization in dynamic environments is not
only to find an optimum within a given number of generations,
but rather a  perpetual adjustment to changing environmental
conditions. Besides the accuracy of an approximation at time
tstep, the stability of the algorithm is also of interest as well as
the recovery time to reach again a  certain approximation qual-
ity. [46] proposes three features for describing the goodness
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Table  6

Accuracy of the different metaheuristics on the Kilby’s instances. Bold entries indicate the best algorithm regarding the accuracy.

Instance Accuracy

DAPSO VNS AS GA TS

c50 0.90 0.87 0.83 0.91 0.86
c75 0.86 0.85 0.82 0.85 0.85
c100 0.83 0.80 0.84 0.85 0.82
c100b 0.89 0.95 0.87 0.93 0.92
c120 0.82 0.81 0.74 0.80 0.78
c150 0.75 0.77 0.76 0.76 0.78

c199 0.79 0.77 0.73 0.78 0.74
f71 0.85 0.78 0.76 0.79 0.85

f134 0.73 0.74 0.77 0.75 0.74
tai75a 0.89 0.90 0.88 0.91 0.91

tai75b 0.93 0.91 0.88 0.92 0.92
tai75c 0.87 0.80 0.82 0.90 0.92

tai75d 0.97 0.94 0.93 0.98 0.95
tai100a 0.91 0.91 0.86 0.91 0.92

tai100b 0.87 0.89 0.85 0.90 0.87
tai100c 0.92 0.94 0.90 0.91 0.93
tai100d 0.81 0.80 0.79 0.86 0.84
tai150a 0.90 0.88 0.84 0.92 0.88
tai150b 0.88 0.91 0.84 0.91 0.85
tai150c 0.86 0.88 0.83 0.90 0.88
tai150d 0.87 0.90 0.86 0.90 0.90

Average 0.86 0.86 0.83 0.87 0.86

of a dynamic adaptation process: accuracy, stability, and ε-
reactivity.

The optimization accuracy at time t for a  fitness function F and
optimization algorithm A is defined as

accuracyt
F,A =

Mint
F

F(best(t)
A

)
(11)

where bestA
t is  the best candidate solution in  the population at

time t and Mint
F the best fitness value in  the search space (best

known solution). The optimization accuracy ranges between 0 and
1,  where accuracy 1 is the best possible value.

As a  second goal, stability is an important issue in optimization.
In the context of dynamic optimization, an algorithm is called sta-
ble if  changes in  the environment do not affect the optimization
accuracy severely. Even in the case of drastic changes an algorithm
should be able to  limit the respective fitness drop. The stability at
time t is defined as

stabilityt
F,A = max{0, accuracy(t) − accuracy(t −  1)} (12)

and ranges between 0 and 1. A value close to 0 implies a high
stability.

Finally, another aspect to  be considered is the ability of the
algorithm to  react quickly to  changes. This is  measured by the

Table 7

Accuracy and stability of DAPSO and VNS on  the  dynamic k-series instances over different time slices. Best accuracy/stability values are marked in bold.

Instance Time slice Accuracy Stability

DAPSO VNS DAPSO VNS

k100 0  0.876 0.972 0.532 0.933
5  0.885 0.949 0.003 0.039
10  0.865 0.822 0.004 0.092
15  0.765 0.681 0.000 0.000

20  0.765 0.681 0.000 0.000

25  0.765 0.681 0.000 0.000

Average 0.820 0.797 0.090 0.177

k250  0  0.618 0.937 0.334 0.916
5  0.748 0.924 0.015 0.036
10  0.743 0.875 0.019 0.055
15  0.728 0.829 0.000 0.000

20  0.728 0.829 0.000 0.000

25 0.728  0.829 0.000 0.000

Average  0.716 0.866 0.061 0.168

k500  0  0.777 0.944 0.277 0.885
5  0.805 0.928 0.021 0.068
10 0.741  0.819 0.019 0.054
15  0.704 0.779 0.021 0.000

20  0.704 0.779 0.000 0.000

25 0.704 0.779 0.000 0.000

Average 0.739 0.832 0.048 0.168
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ε-reactivity, which ranges in [1,  maxgen]  (a smaller value implies a
higher reactivity):

ε − reactivityi

= min
{

i′ − i|i < i′ ≤ maxgen,  i ∈ N,
accuracyi′

accuracyi
≥ (1 − ε)

}

(13)

For the classical Kilby’s instances, we have computed the accu-
racy at the end of the working day T. Table 6 shows the accuracy
of our algorithms DAPSO and VNS, compared to  other metaheuris-
tics (Ant System (AS),  Genetic Algorithm (GA2−Opt),  and Tabu Search
(TS)). The accuracy has been computed using the best known solu-
tions of the static instances5 as the bound to compute accuracy
(MinT

F in Eq. 11).  These best known solutions consider all customers
to be static, and then are not feasible solutions for the DVRP. They
work as a bound for our algorithms. From Table 6,  we  infer that our
algorithms have on average the same average accuracy at the end
of the simulation. This accuracy is  equal to 0.86 (being 1.0 a  per-
fect metric) which denotes that our algorithms are able to produce
good solutions on the conventional dynamic benchmarks.

Table 7  shows the accuracy and stability over the three k-series

instances on different time slices, and the average on the whole
working day. These results are graphically represented in Fig. 6.
We have excluded ε-reactivity from this analysis since it provides
no significant results (it is  always equal to one). It is  interesting here
to pay attention to the different behaviors of our algorithms on the
three instances. The accuracy results confirm numerically what we
already explained in Section 4.3, the size of the instance affects
differently the performance of our  algorithms. In instance k100,
the highest accuracy levels correspond to  DAPSO; although VNS is
better in the first time slices (0–5), PSO has a  better adaptation from
the 10th time slice until the end. VNS achieves the best accuracy for
all time slices on the instances k250 and k500,  whereas DAPSO2−Opt

performances are poor due to its slow evolution comparatively to
VNS, which adapts faster to the changes. Both the final fitness and
the  accuracy point to a  better performance of DAPSO in  k100 and
VNS in the larger k250 and k500. DAPSO provides enough diversity
to achieve good solutions in the smaller instance, while VNS profits
from the fast convergence of trajectory based techniques. This is
to be considered an essential issue in dynamic optimization due to
the  reduced available time in  each time slice.

With respect to stability, DAPSO is more stable than VNS. The
difference between algorithms is noticeable in the three instances:
the average stability values for DAPSO are  always less than 0.1,
while for VNS it is  ranged between 0.072 and 0.168 (quite stable
for a metric which ranges in  [0, 1]). This is  caused by DAPSO being a
population-based metaheuristic, which provides diversity and dif-
ferent types of solutions when a  change occurs in the environment;
this means DAPSO can choose from a  wide range of solutions which
one is more adequate in the next time slice. However, VNS provides
a single solution at the end of each period; thus there is  a  steeper
fitness variation between the end of a  time slice and the beginning
of the next one.

5. Conclusion

A vehicle routing problem with dynamic requests has been stud-
ied in this article. This problem is important both in research and
industrial domains due to its many real world applications. A  com-
parative study between two metaheuristics for this problem has
been described, one based on particle swarm optimization (PSO)

5 http://neo.lcc.uma.es/radi-aeb/WebVRP/.

and another one on variable neighborhood search (VNS). These
algorithms are representative of the two  main classes of meta-
heuristics: population-based (PSO) and trajectory-based (VNS)
metaheuristics.

A  computational study on conventional and newly defined set
of large-scale benchmarks was performed. In addition, a  study on
varying the degree of dynamism has been done to  evaluate the
impact of this indicator on the performance of our algorithms in
terms of servicing customer orders. Furthermore, in order to eval-
uate the dynamic performance of our approach, several indicators
have been used. Weicker’s measures allow to  assess the accuracy,
the stability, and the reactivity of an algorithm throughout the
optimization process. Our approaches provide very competitive
results comparatively to the other state-of-the-art metaheuristics,
and Weicker’s indicators demonstrated the high adaptivity and sta-
bility of our  algorithm. From our study, the following conclusions
can be drawn:

1. When comparing PSO and VNS in the classic instances, there
are slight differences in  terms of the solution quality. VNS com-
putes shorter routes on average, while PSO is  more effective at
computing new best solutions in  the literature.

2.  Regarding our new benchmark instances, there are differences
depending on  the instance size. PSO behaves better in the small-
est instance, whereas VNS outperforms PSO in the two  biggest
ones.

3. Additional measures can improve our knowledge about the algo-
rithmic performance. The accuracy confirms the solutions are
good when compared to a  static bound. The stability expresses
how stable are the algorithms when the environment changes.
In our case study, VNS is more accurate than PSO, while PSO is
more stable than VNS.

4. When striving to  serve as much customers as possible for
increasing degrees of dynamism, DAPSO is  a  better choice. A
population-based algorithm such as PSO has a  broader number
of solutions where new customers should be inserted, therefore
it is  easier to find some solutions where most new customers fit.
A trajectory-based algorithm such as VNS has more difficulties
to fit all new customers since it manages a single solution.

Future work will examine problems with more severe fitness
rescaling or additional problem characteristics. The aim is to reach
a  solution accuracy which is close to 0.9 on all the treated instances.
We  will try to enhance the hybridization scheme and propose
multi-population metaheuristics for this problem. Also, we  will
apply the developed algorithms to other dynamic optimization
problems.
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