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Abstract–This paper aims to introduce an optimized Damerau–
Levenshtein and dice-coefficients using enumeration operations 
(ODADNEN) for providing fast string similarity measure with 
maintaining the results accuracy; searching to find specific words 
within a large text is a hard job which takes a lot of time and efforts. 
The string similarity measure plays a critical role in many searching 
problems. In this paper, different experiments were conducted to 
handle some spelling mistakes. An enhanced algorithm for string 
similarity assessment was proposed. This algorithm is a combined 
set of well-known algorithms with some improvements (e.g. the 
dice-coefficient was modified to deal with numbers instead of 
characters using certain conditions). These algorithms were adopted 
after conducting on a number of experimental tests to check its 
suitability. The ODADNN algorithm was tested using real data; its 
performance was compared with the original similarity measure. The 
results indicated that the most convincing measure is the proposed 
hybrid measure, which uses the Damerau–Levenshtein and dice-
distance based on n-gram of each word to handle; also, it requires 
less processing time in comparison with the standard algorithms. 
Furthermore, it provides efficient results to assess the similarity 
between two words without the need to restrict the word length.

Index Terms–Word classification, Word clustering, String 
distance, String matching operation, and String similarity metric.

I. Introduction
To find the similarity ratio between strings, many comparing 
operations should be used, this subject considered as a 
basic task in natural language processing (NLP), as well as 
other disciplines such as computational biology. In NLP, 
the sequences of symbols are composed of a number of 
sentences, consisting of words. In the first approximation 

(such as applications in speech recognition), sentences are 
considered to be more similar to the more words they share 
and the reordering is no consideration. While in the second 
approximation (such as Grammar induction), the reordering 
of single words and blocks between two sentences can be 
expected (Leusch, et al., 2003; Mohri, 2003).

Many applications require string search with errors 
possibility. These applications should use a matching function 
to the user entry (which may contain an incorrect spelling) in 
the database. This operation should be done in milliseconds 
(Fenz, et al., 2012).

The problem underlying the searching operation, 
measuring the similarity or dissimilarity of two strings, had 
been a powerful topic of research for over five decades, 
ranging from early operations to modern machine learning 
and data analysis. Each method uses different aspects and 
characteristics of the data (Rieck and Wressnegger, 2016).

Various similarity measures were proposed for use in 
various fields: Damerau and Levenshtein introduced a 
method named Damerau–Levenshtein that used as a string 
metric between two strings. By counting the minimum 
number of operations needed to transform one string to 
the other, through measuring the substitution operations 
of a single character besides the insertion, deletion, or 
transposition operation of two adjacent characters (provided 
by the Levenshtein distance) (Damerau, 1964). These 
measures are based on probabilistic modeling for a particular 
applied instance. For example, in error correction of noisy 
sentences (Kashiap and Oommen, 1984; Oommen, 1987) 
and in recognition tasks (Marzal and Vidal, 1993; Bunke 
and Bühler, 1992; Cortelazzo, et al., 1996; Cortelazzo, et al., 
1994; Peng and Chen, 1997); Winkler had proposed an 
enhancement to the Jaro metric based on the observation that 
spelling errors may occur commonly at the end of a string 
(Winkler, 1999). While the N-gram techniques can determine 
the similarity between strings from given text sequence by 
computing the similarity, on the basis of the distance between 
each character in the compared two strings. This distance is 
computed by dividing the number of similar grams by the 
maximal number of n-grams (Alberto, et al, 2010).
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Sehgal, et al. (2006) compared three string similarity 
measures on a data integration task; they referred that edit 
distance is better than Jaccard and Jaro-Winkler when mapping 
between two sets of place names in Afghanistan. Martins 
(2011) used machine learning to classify gazetteer records as 
duplicates or non-duplicates and compared the importance of 
several feature types, including eight string similarity measures. 
The experimental results show that using feature vectors which 
combined from (place names, semantic relations, place types, 
and geospatial footprints) leads to an increase in the results 
accuracy. Wang, et al. (2014) proposed a new hybrid similarity 
metrics, called “fuzzy token matching based similarity,” which 
extends token-based similarity functions (e.g., Jaccard similarity 
and Cosine similarity) by allowing the fuzzy match between 
two tokens. They considered as new signature schemes and 
develop effective techniques to improve the performance.
Different measures of distance or similarity are convenient for 
different types of analysis:
1- String Similarity: Defines a similarity between two strings 

(0 means strings are completely different, 1 means strings 
are identical) like Sorensen–Dice coefficient (Dice, 1945).

2- String Distance: Defines a distance between two strings 
(0 means strings are identical), like Damerau–Levenshtein. 
The maximum distance value depends on each algorithm 
(Sellers, 1980; Hall and Dowling, 1980).

In this paper, many measures were implemented to 
make a decision about which one was more suitable to 
use. The implemented algorithms are listed in Table I. While 

in Table II, the comparison of different similarity metric methods 
was described in the context of their advantages and weak points.

These methods can be merged to provide fast retrieval 
systems, using the symbols enumeration operation for 
handling the string operations as a sequence of numbers 
instead of a sequence of characters to reduce the hidden cost 
of the string operations; this will reduce the memory, time, 
and CPU consumption.

II. Materials and Methods
In this paper, many different metrics were explored to decide 
which one is suitable for string-matching purpose depending 
on the elapsed time with respect to the result accuracy. 
Furthermore, a set of hybrid algorithms was made up using 
several existing measures with a simple modification. According 
to the conducted comparisons between eight string distance/
similarity for evaluating them in terms of the consumed time; a 
brief summary of each one is presented in this section.

The experiments for these algorithms were involved 
with words of length (1-16) characters only. The conducted 
statistical analysis of the used datasets showed that 
approximately 99% of the overall words in each dataset are 
available in this range of word length; as depicted in Table III.

The number of comparisons for each given word will be 
reduced using a specific threshold based on the word length. 
The process of selecting the threshold was treated as follows:
• For words that have length ≤5, the threshold=1) the 

comparison operations were made with only words that 
have the length equal ±1 to the length of the given word).

• For words that have length ≥6, the threshold=2) the 
comparison operations were made with words that have the 
length equal ±2 to the length of the given word).

Which means the types that are processed in the proposed 
system are limited in two types: Words with length ≤5 have 
the possibility of one error only, whereas words with length 
>5 allow errors with two letters as the maximum probability. 
Then, to get the best system performance, the proposed system 
used the integrated number of similarity measures which 

Table I
The Studied String Metric Methods

Method name Type
Levenshtein Distance
Damerau–Levenshtein Distance
Longest common subsequence Distance
Jaro–Winkler Similarity measures
N-Gram Distance
Dice coefficient Similarity measures
Matching coefficient Similarity measures
Overlap coefficient Similarity measures

Table II
Comparison of Different Similarity metrics methods

Method name Advantage Disadvantage
Levenshtein and 
Damerau–Levenshtein

Gives the best result in case of short string and it is fast and best 
suited for strings similarity (Pradhan, et al., 2015; Patel, 2016)

In case of long string cost of Levenshtein distance is same as 
the length of string and considered it is not order of sequence of 
characters while comparing (Pradhan, et al., 2015; Patel, 2016)

Longest common 
subsequence

- Uses the recursion approach which uses stack that takes lots of 
space (Pradhan, et al., 2015)

Jaro–Winkler Gives better result in case of hybrid method (Pradhan, et al., 
2015)

If the data size is too much large, then Jaro distance similarity not 
gives efficient results (Pradhan, et al., 2015)

N-gram Similarity technique is high (Pradhan, et al., 2015) They are not suitable at multilingual environment, and the 
accuracy is very less (Pande, et al., 2013; Pradhan, et al., 2015)

Dice coefficient Obtain satisfactory results and used to consider the sizes of 
the two words and the similarity score will be normalized 
into [0,1] (Pradhan, et al., 2015)

-

Matching coefficient Very simple vector-based approach which simply counts the 
number of similar terms (dimensions) (Gomaa and Fahmy, 2013)

If one of these dimensions is zero, this method cannot work 
efficiently (Gomaa and Fahmy, 2013)

Overlap coefficient Similar to the Dice’s coefficient, but considers two strings a full 
match if one is a subset of the other (Gomaa and Fahmy, 2013)

-
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have proven successful through experiments. These combined 
measures were used for measuring the string distance between 
pairs of strings. The considered measures are:
• Dice coefficient and N-gram (DN).
• Dice coefficient, N-gram, and Damerau–Levenshtein 

(DADN).
• Damerau–Levenshtein and longest common subsequence 

(DAL).

A. DN Measure
It is obtained by integrating the N-gram measure with the 

dice-coefficient measure to increase the similarity results 
accuracy. Algorithm (1) illustrates the implementation steps 
for DN.

Algorithm (1): DN Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.
Output: Integer value, words List contain the same number of 

input words, which is the most similar words from files.

Step1:
String [] s1 → string1.Split(‘ ‘) //Read the given string  

    and split it to words array  
    using the space delimiter

Double len → 0, Double total_len → 0
Double temp → -1, Int g→0

Step2:
StreamReader sr →new StreamReader(ss)  

//Read       the file 
content

line = sr.ReadToEnd();
string[] words = line.Split(‘ ‘); //Split the file content in  

   to words using the space delimiter
For i = 0 to s1.Length-1 step 1 do
    For j = 0 to words.Length-1 step 1 do
 If (((s1[i].Length >= 1) & (s1[i].Length <= 5)) &  

 ((s1[i].Length <= words[j].Length + 1) && (s1[i]. 
 Length >= words[j].Length-1))) then//For words  
 that have length0-5 the threshold of error is 1 char.

 temp → DiceCoefficient(s1[i], words[j])
 If (len == 0) then len=temp, g = j
 Else If (temp > len) then len = temp, g = j
 End If
 Else If (((s1[i].Length >= 6) & (s1[i].Length <= 18)) & 
((s1[i].Length <= words[j].Length + 2) & (s1 [i].Length >= 

words[j].Length - 2))) then//For words that more than 5 
characters the threshold of error is 2 char.
temp → DiceCoefficient(s1[i], words[j])
 If (len == 0) then len=temp, g = j
 Else If (temp > len) then len = temp, g = j
 End If
   End If
   temp →0
End For
total_len = total_len + len//For collect distance of all  

    words in the given string
list1.Items.Add(words[g]);
len → -1, temp → -1
End for

Step3:
Int Result_Distance= total_len/s1.Length

End;

Function1: Double DiceCoefficient(string stOne, string stTwo)//
For strings instead of char comparing using words of two 
characters

List<string> nx, ny; string temp = “”
For i = 0 to stOne.Length – 2 step 1 do
 temp = “” + stOne[i] + stOne[i + 1]: nx.Add(temp)
End For
For j = 0 to stTwo.Length – 2 step 1 do
 temp = “” + stTwo[j] + stTwo[j + 1]: ny.Add(temp)
End For
 If (stOne.Length == 1)//For handling words with one 
character
 temp = “” + stone, nx.Add(temp)
End if
 If (stTwo.Length == 1)//For handling words with one 
character
 temp = “” + stTwo, ny.Add(temp)
End if
HashSet<string> intersection = new HashSet<string>(nx)
 intersection.IntersectWith(ny), double dbOne = 
intersection.Count//Determine the intersection between 
words

Return (2 * dbOne/(nx.Count + ny.Count))

B. DADN Measure
It is obtained by integrating the previous mentioned DN 

algorithm with Damerau–Levenshtein distance measure 
to increase the result accuracy; this integration aimed to 
take the advantage of Damerau–Levenshtein efficacy and 
speed. Then, handling the situation of equal single character 
movement results with a DN measure to decide which string 
is more similar to a given one. Algorithm (2) illustrates the 
implemented steps for DADN.

Algorithm (2): DADN Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.

Table III
The Words Count within the Considered 4 Datasets of Complete 

Words whose Lengths bounded between [1,16] Characters

Dataset# No. of words in the overall dataset No. of words from 1 to 16 char.
Dataset 1 530421873 (%100) 529051745 (%99.74)
Dataset 2 63948272 (%100) 63944562 (%99.99)
Dataset 3 246650908 (%100) 246598321 (%99.97)
Dataset 4 3455357163 (%100) 3452403297 (%99.88)
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Output: Integer value, List of words contains the same number 
of input words, which is the most similar words from files.

Step1:
String [] s1 → string1.Split(‘ ‘)//Read the given string and  

 split it to words array using the space delimiter
Double len → 0, Double total_len → 0//Define the 

variables
Double temp → -1, Int g →0
 DamerauLevensteinMetric da=newDamerauLevenstein 
Metric()//Define the object da as class of Damerau 
Levenste in Metric

Step2:
StreamReader sr →new StreamReader(ss), line =   

  sr.ReadToEnd()//Read the file content
String[] words = line.Split(‘ ‘)//Split the file content in to  

   words using the space delimiter
For i = 0 to s1.Length-1 step 1 do
For j = 0 to words.Length-1 step 1 do
If (((s1[i].Length >=1) & (s1[i].Length<=5)) & ((s1[i]. 

   Length<=words[j].Length+1) &
 (s1 [i].Length>=words[j].Length - 1))) then// 

  For words that have length 0-5 the threshold of error 
is 1 character

temp → da.GetDistance(s1[i], words[j], 100)
If (len == 0) then len → temp, g → j
  If (temp < len) then len → temp, g → j
  else If ((temp==len) & (j!=g) & (len!=0)) then
  Double one → DiceCoefficient(s1[i], words[g]), 

Double two → DiceCoefficient(s1[i], words[j])
 If (one > two) then g = j
End If

else If  (((s1[i].Length>=6) & (s1[i].Length<=18)) & ((s1[i].
Length<=words[j].Length+2) &

      (s1 [i].Length >= words[j].Length - 2))) then//For 
words that have more than 5 char. the threshold of 
error is 2 char.

temp → da.GetDistance(s1[i], words[j], 100)
If (len == 0) then len=temp, g = j
If (temp < len) then len = temp, g = j
else If ((temp == len) & (j!= g) & (len != 0)) then
 Double one → DiceCoefficient(s1[i], words[g]),  

 Double two → DiceCoefficient(s1[i], words[j])
 If (one > two) then g = j
   End If
End If
temp →0

End For
total_len = total_len + len//For collect distance of all words in 

the given string
list1.Items.Add(words[g]), len → -1, temp → -1

End for
Step3:

Int Result_Distance= total_len/s1.Length
End;

Function1:  Double DiceCoefficient(string stOne, string stTwo)//
The Same Function Steps (used to compare between 

two strings using Dice-Coefficient and N-gram) as 
in Algorithm(1)

Class DamerauLevensteinMetric
Const Int DEFAULT_LENGTH → 255
Int [] currentRow, previousRow, transpositionRow//Define  

 the variables
Double GetDistance(String first, String second, Int  

 max)//Max is the threshold of movements number
Int maxLength → DEFAULT_LENGTH//Maximum  

   number of characters in each word
currentRow → new Int[maxLength +1], previousRow →  

    new Int[maxLength +1],
transpositionRow →new Int[maxLength +1]
Int firstLength → first.Length, Int secondLength → 

second.  Length//2Variable to store the length of 
string1 &2

If  (firstLength == 0) then Return secondLength//If string1 
was empty return the number of char. in string2

If (secondLength==0) then Return firstLength//If string2  
  was empty return the string1 length

If  (firstLength > secondLength) then//Swap between string to 
make the second string with larger length and swap length

Swap (first, second), firstLength → secondLength
End If
If (secondLength - firstLength > max) Return max + 1// 

 If the different is larger than threshold the return  
 threshold+1

If (firstLength > _currentRow.Length) then
currentRow = new Int [firstLength + 1], previousRow =  

    new Int [firstLength + 1],
transpositionRow = new Int[firstLength + 1]
End If
 For i = 0 to firstLength step 1 do//As an initial value store 
the counter value then use this array to store the value of 
movements for each step(character)
 previousRow[i] → i
End For
 Char lastSecondCh → ‘\0’//The last used char in the 
second string
For i = 1 to secondLength step 1 do
  Char secondCh → second[i - 1], currentRow[0] → 

i//Compute only diagonal stripe of width 2*(max+1)
  Int from → Max(i - max - 1, 1), Int to → Min(i + 

max + 1, firstLength)//The start & end positions for 
checking process

  Char lastFirstCh → ‘\0’//The last used char from 
first string

 For j = from to to step 1 do
       Char firstCh = first[j - 1]//Compute minimal cost 

of state change to current state from previous 
states of deletion, insertion and swapping

      Int cost = 0
      If (!(firstCh == secondCh)) then cost = 1
     Int value = Min(Min(currentRow[j -1] + 1, 

previousRow[j]+1), previousRow[j -1]+ cost)
     //If there was transposition, take in account its 

cost only if the transposed characters are adjacent
    If (firstCh == lastSecondCh && secondCh == 
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lastFirstCh) then
 value = Min(value, _transpositionRow[j - 2] + cost), 
currentRow[j] = value, lastFirstCh = firstCh
End if

End For
 lastSecondCh = secondCh, Int[] tempRow = 
transpositionRow, transpositionRow = previousRow
previousRow = currentRow, currentRow = tempRow

  End For
   Return previousRow[firstLength]
End Class

C. DAL Measure
It is obtained by integrating Damerau–Levenshtein distance 

measure with the longest common subsequence measure. The 
longest common subsequence algorithm is used to handle 
the advantage of Damerau–Levenshtein efficacy and speed. 
It handles the cases of similar results for several words in the 
file to a given word, and hence, to decide which string is more 
similar to a given one. This measure checks the similar character 
sequence and takes the word with larger values of the sequence. 
Algorithm (3) presents the implementation steps for DAL.

Algorithm (3): DAL Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.
Output: Integer value, List of words containing the same number 

of input words, which is the most similar words from files.

Step1:
 String [] s1 → string1.Split(‘ ‘)//Read the given string and 
split it to words array using the space delimiter
 Double len → 0,Double total_len → 0, Double temp 
→ -1,Int g→0//define the variables
 DamerauLevensteinMetric da=new DamerauLevenstein 
Metric()//define the object da as class of Damerau 
LevensteinMetric

Step2: StreamReader sr →new StreamReader(ss), line = 
sr.ReadToEnd()//Read the file content

 String[] words = line.Split(‘ ‘)//Split the file content in to 
words using the space delimiter
For i = 0 to s1.Length-1 step 1 do
 For j = 0 to words.Length-1 step 1 do If((s1[i].
Length>=1)&(s1[i].Length<=5))&((s1[i].Length<=words[j].
Length+1)&
 (s1[i].Length>=words[j].Length-1)) then//For words that 
have length 0-5 the threshold of error is 1char
temp → da.GetDistance(s1[i], words[j], 100)
If (len == 0) then len → temp, g → j
If (temp > len) then len → temp, g → j
 Else If ((temp==len) & (j!=g) & (len! 0)) then//For words 
that have length 0-5 the threshold of error is 1 char.
  Double one → LongestCommonSubsequence(s1[i], 

words[g])
  Double two → LongestCommonSubsequence (s1[i], 

words[j])

 If (one > two) then g = j
End If

Else If (((s1[i].Length>=6) & (s1[i].Length<=18)) & ((s1[i].
Length<=words[j].Length+2) &

       (s1 [i].Length>=words[j].Length - 2))) then//For words 
that more than 5 char. the threshold of error is 2 char.

 temp → da.GetDistance(s1[i], words[j], 100)
 If (len == 0) then len=temp, g = j
 If (temp > len) then len = temp, g = j
 Else If ((temp == len) & (j!= g) & (len != 0)) then
  //For words that have length 0-5 the threshold of 

error is 1 char.
  Double one → LongestCommonSubsequence (s1[i], 

words[g])
  Double two → LongestCommonSubsequence (s1[i], 

words[j])
 If (one > two) then g = j
End If

End If
temp →0
End For
 total_len = total_len + len//For collect distance of all 
words in the given string
list1.Items.Add(words[g]), len → -1, temp → -1
End for

Step3:
Int Result_Distance= total_len/s1.Length, list1.show

End;

Function1:  Int LongestCommonSubsequence (String str1, 
String str2)

 String sequence → “”
  If ((str1.Length == 0) | (str2.Length == 0)) then Return 

0
  Int [,] num = new int[str1.Length, str2.Length]//Array 

used for count the number of identical char. in the given 
strings

  Int maxlen → 0, Int lastSubsBegin → 0, String 
sequencestring → “”

 For i = 0 to str1.Length-1 step 1 do
 For j = 0 to str2.Length step 1 do
 If (str1[i] != str2[j]) then num[i, j] = 0
  else If ((i == 0) || (j == 0)) then num[i, j] = 1//

Every time check characters from it arrived to the 
end of char start from 1 for counter

 else num[i, j] → 1 + num[i - 1, j - 1]
 End If
If (num[i, j] > maxlen)
  maxlen → num[i, j]
  Int thisSubsBegin → i - num[i, j] + 1
If (lastSubsBegin == thisSubsBegin)
  sequencestring → sequencestring + str1[i]
End If
else// This block resets the string builder if a different LCS 

is found
lastSubsBegin → thisSubsBegin, sequencestring → “”//Clear it
 sequencestring → sequencestring + str1. Subsequence 
(lastSubsBegin, (i + 1) - lastSubsBegin)
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    End If
   End If
  End For
End For
sequence → sequencestring

Return maxlen
Class DamerauLevensteinMetric// The Same Class Steps as in 

Algorithm(2)

After identifying the best algorithm, DADN, we modified 
it to deal with numbers rather than strings where this 
modification will produce a new method entitled dice 
coefficient, N-gram, and Damerau–Levenshtein using 
enumeration method (DADNEN). The test results of this 
algorithm indicated that the modified algorithm has a positive 
impact on the results for words with length ranging between 1 
and 13, but has no effect on the words with the length which 
is equal or larger than 14. Hence, some conditions were used 
in the modified algorithms to control the performance of this 
algorithm with a wide range of word lengths (i.e., making 
the system work flexibly with all word lengths as much as 
possible). Algorithm (4) illustrates the implemented steps of 
the modified optimized DADNEN (ODADNEN) algorithm.

Algorithm (4): ODADNN Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.
Output: Integer value, List of words contains the same number 

of input words, which is the most similar words from files.

Step1: Define The Variables
Byte[] bytes = Get Bytes(string1)//Read the given string  

 and split it to words array using the space delimiter
Int word_length → 0//Start and end and length for each  

   word in the input strings
Int start → 0, Int end→0, Double len → -1//Number of  

  movements required for each two strings
Double total_len → 0//The total number of movements 

for     all the given strings
 DamerauLevensteinMetricen da = new DamerauLevenste 
inMetricen()
  // Define the object da as class of Damerau 

Levenstein Metric
Step2: Read text files as blocks of bytes.//For each Text file 

read its content as blocks of bytes with size about 4 MB for 
each block till reaching the end of file

Step3: Count Length for each word.//Determine the start (s) 
and the end (e) of each word (array of bytes) for each word 
in the given string (bytes)

Step4:
For Each Word in bytes
   For j = 0 to bytes2.Length-1 step 1 do
      While (end2 < bytes2.Length & (bytes2[end2] != 32))
 end2++
End while
wordfile_length[no] → end2 - start2 - 1
If (wordfile_length[no] <= 18)

(C, b)→ array of bytes [wordfile_length[no] + 1]
Buffer.BlockCopy(bytes2, start2, b, (18 * no)
wordfile_length[no] + 1)//To determine the start of each row
Buffer.BlockCopy(bytes2, start2, c, 0, wordfile_length[no] + 1
 If ((word_length<=5) & (word_length<=wordfile_
length[no]+1) & (word_length>= wordfile_length[no]-1)) 
then//for words that have length 0-5 the threshold of error 
is 1 char.
temp → da.GetDistance(a, c, 100)
If (len == -1) then len →temp, g →no
If (temp < len) then len → temp, g → no
Else If ((temp == len) & (no != g) & (len != 0)) then
 Double one → DiceCoefficient(a, c), Double two → 
DiceCoefficient(a, c)
If (one > two) then g = no
End If

Else If (((word_length >= 6) & (word_length <= 18)) & 
((word_length <= wordfile_length[no] + 2) & (word_length 
>= wordfile_length[no] - 2))) then

//for words that have length larger 5 the threshold of error 
is 2 char.

 If (s1[i].Length < 14) then//For decide if there is a need to 
use the enum methods according to the words length.
  Byte[] bytes1 = GetBytes(s1[i]), byte[] bytes2 = 

GetBytes(words[j])
 temp = da.GetDistanceen(bytes1, bytes2, 100)
 If (len == -1) then len = temp, g = j
 If (temp < len) then len = temp,g = j
 else if ((temp == len) & (j != g) & (len != 0)) then
 double one = DiceCoefficient(s1[i], words[g])
 double two = DiceCoefficient(s1[i], words[j])
 If (one > two) then g = j
end if

else   //For words with length equal or larger than 14
   temp = da.GetDistance(s1[i], words[j], 100)
   If (len == -1) then len = temp, g = j
   If (temp < len) then len = temp,g = j
else if ((temp == len) & (j != g) & (len != 0)) then
 double one = DiceCoefficient(s1[i], words[g])
 double two = DiceCoefficient(s1[i], words[no])
 If)one > two) then g = j
 end If

      end If
end If

temp → -1, start2 → end2 + 1, j →start2, end2 → start2, no++
Next j
total_len → total_len + len, Int s → 0
For h = 0 to wordfile_length[g] step 1 do

s → s + Convert.ToChar(b[g, h])
Next h
 list1.Items.Add(s), len → -1, temp → -1, start → end + 1, 
i → start, end→ start

Step5:
Int Result_Distance= total_len/s1.Length

End;

Function1: Double DiceCoefficient(string stOne, string 
stTwo)//The Same Function Steps (used to compare between 
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two strings using Dice-Coefficient and N-gram) as in 
Algorithm(1)
Class DamerauLevensteinMetric//The Same Class Steps as 
in Algorithm(2) with one different, which convert all Strings 
to an array of bytes and deal with it on that basis

III. Results and Discussion
In this paper, all algorithms were implemented using C 

sharp 2015 programming language and applied on CPU 2.60 
GHz with 16 GB RAM. For measuring the distance between 
two strings, many algorithms were tested to determine the 
most efficient one according to the elapsed time for each one. 
To test the system performance a text file that has size 171 
KB which containing 15593 non-repeated words with lengths 
ranging from 1 to 16 characters; it was extracted from 
Oxford University Text Archive. This archive was designed 
to represent a wide cross-section of current British English 
(Burnard, 1976). In this paper, some of the non-repeated 
words were extracted from this dataset to test the system 
performance by typing ten words with different lengths for 
each user query.

The conducted test includes words have lengths ranging 
from 1 to 16, but for saving the space of this article only 
two lists of results are presented. Table IV lists the elapsed 
time for each method tested to the string distance measuring 
process; these methods were tested on 10 words with the same 
length in each time ranging from 1, 2, and 3. Table V lists 
the elapsed time for each method tested to the string distance 
measuring process; these methods were tested on 10 words 
with same length=16. Furthermore, for comparison purpose, 
the list given in Table VI shows the improved elapsed 
processing time ratio between the similar types of methods 
to find the best one for each type; it was computed using the 
following equation:

Speed ratio=100*(T1−T2)/T1 (1)
Where T1 is the elapsed time for first method and T2 for 

the second one.
Then, the measures showed best similarity results are combined 
to increase the accuracy by overcoming the cases of similar 
comparison results for many words. These combined measures 
were used for measuring the string distance between pairs of 
strings. The considered measures are:
• DN: It was obtained by integrating the N-gram method with 

the dice coefficient method to increase the results accuracy 
by making use of the sequence of letters in the given words.

• DADN: It was obtained by integrating the previous 
mentioned DN method with Damerau–Levenshtein distance 
method to increase the result accuracy; this integration 
is aimed to take the advantage of Damerau–Levenshtein 
efficiency and speed. Then, handling the situation of equal 
single character movement results with a DN method to 
decide which string is more similar to a given one.

• DAL: It is obtained by integrating Damerau–Levenshtein 
distance with the longest common subsequence. The longest 
common subsequence is used to handle the advantage of 
Damerau–Levenshtein efficiency and speed. It handles 
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the cases of similar results for several words in the file to 
a given word, and hence, to decide which string is more 
similar to a given one. This measure checks the similar 
character sequence and takes the word with larger values 
of the sequence.

The suggested measures were tested on 10 words with 
the same length in each time; they range from 1 to 16, 
as shown in Figs. 1-5, for finding the most appropriate 
algorithm for using in the next steps. The results showed 
that applying the DADN algorithm is the fastest one 
with maintaining the similarity results accuracy; the best 
algorithm can be selected by calculating the accumulative 
values for all execution times which obtained in the tests; 
that is, DDN=12032518.4 (µs), DADN=9673223 (µs), and 
DAL=9915123 (µs). The accumulative results showed that 

DADN algorithm has the smallest execution time. After 
identifying DADN as the best algorithm, we have modified 
it to deal with numbers rather than strings which we called 
it DADNEN for speeding up the process. The test results 
of this algorithm indicated that the modified algorithm has 
the positive impact on the results for words with length 
ranging between 1 and 13 but has no effect on the words 
with length more that. Hence, some conditions were used in 
the modified algorithms to control the performance of this 
algorithm, ODADNEN, with a wide range of word lengths 
(i.e., making the system works flexible with all word lengths 
as much as possible). The elapsed time for the tested results 
for (DADNEN, ODADNEN) algorithms, which select the 
most similar word for each word from the given word, are 
shown in Table VII and Table VIII.

Table V
The 8 of the Distance String Metrics Methods Tested using 10 Words 16 Characters and Multiple Changes

Method name Word length 16

Input status Complete words Delete one char. Exchange two char’s Error typing in one char. Insert one char.
Jaro–Winkler distance* Time (µs) 76053.3 73032.2 76071 73051.1 71050.5

Distance 0 0.0013 0.0013 0.0013 0.0132
Longest common substring** Time (µs) 129091 143120.3 137078.1 139098.5 116082.6

Similarity 160 153 152 152 158
Levenshtein distance*** Time (µs) 140079.9 146105.4 134087.1 147121.2 127108.1

Movements 0 1 2 1 1
Damerau–Levenshtein distance*** Time (µs) 160113.8 172122.7 171121.2 169119 142080.9

Movements 0 1 1 1 1
N-gram**** Time (µs) 41032.7 42030.7 40026.5 39033.3 37026.7

Similarity 150 140 147 142 139
Dice coefficient***** Time (µs) 40046.6 41046.9 41027.2 42012.1 48033.4

Distance 1 0.92 0.938 0.92 0.9235
Overlap coefficient***** Time (µs) 41045.3 41033.1 40045 42028.7 46031.6

Distance 1 0.943 0.988 0.953 0.941
Matching coefficient****** Time (µs) 43048.7 56033.9 39013.9 40027.7 44049.4

Distance 0.5 0.471 0.494 0.476 0.471
*Match=0, Not match=1, **Match=No. of all input char. For all words, No Match=0, ***Match=0, No Match=No. of all input char. for all words, ****Match=No of identical 
pairs=Σ(each word length−1), No match=0, *****Match=1, No Match=0, ******Match=0.5, No Match=0

Table VI
The Improvement Ratio of the Elapsed Processing Time Measured between the Previously Tested Methods using 10 Words with Different 

Lengths (1, 2, 3, 16 Characters) and Multiple Changes

The speed ratio between methods Levenshtein and Damerau–Levenshtein (%) Dice and overlap (%) Dice and matching (%)

W.L. Input status
1 Complete words 28.22 20.44 0.34
2 Complete words −0.01 −12.49 12.54

Delete one char. −9.25 28.58 14.29
Exchange two char’s 50 −0.25 70.99
Error typing in one char. 10 −11.08 0.06
Insert one char. 40.01 25.23 0.24

3 Complete words 14.29 22.22 11.12
Delete one char. 91.37 −18.77 −18.78
Exchange two char’s 7.02 0.19 −10.01
Error typing in one char. 21.57 85.77 28.84
Insert one char. 23.09 10.92 −0.19

16 Complete words 14.31 89.92 7.5
Delete one char. 17.81 77.93 36.52
Exchange two char’s 27.62 85.42 −4.91
Error typing in one char. 14.96 73.89 −4.73
Insert one char. 11.78 47.92 −8.3
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Fig. 1. The new algorithms tested using 10 complete words with different lengths ranging from 1 to 6 characters

Fig. 2. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with deleting one character

Fig. 3. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with exchange two characters

The test results showed that the proposed implementation 
of similarity measures reduces the processing time when 
compared with the commonly implemented methods while 

maintaining the results accuracy. Furthermore, it can be noticed 
that the baseline of the execution time is increased dramatically 
with the increase of words length (i.e., number of characters 



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10180 15

the listed test results. A set of three combined similarity 
measures was suggested, and their performance was tested; 
these combined sets consist of some well-known similarity 
measures. The test results indicated significant performance 
improvements are attained when using these combined 
measures to overcome the lack of accuracy and to save spend 
time in the matching of misspelled words using the length 
threshold of words matching.

Furthermore, in this paper, a simple enumeration method 
was used together with the suggested combined measures 
to get a new scheme that offers more nearly stable and fast 
text similarity assessment; this scheme can be used for a 
wide range of word length. Because these three combined 
algorithms cause an enhancement in the processing results 
accuracy by dealing with many different cases that produce 
similar results (i.e. the same number of movements number 
of the given compared words). This number was used for 
measuring the distance between the given words. Hence, 
to identify the closest word between the given words with 
similar distances the modified Dice and N-gram algorithm 
were used.

Fig. 4. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with one incorrect character

Fig. 5. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with insert one character

in each word) this due to the increase of matching operations 
that required in each execution. The presented results in 
Tables VII and VIII indicate that the elapsed time was slightly 
improved for words have lengths ranging between [1...5 and 
14...16]. While the time improvements are relatively large with 
lengths between [6...13]; it depends on the processing time 
ratio of DNDA algorithm and DNDAEN algorithm. Hence, to 
achieve better performance results, the ODNDAEN algorithm 
is provided; it is used to process words according to some 
conditions depending on using the suggested enumeration 
methods. For clarification, the results of processing time 
improvement were explained using the processing time ratio 
for the DNDAEN and ODNDAEN algorithms.

IV. Conclusion
A new set of measures was introduced in this article for 
dealing with strings; it is based on combining some string 
similarity measures beside to using the string enumeration 
methodology. It reduces the elapsed time of each string 
matching operation; this remark can be simply noticed in 
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