
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020 1

A comparative study in the standardisation of
IoT devices using geospatial web standards

Daniel Marsh-Hunn, Sergio Trilles, Alberto González-Pérez, Joaquı́n Torres-Sospedra and Francisco

Ramos

IoT devices

OGC
standards

Implementation

 Sensor

Observation Service
Sensor Things API

52 North

Quantitative Qualitative

Comparative

FROST

Abstract— Although billions of devices are embedded in the World
Wide Web through the Internet of Things, there is still a lack of
a common, interoperable way to connect them and make them
interact seamlessly. IoT has also found its way into the spatial web.
Environmental monitoring and sensing platforms connected over
the web by wireless sensor networks are now a common way to
monitor natural phenomena. This study compares two open Web
Standards (OGC’s Sensor Observation Service and SensorThings
API) from the geospatial point of view. An IoT platform, called
SEnviro, is used to integrate and evaluate implementations for each
standard and contrast their qualitative and quantitative traits. The
results of the study show that the SensorThings API proves to be
the adequate Web Standard for IoT applications in terms of inter-
operability. It outperforms the contesting Web Standard in terms of
flexibility and scalability, which strongly impacts on developer and
user experience.

Index Terms— Internet of Things, interoperability, geospatial standards, sensors

I. INTRODUCTION

The Internet revolution enabled large-scale interconnection

between people across the globe. Today, technological advance

allows objects to interact over the Internet without the aid

of human intervention, creating an Internet of Things (IoT).

This concept first emerged in 1999 and has since been subject

to constant evolution, redefinition, and expansion. It stepped

out of its infancy and is transforming the current Internet

into the fully integrated future Internet, connecting billions

independent and intelligent devices [1].

Rapidly developing device-to-cloud technologies and the in-

creasing deployment of devices connected to the Internet

bring along a new dimension of possibilities and applications

in various fields of human activities, but also imply new

challenges in making different solutions and heterogeneous

data interact seamlessly, enabling a large-scale IoT [2]. Widely

defined as ”a worldwide network of interconnected uniquely

Manuscript received month day, year; revised month day, yea; ac-
cepted month day, yea1. Date of publication month day, yea; date of
current version month day, yea. Sergio Trilles has been funded by the
postdoctoral Juan de la Cierva fellowship programme of the Spanish
Ministry for Science and Innovation (IJC2018-035017-I). The project is
funded by the Universitat Jaume I - PINV 2017 (UJI-A2017-14).

D. Marsh-Hunn is with geOps spatial web (e-mail: daniel.marsh-
hunn@geops.de)

S. Trilles, A. González-Pérez, and F. Ramos, Universitat Jaume I,
Castellón, Spain (e-mail: {strilles,algonzal,jromero}@uji.es)

J. Torres-Sospedra is with UBIK Geospatial Solutions S.L., Castellón,
Spain (e-mail: torres@ubikgs.com)

Digital Object Identifier 10.1109/JIOT.2020.XXXXXXX

addressable objects, based on standard communication pro-

tocols” [3], predictions estimate the IoT will consist of 21

billion connected devices exchanging information over the

Internet by 2025 with an economic impact of 1.6 trillion

US$ [4]. IoT applications are being developed in significant

sectors such as smart business, inventory management, smart

home, transportation and logistics, health-care, security and

surveillance, and environmental monitoring. This vast number

of ”things” can access and acquire data about devices and their

environment, independent of human interaction [5].

Environmental and earth monitoring IoT applications have

received increased attention in recent decades since they

have become a key factor of sustainable growth worldwide.

Observing natural phenomena in the field can be challenging

due to harsh climatic conditions and difficulty of physical

access, resulting in high costs for sensor deployment and

maintenance [5]. These challenges have been addressed by

technological advances in low power integrated circuits and

wireless communications. Modern sensing devices have drasti-

cally decreased in size, cost, and power consumption, resulting

in the viability of deploying intelligent sensors networks.

These Wireless Sensor Networks (WSN) may consist of a

large number of nodes with limited processing capability and

storage. They can be equipped with several different sensors,

capable of observing multiple natural phenomena [1].

Modern web technologies are advancing at a high rate and

demand for research in specialised fields is increasing to stay

up to date with state-of-the-art technology. IoT solutions are

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

no exception; researchers are developing new implementations

to enhance the quality and efficiency of this kind of systems.

A general challenge, in the IoT domain, as well as in specific

areas, is to achieve full system interoperability. Globally de-

fined as “The ability of two or more systems or components to

exchange information and to use the information that has been

exchanged.” [6], this is a key concept to make environmental

monitoring information accessible to a broader community,

and it is a necessary step to take towards open data. Since IoT

emerged, a large variety of vendors, researchers, and interested

parties have developed IoT solutions in parallel. Although

several device types and protocols for IoT are available on

the market, only a few interoperate among each other [7]. The

importance of interoperability is becoming more evident as the

number of IoT solutions grows. While the worldwide Internet

relies on standard technologies and protocols like HyperText

Transfer Protocol (HTTP), Secure SHell (SSH), etc., these

solutions are not well-suited for devices with severe power

and data loss constraints. Efforts are currently being made to

produce standards compatible with IoT environments [2].

Although the concept of IoT is already established and imple-

mentations are mushrooming manifold, it still lacks a widely

accepted standard model to enable broad-scale interoperability.

Standardisation bodies and alliances are working on defining

web standards and protocols, and their adoption requires user

and developer consensus through trials and testing. Several

interoperable standards are already available, which have mi-

nor functionality, specialisation, and structure difference. With

IoT also finding its way into environmental monitoring, it is

crucial to investigate the potential of existing Web Standards

in an interoperability context within this domain. An important

actor in interoperability research in the geospatial field is the

Open Geospatial Consortium (OGC). This institution provides

some initiatives to standardise the IoT environment [8, 9].

This work aims at investigating open web standard solutions

for IoT applications. The main contribution of this study lies in

producing an in-depth comparison between a selection of web

standard solutions from the geospatial domain. The options

analysed support geospatial functionalities, useful for data

analysis and visualisation [10], and are considered standards

recognised by the OGC community. They are compared in

terms of performance, semantics, flexibility, and scalability

levels. The comparison is structured in terms of qualitative

and quantitative aspects. The former analyses how to work

with both standards from the point of view of the regulated

specifications. For the latter an implementation for each stan-

dard was chosen and deployed for comparison in terms of

performance. Different computational cost evaluations were

performed, contrasting memory usage and time cost. A previ-

ous environmental monitoring IoT platform, called SEnviro for

Agriculture, has been used to deploy these standards [11, 12].

A broker pattern using standard adapters are used to integrate

each standard. A further goal of the study is to enhance the

interoperability of the already established SEnviro platform.

The remainder of this paper is structured as follows. Section II

contains the relevant topics to this paper. Section III includes

information about the area and context of experimentation used

in SEnviro for Agriculture [11] project. Section IV sheds light

on the methodology used to evaluate the potential of applying

open Web Standards. Sections V and VI present the qualitative

and quantitative evaluation results of the comparing methods.

Next, Section VII addresses a discussion of the results obtained

in the previous sections. The paper culminates in Section VIII

with conclusions and recommendations for future work.

II. BACKGROUND

The number of embedded devices within the IoT is increas-

ing drastically, and the IoT producers develop web service

protocols only supported by their proprietary IoT devices. It

results in closed vertical silos of IoT, each having its complete

IoT frameworks, including devices, gateways, services, and

applications. An upcoming issue in IoT is that elements

in different silos cannot connect, leading to scattered IoT

solutions with incompatible, co-existing protocols [8, 13].

An important actor in interoperability research in the geospa-

tial field is the Open Geospatial Consortium (OGC), an

organisation of over 260 members from the academic and

industrial sectors, as well as governmental agencies. Their

primary goal is to find participatory consensus for openly

available interfaces and encodings for the Geospatial Web. The

OGC provides a set of Geospatial Abstract Specifications for

different types of geographical data, upon which the OGC’s

interoperability standards build on [14].

A. Open & Sensor Web Standards

Geo-scientists have been uploading geographical data for

sharing and exploration since the dawn of the World Wide Web

(WWW). Machine-to-Machine (M2M) data harvesting has

led to community-adopted frameworks, common standards,

and enriched metadata, significantly improving observational

accuracy, sensor discovery, and configurability [15].

As one of the main actors in the field of sensor web standards,

the OGC’s Sensor Web Enablement (SWE) builds on machine-

readable encoding like Sensor Model Language (SensorML),

Observation & Measurement (O&M) and Geography Markup

Language (GML) to fully describe the processes used in

producing observations and their corresponding sensors [15].

In the scope of the OGC SWE, the organisation released

a set of services to facilitate the exchange of observations

among SWE enabled nodes and to allow clients and servers

to arrange, encode and transfer observations in a semantically

enabled way [16]. Our contribution will consider the well-

established Sensor Observation Service (SOS) [17] and the

more recent SensorThings API [18]. It is important to note the

age difference of almost a decade between the two standards.

SensorThings API, being the more recent standard, is a lot

more focused on IoT devices, since the IoT concept has

grown profoundly in importance and popularity. SOS is a more

broadly scaled solution for sensor systems in general, but can

nonetheless be applied effectively to IoT networks.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 3

1) Sensor Observation Service: The OGC approved SOS in

2007 as an official open standard for handling observations

in the WWW. Based on the SWE standard framework, SOS

provides a standardised interface using SOAP XML to manage

and retrieve metadata and observations from heterogeneous

sensor systems and is designed to match the O&M data model

(see Figure 1) [17].

Fig. 1. O&M data model extract [17].

The essential components in SOS are the following:

• Procedure: produces the measured value of an observa-

tion. This can be a single sensor, a sensor platform, or a

numerical simulation process.

• Offering: logical grouping of observations related to each

other belonging to a common service. For example,

the relation can be spatial (share the same location),

temporal (created in the same time interval) or due to

corresponding properties (measure the same phenomena)

• ObservableProperty: a procedure can have multiple ob-

served properties, which represent the physical phenom-

ena measured by a sensor (e.g., temperature)

• FeatureOfInterest: Features of Interest (FoI) represent

identifiable objects on which sensor systems are making

observations. These include spatial information to allow

the location to be harvested by OGC service registries.

• Observation: contains a measurement value for an ob-

served property of an object under observation (FoI).

Observation must include the time stamp when the ob-

servation was created.

SOS includes a set of operations for retrieving observations

and metadata. The three mandatory core operations are:

• GetCapabilities: this operation provides access to meta-

data and details about the service’s capabilities. Either

an HTTP GET, or POST request is used to retrieve the

service Capabilities document, an XML file containing

metadata about the service, like unique identifiers, unique

groupings of observations (Offerings) and physical phe-

nomena measured by the sensors (ObservedProperties).

• DescribeSensor: the unique identifiers retrieved in the

Capabilities document can be used in the DescribeSensor

operation to request sensor metadata (SensorML) if the

procedure with the identifier is present in the service.

• GetObservation: this operation provides access to the

observation data made by sensors in the service. A

request file containing information from the Capabilities

document must be sent via HTTP POST to the server,

which then returns the requested observations. Details

such as the Offerings or the ObservedProperties, as well

as spatial and temporal filters, can be included as query

parameters. SOS returns the requested observation data

in O&M format.

To make SOS configurable for any sensor observation project,

it also provides transactional operations to insert sensors and

observations:

• RegisterSensor: This operation allows users to register

sensors in SOS. An XML file containing the information

about the new sensor in SensorML encoding is sent to

the service via an HTTP POST request.

• InsertObservation: Observation data from sensors is in-

serted into SOS via HTTP POST, using an XML file

following the O&M specification. The file must specify

the procedure which produced the measurement, which

in turn must be present within the service.

Among the several open-source implementations of SOS,

the most established is 52North-SOS. This Java application

is developed at 52North GMBH1. It includes a variety of

extended features, including support for INSPIRE download

service and specialised XML encodings (e.g., WaterML 2.0,

GroundWaterML 2), code translators for requests in JSON,

SOAP, KVP and POX, a REST API and an extensive client in-

terface for service configuration and data exploration. 52North

releases new versions of the software every few months, the

most recent one (SOS 4.4.4) at the time of creation of this

document available since December 6, 2018.

Pradilla et al. [19] developed SOSLite2, a lightweight SOS

implementation using SOAP binding, XML encoding and

storing data in a NoSQL database. SOSLite reduces SOS to its

operations to a minimum considering the OGC’s best practice

recommendations for a lightweight SOS profile for in-situ

sensors [20] and aiming to adapt SOS to IoT scenarios. The

results show an improvement in response times for several

SOS operations. In SOSFul3 [21], the authors developed

SOSLite further, proposing a REST API using JSON encoding

format which handles core, transactional and enhanced SOS

operations via the core HTTP request types (GET, POST,

PUT, DELETE). SOSFul and SOSLite are openly available

and were both considered for this experiment. They were

eventually discarded due to the lack of documentation and

recent development activity, with stalled development in both

projects since three and four years respectively. The authors

1https://52north.org (accessed on 09.09.2020)
2https://github.com/Juanvx/SOSLite (Accessed 24.08.2020)
3https://github.com/Juanvx/SOSFul (Accessed 24.08.2020)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

in [22] extended OGC SOS with the pagination feature to

gain efficiency and can be operated by low-cost devices. This

extension has been validated and tested with promising results.
2) SensorThings API: The OGC approved the SensorThings

API as an official web standard in 2016. It provides an open

standards-based and geospatial-enabled framework to store,

manage, expose, and use IoT-based sensor observation data

over the web. The SensorThings developers boast it furthers

the development of premium quality, lightweight services that

cover a broader spectrum of applications [18].

The SensorThings API data model is based on the OGC

Observation & Measurement (O&M) model. It consists of a

set of interrelated entities, depicted in Figure 2. In contrast to

SOS, entities are encoded using JSON format.

Fig. 2. SensorThings API data model [18].

Brief specifications of the entities as described in the Sensor-

Things API manual in [18] are provided below:

• Thing: the Thing entity follows the definition by the

International Telecommunication Union (ITU): ”...with

regard to the Internet of Things, a thing is an object of

the physical world (physical things) or the information

world (virtual things) that is capable of being identified

and integrated into communication networks”.

• Location: contains information about the location associ-

ated with a corresponding Thing and includes geograph-

ical information using GeoJSON encoding.

• HistoricalLocation: provides the times of the current and

previous Locations of a Thing.

• ObservedProperty: specifies the observed phenomenon of

measurements.

• Datastream: represents the logical grouping of a set of

observations and are associated with a single Thing, a

single observedProperty and a single Sensor.

• Sensor: represents the instrument that observes a property

or phenomenon. A Sensor can be associated with multiple

datastreams.

• FeatureOfInterest: the FoI is the feature being observed.

In many cases, the FoI can be identical to the Location

of a Thing. In the case of remote sensing, it can be the

geographical area or volume being sensed.

• Observation: representation of the act of measuring the

value of a property at a specified time. Each observation

is associated with a single datastream.

SensorThings API data and metadata can be created, read,

updated, and deleted with the HTTP protocol (POST, GET,

PATCH, DELETE). Each entity has a unique ID and is

accessible through the REST API using URLs. The URLs can

be chained to access interrelated entities and can be extended

using a broad set of query parameters to pinpoint the desired

JSON objects.

There are several server implementations of the SensorThings

API available as open-source software. The Fraunhofer Open-

Source Sensor Things (FROST), a Java application developed

by the Fraunhofer IOSB 4 (Institute of Optronics, System

Technologies, and Image Exploitation), is considered a well-

established, recent SensorThings implementation. FROST-

developers are still working on the project to extend its features

by the OGC SensorThings API Web Standard.

III. SEnviro for Agriculture: A TESTBED IN THE DOMAIN

OF SMART FARMING

Like in several other fields, the IoT paradigm shows excellent

potential in transforming the agricultural industry by connect-

ing it to the web. Embedded WSN enables new methods

to observe and interact with physical objects and promise

unprecedented ways to obtain, organise, and consume infor-

mation [8]. Research projects in IoT and WSN applications for

agriculture have been numerous in recent decades [23, 24].

In this work, an IoT application for smart farming is used as a

scenario. The application is called SEnviro for Agriculture and

it is based on the SEnviro project [25]. SEnviro for Agricul-

ture takes the previously developed environmental monitoring

system further and puts it into an agricultural context [11].

The primary objective of SEnviro for Agriculture is to design

and develop a full system for monitoring crops to improve

the production quality and yield. The SEnviro for Agriculture

monitoring system specialises in observing vineyards. For the

sake of simplicity, the remainder of this section refers to

SEnviro for Agriculture merely as SEnviro. Figure 3 shows

an overview of the SEnviro architecture and components.

At hardware level (represented in the pink section in Figure

3), the SEnviro sensorised platform was designed as a smart

object, consisting of a similar hardware assembly as the

platform presented in [25]. SEnviro node components can be

categorised into four groups depending on their functions:

core, sensors, power supply, and communication. SEnviro

nodes contain sensors for measuring eight meteorological

phenomena directly related to plant diseases. These include

soil and air temperature, soil and air humidity, atmospheric

pressure, rainfall, wind direction, and speed.

The blue section in Figure 3 represents all the elements of

SEnviro Connect with their corresponding relations. SEnviro

Connect can be divided into three layers: data, services and

4www.iosb.fraunhofer.de (accessed on 09.09.2020)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 5

Fig. 3. Schema of SEnviro architecture; the purple section represents physical components, the blue section represents

software elements. The integration of the Web Standards in SEnviro is inside the red box.

applications. The most important part resides in the services

layer, which can be split into five different components: broker,

micro-services (RESTful API), persistence module, analytics

module and cloud functions. The broker is used as a bridge to

connect SEnviro nodes with the software platform. The broker

is based on a RabbitMQ5 instance, which supports Message

Queuing Telemetry Transport (MQTT) publish-subscribe mes-

saging. All these parts are detailed in [11]. The initial version

did not offer an interoperability module. Below we will detail

how this module has been added.

SEnviro Connect provides two kinds of analytics: one type

focuses on the SEnviro node to monitor the node status, such

as the battery or last connection, while the other type handles

the vineyard use case. The latter bases its analytics on disease

models and is supported by alert tasks generated by the ana-

lytics module. These alert tasks are defined using well-known

methods which depend on meteorological phenomena. All

the analytics work in real-time, and when a new observation

arrives, it is used to calculate each task alert and triggers an

alarm for certain types of events.

Five units of the SEnviro node have been deployed; four

nodes have been installed in vineyard fields in the province

of Castello (Spain). The other node was deployed in outdoor

environments for testing proposes. The nodes have run con-

tinuously and uninterruptedly for 140 days. Each node sent an

observation every ten minutes during the vine season 2018.

During this time 671,328 observations were collected from

the SEnviro units. Only 197,887 observations have been used

to realise the quantitative performance analysis.

It should be noted that the selected domain is not influential in

the comparisons made throughout this study. These could be

carried out on another IoT domain, and the outcomes should

5www.rabbitmq.com (accessed on 09.09.2020)

not vary significantly. The reason for their selection is due to

the accessibility of carrying out the evaluation by the authors.

A. Experimental environment

In this experiment 52North-SOS and FROST-Server are inte-

grated the SEnviro architecture, representing implementations

of SOS and SensorThings API. The added components are

deployed on a main server, centralising all IoT devices and

executing all operations autonomously. The same server stores

all data and works without computational cost of the IoT

devices. Another possible approach is to embed the services

in the IoT devices themselves. Since not all current standards

provide the necessary support, this approach will be proposed

as future work.

To embed the instances into the SEnviro architecture, adapter

scripts were created to connect standards with the SEnviro

message broker. The scripts were deployed as stand-alone

Docker containers, distributing the incoming observations

from SEnviro nodes to the corresponding services. In Figure 3

the highlighted section represents the addition to the already

established SEnviro architecture.

The following sections shed light on the selected web standard

applications deployed for this project and the reasons they

were chosen. The first section introduces 52North-SOS, based

on the OGC SOS. It is followed up by FROST, an implemen-

tation of the OGC SensorThings API.

1) OGC SOS: During the selection process of SOS imple-

mentations, 52North-SOS was selected due to several reasons.

Firstly, 52North-SOS features the SOS test client, a tool for

generating and testing sample documents for HTTP requests

using several formats including JavaScript Object Notation

(JSON). Since JSON objects are structured the same way

as Python dictionaries, process automation could be ren-

dered more efficiently in the SEnviro integration. Furthermore,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

52North-SOS includes tested Docker configuration files, in

contrast to other SOS implementations and detailed documen-

tation for all operations Finally, also the fact that 52North-SOS

is under ongoing development implies more promising support

by the developer community.

52North-SOS runs on an Apache Tomcat6 web server and

stores data in a PostGIS extended PostgreSQL database.

The downloadable bundle also includes a user-friendly data

exploration tool, the Helgoland Client. The extensive and user-

friendly application includes map and diagram visualisation

for data. After some trials with the latest 52North-SOS version

at the time of the selection process (52North-SOS 4.4.3) and

encountering some inconsistencies with the setup in Docker,

52North-SOS 4.4.2 was successfully deployed. The updates in

version 4.4.3 were considered irrelevant to the scope of this

study. Postgresql 11 and Postgis 2.5 versions were used for

both environments.

2) SensorThings API: Of the present SensorThings API im-

plementations, only FROST includes all the features in the

OGC compliance test suite and passed it with a full success

rate. It includes MQTT extensions for creating and updating

data. Furthermore, FROST provides extensive documentation

and deployment resources for easy deployment in Docker envi-

ronments . FROST 1.8 was used to carry out the study, Which

was the most recent version at the time of experimentation.

By default, the java-based FROST application launches an

Apache Tomcat, but there are also options to configure web

server specifications. The application stores all data in a Post-

GIS extended PostgreSQL database. Fraunhofer IOSB pro-

vides several FROST packages, which either comprise HTTP

and MQTT operations together or keep them as individual

bundles.

B. SEnviro Web Standard Integration

As mentioned, SEnviro nodes transmit new values for observed

phenomena using a broker. In order to store data in real-time,

incoming messages from SEnviro must be caught, decoded,

processed and posted to the deployed open standard instances.

In turn, the deployed standard instances have to be configured

for SEnviro beforehand in order to store the data correctly. This

involved general service configuration and inserting stations

and their properties, which was automated using setup scripts

and JSON files containing the information for each station.

For the integration of web standards into SEnviro, adapters

had to be created for each web standard. In the case of

both standards, this consisted of connecting to the SEnviro

broker to intercept messages, decode them, convert them into

the right format and post them to the corresponding service

via the REST API. Scripts were created in Python for these

operations, making use of Pika, a Python library to connect

to Advanced Message Queuing Protocol (AMQP) -compliant

brokers.

6http://tomcat.apache.org (accessed on 09.09.2020)
6www.github.com/FraunhoferIOSB/FROST-Server (accessed on

09.09.2020)

RabbitMQ supports the AMQP standard and uses topics to

categorise messages, which can be chained into routing keys.

AMQP uses the routing key to intercept messages with specific

topics by using * (star) to substitute exactly one word and #

(hash) to substitute zero or more words. SEnviro routing keys

are structured as current/stationID/phenomenon.

For instance, a SEnviro routing key could be:

current/270043001951343334363036/SoilHumidity

Fig. 4. SEnviro message queuing example schema.

In the example in Figure 4, queues Q1 and Q2 within SEn-

viro connect intercept messages from SEnviro nodes for the

message consumers C1 and C2. Q1 queues all messages from

station 270043001951343334363036. Q2 queues all messages

from all stations.

Web standard adapter scripts connect to the SEnviro message

broker, catch and decode SEnviro messages from all deployed

SEnviro nodes and access the node ID and phenomenon details

via the routing key. Using this information, a new message is

created and sent to the corresponding web service.
1) SOS Adapter: 52North-SOS supports JSON encoding for

inserting observations and a JSON template for this operation

is available on the test client of the 52North-SOS interface.

This file is loaded into the adapter script and the mandatory

information for a successful request inserted. Details about

Procedures (sensor ID), Offerings and ObservedProperties are

retrieved from the intercepted messages. However, some es-

sential information for a successful insertObservation request

could not be extracted. Therefore, two workarounds had to be

included in the adapter.

Firstly, the unit of measurement in SOS is required in each

encoded observation document. This requires including a

Python dictionary within the adapter script, matching each

phenomenon with the corresponding unit of measurement.

Secondly, SOS observation insertions also require the co-

ordinates where the observation was created. Therefore, an

external JSON file containing objects with the station ID and

the corresponding coordinates as attributes has to be loaded

into the script. Once all the information for the observation

insertion is complete it is posted to SOS via an HTTP POST

request.
2) SensorThings Adapter: Similar to the SOS adapter, reads

incoming messages and uses information from the messages

to create a JSON object to post to the FROST server with an

HTTP POST.

In order to post to the correct datastream, the corresponding

datastream ID is required in the target URL. The script does

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 7

this by first requesting all datastream IDs with their corre-

sponding names via HTTP GET request. Datastream names

in the SEnviro FROST instance are defined as a combination

of the node ID and the measured phenomenon, which are

both present in incoming byte messages. The script selects the

datastream ID by matching the information from the message

with the datastream name. The following example target URL7

posts observations to the datastream with ID = 1:

+serverPath:port/FROST-Server/v1.0/Datastreams(1)

/Observations

IV. COMPARATIVE ANALYSIS

To shed light on the potential of open standard integration to

enhance environmental monitoring application interoperability,

a qualitative and a quantitative analysis were performed.

This section structures the framework defined to realise the

comparative.

In the qualitative analysis the deployment and configuration

process for each web service was described and compared.

Subsequently, a comparison of available operations for differ-

ent uses was performed from data producer and data consumer

perspectives. On the data producer side insert, update and

delete operations were evaluated:, where entities are under-

stood to be: sensors, sensor platforms, and observations. On

the consumer side, data and metadata querying and fetch-

ing operations were evaluated. Web standard semantics were

evaluated based on their encoding formats and data traffic

protocols, and they are based on the web standard definition

and not the development for each standard.

The quantification of differences in performance between the

deployed web services were monitored on various levels and

using some well-known tools. These were used to monitor

response time, response size, CPU and memory usage. All

tests have been performed in a virtual machine with four

logic CPUs and 8 GB RAM maximum size. The underlying

cluster has the following features: 4x Intel(R) Xeon(R) CPU

E5-2690 v2 @ 3.00GHz, 16,719 MB and Operating System:

Ubuntu 16.04.4 LTS. Unlike the qualitative analysis, quan-

titative results are dependent on the particular web standard

implementation and may vary between implementations of the

same web standard.

As noted above, the essential feature in terms of performance

is the observation retrieval since it is the most used operation

to visualise phenomena’s behaviour over time. Hence the

quantitative comparison was done using this operation.

The following tools were used for performance monitoring:

• Postman: Postman8 is a powerful HTTP Client desktop

application for testing web services. Users can create both

simple and complex HTTP requests, which return the

request status, response times and the size of the returned

file.

• JMeter: JMeter9 is a project by the Apache Software

7For all examples serverPath is located at http://elcano.init.uji.es
8www.getpostman.com (accessed on 20.03.2020)
9https://jmeter.apache.org/download jmeter.cgi (accessed on 09.09.2020)

Foundation. It is an open-source Java desktop application,

designed to measure web applications’ and distributed

systems’ performance and stress test their functional

behaviour.

• cAdvisor: cAdvisor is provided by Google to monitor

Docker containers’ behaviour. Apart from a simple user

interface showing graph visualisation of the container

metrics, cAdvisor provides several APIs for accessing

container metrics data.

Response times and sizes are measured for observation re-

trieval operations using Postman monitors. Since Postman

monitors run as cloud services, test queries do not depend on

the local machine’s network connectivity (with low latency)

once they have been deployed. Requests for observations are

monitored for 24 hours, with two requests per hour, resulting in

48 values per query. Postman monitors periodically recalculate

the average response time for each number of requested

observations, returning a single average value per request.

To compare the performance for observations retrieval, iden-

tical conditions were created for different services. Queries

using the same parameters request identical sets of obser-

vations with the corresponding REST API of each service.

This approach includes queries to obtain sets of 1, 100, 200,

400, 500, 600, 800 and 1,000 observations. The maximum

of 1,000 observations was selected due to the FROST default

configuration, which sets the maximum number of FROST

observations contained in a single response file to 1,000.

The workflow for metrics monitoring relies on measuring the

metrics of the individual Docker containers. cAdvisor provides

the means to access the container metrics data via an API.

The selected REST API 10 returns JSON objects containing

metrics data. The API was configured to return a single

measurement and a container monitoring script was created in

Python to send the API request every second once the script

is run. Since each service has separate containers for the web

applications and databases, CPU and memory values from both

the containers are added to show the full amount of resources

used by the corresponding standard implementations. The

container CPU values are divided by the server CPU usage

to reflect how many server resources the containers require in

percentage. Memory values are calculated in bytes and then

converted to megabytes for data visualisation.

The HTTP requests created in JMeter were configured to run

for three minutes launching an HTTP request per second.

52North-SOS and FROST requests for the different quantities

of observations were launched simultaneously to the container

monitoring script, resulting in approx. 180 values per query.

V. QUALITATIVE EVALUATION

A. Service setup & configuration

52North-SOS and FROST require distinct setup process and

service configuration.

10https://github.com/google/cadvisor/blob/master/docs/api v2.md (accessed
on 09.09.2020)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

1) 52North-SOS: 52North-SOS includes a Graphical User

Interface (GUI) with a broad set of service configuration

options. The interfaces enable users to configure most of the

service’s specifications, including among others the available

SOS operations with their bindings and encodings, the data

source, the spatial reference system, the services’ and data

source’s timezones, access rights and logging.

For the SEnviro configuration of 52North-SOS, transactional

security was disabled, enabling the transactional SOS oper-

ations for inserting sensors and observations. The SEnviro

nodes were inserted by posting a preconfigured InsertSensor

JSON object to the server for each node. The object contains

information about the service provider, the node ID, the

measured phenomena and the node location. As mentioned in

Section III, creating the adapter to divert SEnviro observations

into SOS required an extra file containing the coordinates of

the stations.
2) FROST-SensorThings API: FROST-Server does not include

a GUI for service configuration. Service settings are config-

urable using environment variable or in a XML configuration

file. Since SEnviro nodes all monitor the same phenomena

and are composed of the same sensor constellation, data about

observed properties and sensors were inserted in a first step.

JSON objects relating to the sensors and observed properties

were subsequently used to insert things and datastreams.

B. Register/Update/Delete Things

52North-SOS and FROST handle the insertion of data based

on the corresponding SOS or SensorThings API operations in

order to remain OGC compliant. In SOS these are the Transac-

tional Operations, which are HTTP POST requests to the SOS

service URL and include RegisterSensor and InsertObserva-

tion. 52North-SOS extends the transactional capabilities with

the DeleteSensor and the UpdateSensorDescription operations.

The SensorThings API supports HTTP request types (GET,

POST, PUT, DELETE) for creating, updating and deleting

entities. FROST has fully implemented the SensorThings

API’s sensing functionalities with no significant additions,

and therefore this section will refer to the SensorThings API

operations directly.
1) 52North-SOS: Before observations can be inserted into a

SOS deployment, entities need to be inserted representing

the devices generating the observation data and must also

include information about the phenomena they measure for

a successful observation insertion.

52North-SOS supports several encoding formats, including

JSON, which is used in this project, as mentioned in Section II.

The 52North-SOS equivalent to the RegisterSensor operation

is InsertSensor. For this operation, an InsertSensor request

file must be posted to the server. An example JSON object11

contains the mandatory information for a successful insertion

request.

The object must contain a list of details, including unique

procedure ID, long procedure name and short name, its of-

11An example of 52North-SOS InsertSensor - https://bit.ly/

3d2Bzva (accessed on 15.06.2020)

fering and its observed properties. For each of these details

SML, SWE and GML tags are added to make it ensure its

interoperability with other entities of the sensor web. This

becomes visible in the large string of XML code in the

procedureDescriptionFormat property of the JSON object,

which is the XML version of the InsertSensor operation and

is mandatory in the JSON version of the POST request. As

a consequence, procedure insertion needs the XML version

of the operation, even if the SOS application uses the JSON

version of the operation, adding a full step to the workflow

and inflating the size of the final JSON object to post to the

server to 4,829 bytes. The InsertSensor request creates all the

necessary entities for the insertion of observation, including

its related offering, observed property and feature of interest.

Since SOS 2.0 included some operations to delete or update

details of procedures, 52North added these operations as

extended operations. UpdateProcedureDescription enables the

modification of station details, which resembles the InsertSen-

sor protocol. As in the example JSON code above, the file to

be posted to the server requires the full XML code as a string

value of the corresponding JSON property.

DeleteSensor allows procedures and their affiliated observa-

tions to be removed from the service. This requires posting

a request file containing the procedure unique ID to the

server (Listing 1). The file is comparatively small in size, as

demonstrated in the JSON version of the DeleteSensor request

below. The mandatory SOS offering created with the procedure

will remain in the service even when the linked procedure is

deleted. Offering names act as unique identifiers, which means

if a procedure is reinserted it will need a new offering ID.

Listing 1. JSON example of DeleteSensor in SOS.
1{"request": "DeleteSensor",

2 "service": "SOS",

3 "version": "2.0.0",

4 "procedure": "012345678901234567890123" }

2) FROST-SensorThings API: The SensorThings API data

model demands a different approach when inserting data.

Every entity within a SensorThings API has its unique ID.

It can be referred to by its unique URL for creating further

entities, updating their details and properties and also deleting

them. This makes data management and system maintenance

highly flexible and efficient.

As in SOS, the devices generating the observation data, must

be created to enable the storage of observations. The five

SensorThings API key components (Things, Datatreams, Ob-

servedProperties, Sensors and Observations) are interrelated,

with the Datastreams as core entity. JSON objects need to be

sent to the server via HTTP POST using the corresponding

target URL to create entities. Target URLs are composed of

the base URL and /entity. The example URL below targets the

Thing class:

+serverPath:port/FROST-Server/v1.0/Things

When new entities are created, a unique ID is automatically

assigned. If an entity is removed its ID remains stored in the

system and cannot be used again. All entities have manda-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://bit.ly/3d2Bzva
https://bit.ly/3d2Bzva

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 9

tory properties that must be included when posting to the

server. Metadata about the specific Thing can be added in

the properties field. Furthermore, entities can be extended

with their related entities as optional properties when creating

them. These extended entities can either be generated within

the creating process or they can refer to already existing

entities. Extended properties can again be extended, meaning

all necessary entities can be created with a single HTTP POST

request. This is shown in the following Thing object example

(Listing 2).

Listing 2. JSON example of inserting a Thing in SensorThings

API.
1{"name": "0123456789012345678901234",

2 "description": "A SensorThings station",

3 "properties": {

4 "owner":"Universitat Jaume I",

5 "maintainer":"student al374901"},

6 "Locations": [{

7 "name": "carcagente26_1",

8 "description": "Carcagente 26",

9 "encodingType": "application/vnd.geo+json",

10 "location": {

11 "type": "Point",

12 "coordinates": [-0.031525, 39.980187]}}],

13 "Datastreams":[{

14 "name": "AirTemperature-012345678901234567890

15 1234",

16 "description": "Datastream for recording air

17 temperature",

18 "observationType": "http://www.senviro.uji.es/",

19 "unitOfMeasurement": {

20 "name": "Degree Celsius",

21 "symbol": "°C",

22 "definition":

23 "http://www.qudt.org/qudt/owl/1.0.0/unit/

24 Instances.html#DegreeCelsius"},

25 "ObservedProperty": {

26 "name": "Si7021-A20",

27 "description": "Monolithic CMOS IC integrating

28 humidity and temperature sensor elements, an

29 analog-to-digital converter, signal processing,

30 calibration data, and an I2C Interface",

31 "encodingType": "application/pdf",

32 "metadata":

33 "https://www.silabs.com/documents/public/data-

34 sheets/Si7021-A20.pdf"},

35 "Sensor": {

36 "@iot.id": 1 }}

The example JSON object above (Listing 2) creates a Thing

with its mandatory properties (name and description). It also

creates its related location and datastream by adding corre-

sponding properties to the object. The embedded datastream

creates a related observed property and links to an already

registered sensor. Metadata about the owner and maintainer

are added in the object of the properties key value.

SEnviro nodes were created with no extended properties since

the observed properties and sensors were inserted in a previous

step of the setup. The size for necessary JSON object to create

a SEnviro node with its complete set of datastreams is 4,731

bytes.

Properties of any SensorThings API entity can be updated

by executing an HTTP Patch request its unique URL with a

JSON object containing the properties to be updated and the

new values. The example JSON object and the target URL

shown below update the name and description properties of a

registered sensor with ID=1.

+serverPath:port/FROST-Server/v1.0/Sensors(1)

Listing 3. JSON example to update a Thing in SensorThings

API.
1{ "name":"SparkfunSoilMoistureSensor",

2 "description": "Measures soil moisture" }

Entities can be deleted by using its unique URL in an HTTP

DELETE request. Deleting Things will remove all their related

datastreams including their affiliated observations, but will not

remove sensors or observed properties.

C. Insert/Update/Delete observations

In the same way that operations for the management of Things

are offered, the two standards define the operations necessary

for the treatment of the observations generated by Things.

1) 52North-SOS: After setting up sensors and their properties

within SOS, observations can be inserted using the Inser-

tObservation operation. This operation is also executed by

sending a JSON object containing the necessary details for

a successful insertion via HTTP POST to the service URL.

The object must include the ID of the procedure of origin, its

offering ID, the observed property ID, details about the feature

of interest (ID, coordinates, spatial reference system, sampled

feature), unit of measurement and the time and value of the

observation. The object size for SEnviro InsertObservation

requests is approximately 1,185 bytes. The example JSON

InsertObservation (Listing 4) request below shows all the

mandatory details required.

Listing 4. JSON example of InsertObservation in SOS.
1{ "request": "InsertObservation",

2 "service": "SOS",

3 "version": "2.0.0",

4 "offering": "offering0123456789012345678901234",

5 "observation": {

6 "identifier": {

7 "value": "1",

8 "codespace": ""},

9 "type":

10 "http://www.opengis.net/def/observationType/

11 OGC-OM/2.0/OM_Measurement",

12 "procedure": "0123456789012345678901234",

13 "observedProperty": "AirTemperature",

14 "featureOfInterest": {

15 "identifier": {

16 "value": "featureOfInterest012345678901234567890

17 1234",

18 "codespace": ""},

19 "name": [

20 { "value": "0123456789012345678901234",

21 "codespace": "" }],

22 "sampledFeature": [

23 "parent"],

24 "geometry": {

25 "type": "Point",

26 "coordinates": [

27 -0.073863,

28 39.993934],

29 "crs": {

30 "type": "name",

31 "properties": {

32 "name": "EPSG:4326" }}}},

33 "phenomenonTime": "2018-11-30T16:53:43+00:00",

34 "resultTime": "2018-11-30T16:53:43+00:00",

35 "result": {

36 "uom": "°C",

37 "value": 84.621094}}}

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

SOS observations can be assigned a unique identifier. When

inserting observations, SOS rejects the request if an observa-

tion with the same identifier is already present in the database.

This detail is an optional property in the InsertObservation re-

quest, but should always be added to facilitate calling specific

observations from the service and to make insert operations

idempotent.

52North-SOS has included the DeleteObservation operation

into the service. This operation enables clients to remove

observations from the service by posting a JSON object to the

server containing either details about the related entities (e.g.,

Procedures, Offerings...) or a temporal filter. Single observa-

tions can also be removed by using the identifier mentioned

above. Deleting observations does not remove items from the

database, but instead sets the attribute deleted (boolean) of the

observation items in the PostgreSQL database to from ”F” to

”T”.

2) FROST-SensorThings API: Inserting SensorThings API ob-

servations is done by sending the observation JSON object to

the corresponding target URL, composed of the Datastream

URL and /Observations. The JSON object must include the

result time as a string in ISO 8601 format and the value of the

measurement, as shown below (Listing 5). The approximate

size of SEnviro observations posted to FROST by the adapter

is 65 bytes.

Listing 5. JSON example of InsertObservation in Sensor-

Things API.
1{ "resultTime" : "2019-01-14T12:35:47.000Z",

2 "result" : 0.327 }

As showed above, in SensorThing API, each entity can be

updated using an HTTP Patch request using a unique URL

with a JSON object containing the new observation to be

updated. To delete an observation, the HTTP DELETE request

has to be used over the observation entity.

D. Retrieving metadata

The values and timestamps of observations hold little value

without knowing their origin, their nature and the purpose why

they are created. Therefore, it is crucial to obtain not only the

observations themselves but also information about the sensors

and their locations, the features they are observing and the

measured phenomena.

1) 52North-SOS: SOS defines a set of operations to retrieve

metadata from various sources within the service. 52North-

SOS includes these operations and features a couple of further

operations to add functionality. The essential SOS opera-

tion for retrieving service information is the getCapabilities

operation, which provides clients with the complete service

metadata about the deployed service, including information

about the tightly-coupled data served [17]. The code below

shows the 52North-SOS JSON version of the request (Listing

6). An example for 52North-SOS getCapabilities response is

not presented here, considering the space needed to show the

response object (over 1,600 lines).

Listing 6. JSON example of a GetCapabilities request in SOS.
1{ "request": "GetCapabilities",

2 "service": "SOS",

3 "sections": [

4 "ServiceIdentification",

5 "ServiceProvider",

6 "OperationsMetadata",

7 "FilterCapabilities",

8 "Contents"]}

Further operations use similar requests to get information

about node locations (getFeatureOfInterest) and about the

relations between measured phenomena, stations and features

of interest (getDataAvailability). Finally, DescribeSensor gets

the complete details of a present SOS procedure, including the

station owner and maintainer with contact details, the observed

phenomena, the SOS offering, the location and the time of

registration in the service.

2) FROST-SensorThings API: HTTP Get requests in the Sen-

sorThings API are capable of accessing and obtaining all the

information of all the present entities by using the extendable

URLs to target, select, enrich output data. The most important

query operators for metadata queries are $expand and $select.

The $expand operator will add related entities to the output

of the requested entity provided they have a direct relation-

ship (see Figure 2). The expanded entity can again expand

directly related entities, allowing users to dig into the data

architecture. This is shown in the following target URL and

its corresponding JSON output (Listing 7).

+serverPath:port/FROST-Server/

v1.0/Things(1)?$expand=Datastreams($expand=

ObservedProperty)

Listing 7. JSON response from an expand query option to

display a Thing in SensorThings API.
1{"name" : "270043001951343334363036",

2 "description" : "SEnviro monitoring station with ID:

3 270043001951343334363036",

4 "Locations@iot.navigationLink" :

5 "+serverPath:port/FROST-Server/v1.0/

6 Things(1)/Locations",

7 "HistoricalLocations@iot.navigationLink" :

8 "+serverPath:port/FROST-Server/v1.0/

9 Things(1)/HistoricalLocations",

10 "Datastreams@iot.navigationLink" :

11 "+serverPath:port/FROST-Server/v1.0/

12 Things(1)/Datastreams",

13 "Datastreams" : [{

14 "name" : "Battery-270043001951343334363036",

15 "description" : "Datastream for recording battery

16 status",

17 "observationType" : "http://www.senviro.uji.es/",

18 "unitOfMeasurement" : {

19 "name" : "Percent",

20 "symbol" : "%",

21 "definition" : "https://en.wikipedia.org/wiki/

22 Percentage" },

23 "phenomenonTime" : "2019-01-30T14:27:06.168Z/

24 2019-01-30T 14:46:55.060Z",

25 "resultTime" : "2019-01-30T14:26:27.000Z/

26 2019-01-30T 14:46:14.000Z",

27 "ObservedProperty" : {

28 "name" : "Battery",

29 "definition" : "https://en.wikipedia.org/wiki/

30 Electric_battery",

31 "description" : "Battery readings in \%",

32 "@iot.id" : 9,

33 "@iot.selfLink" : "+serverPath:port/

34 FROST-Server/v1.0/ ObservedProperties(9)" },

35 "@iot.id" : 22,

36 "@iot.selfLink" : "+serverPath:port/

37 FROST-Server/v1.0/ Datastreams(22)" }],

38 "MultiDatastreams@iot.navigationLink" : "http://

39 +serverPath:port/FROST-Server/v1.0/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 11

40 Things(1)/MultiDatastreams",

41 "@iot.id" : 1,

42 "@iot.selfLink" : "+serverPath:port/

43 FROST-Server/v1.0/ Things(1)" }

The Thing with ID=1 is returned with all its main properties

and with its expanded datastreams, which in this case is

”Battery-270043001951343334363036”. The expanded datas-

tream is once again expanded to show its related observed

property.

In contrast to the $expand operator, the $select operator allows

users to select only certain properties of entities for the JSON

output. This can be used to reduce the size of the output files

by selecting only specific information of entities.

E. Observation retrieval

As one of the core features in both 52North-SOS and FROST-

SensorThings API, the services store observation data over

time and make them available in the WWW. Each service has

its way to access the stored observation data.

1) 52North-SOS: SOS observations are obtained using the

getObservation request. A JSON file containing the query

parameters is posted to the server (Listing 8), which delivers

a response file containing the requested observations. The

query can include one or more parameters among procedure,

offering, observedProperty, featureOfInterest, a spatialFilter

or a temporalFilter.

Listing 8. JSON example of GetObservation in SOS.
1{ "request": "GetObservation",

2 "service": "SOS",

3 "version": "2.0.0",

4 "procedure": "270043001951343334363036",

5 "offering": "offering270043001951343334363036",

6 "observedProperty": "AirTemperature",

7 "featureOfInterest": "featureOfInterest270043001

8 951343334363036",

9 "spatialFilter": {

10 "bbox": {

11 "ref": "om:featureOfInterest/

12 sams:SF_SpatialSamplingFeature/sams:shape",

13 "value": {

14 "type": "Polygon",

15 "coordinates": [[

16 [-0.07902860641479492,39.99347896173187],

17 [-0.07259130477905273,39.9903390214231],

18 [-0.0714111328125,39.99696396205215],

19 [-0.07902860641479492,39.99347896173187]]]}}},

20 "temporalFilter": {

21 "during": {

22 "ref": "om:phenomenonTime",

23 "value": [

24 "2018-11-29T14:43:00+00:00",

25 "2018-12-13T15:32:12+00:00"]}}}

Adding query parameters will narrow down the output obser-

vations. Spatial filters are provided in GeoJSON encoding, and

temporal filters must support ISO8601 format.

52North has added support for the GetObservationById, an

operation to obtain observation by its unique identifier. A file

needs to be posted to the server containing the observation

identifier. This returns the observation in the same format as

GetObservation, but adds the identifier with its value as an

attribute. The identifier must be known to the client before

invoking the operation. Example request and response objects

are presented below (Listings 9 and 10).

Listing 9. JSON example of a GetObservationById request in

SOS.
1{ "request": "GetObservationById",

2 "service": "SOS",

3 "version": "2.0.0",

4 "observation": ["2"]}

Listing 10. JSON example of a GetObservationById response

in SOS.
1{ "type" : "http://www.opengis.net/def/observation

2 Type/OGC-OM/2.0/OM_Measurement",

3 "identifier" : {

4 "codespace" : "http://www.opengis.net/def/nil

5 /OGC/0/unknown",

6 "value" : "2" },

7 "procedure" : "270043001951343334363036",

8 "observableProperty" : "Battery",

9 "featureOfInterest" : {

10 "identifier" : {

11 "codespace" : "http://www.opengis.net/def/nil/

12 OGC/0/unknown",

13 "value" : "featureOfInterest27004300195134333

14 4363036" },

15 "name" : {

16 "codespace" : "http://www.opengis.net/def/nil/

17 OGC/0/unknown",

18 "value" : "270043001951343334363036" },

19 "sampledFeature" : "parent2700430019513433343

20 63036",

21 "geometry" : {

22 "type" : "Point",

23 "coordinates" : [

24 40.133098, -0.061]}},

25 "phenomenonTime" : "2018-12-26T13:47:58.000Z",

26 "resultTime" : "2018-12-26T13:47:58.000Z",

27 "result" : {

28 "uom" : "%",

29 "value" : 81.726563 }}

2) FROST-SensorThings API: Several SensorThings API

query operators come in useful to query observations. The $or-

derby operator is used to sort the output JSON objects, which

can be extended with suffixes for descending or ascending

order (desc, asc). The number of output objects is specified

with the $top and the $skip operator allows the user to skip a

specified number of observations. The $count operator returns

the number of queried observations as a JSON property at the

top of the output file. The above-mentioned operators are used

in the query URL below:

+serverPath:port/FROST-Server/v1.0/

Datastreams(1)/Observations?$count=true&$skip=500&

$top=50&$select=resultTime,result&$orderby=result

The query returns the top 50 observations from the datastream

with ID=1, skipping the first 500 values and ordering by result

value. The total amount of observations is counted, and the

output file only returns the time stamps and the result values

of the observations.

SensorThings API also features the filter operator. This highly

configurable operator is used to make complex queries using

a set of over 35 in-built operators and functions. By using the

operators and functions, the SensorThings API has extensive

possibilities of combining the various query operators and

function as filters for pinpointing specific data. The following

example URL selects datastreams containing ”SoilHumidity”

as a substring in the name property and expands the selected

datastreams’ observations that have values lower than 2,500

m3/m3.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

+serverPath:port/FROST-Server/

v1.0/Datastreams?$filter=substringof('SoilHumidity'

,name)&$expand=Observations($filter=result lt 2500)

While the maximum number of observations in a single

response file is limited in the SensorThings API, the output file

always includes a link to the next set of observations until all

the observations called with the query parameters have been

served. Output objects for unmodified FROST observation

requests have the following format (Listing 11).

Listing 11. JSON example of InsertObservation
1{ "@iot.nextLink" :

2 "+serverPath:port/FROST-Server/

3 v1.0/Observations?$top=1&$skip=1",

4 "value" : [{

5 "phenomenonTime" : "2018-11-26T13:48:03.946Z",

6 "resultTime" : "2018-11-26T13:47:26.000Z",

7 "result" : 21.136395,

8 "Datastream@iot.navigationLink":

9 "+serverPath:port/FROST-Server/v1.0/

10 Observations(1)/Datastream",

11 "FeatureOfInterest@iot.navigationLink":

12 "+serverPath:port/FROST-Server/v1.0/

13 Observations(1)/FeatureOfInterest",

14 "@iot.id" : 1,

15 "@iot.selfLink" :

16 "+serverPath:port/FROST-Server/v1.0/

17 Observations(1)" }]}

VI. QUANTITATIVE RESULTS

52North-SOS supports all the standard SOS operations, but

their data visualisation tool, the Helgoland Client, uses its

request method and API to obtain observations. Helgoland

is therefore analysed separately to show its potential in the

response time analysis. The data retrieved by the Helgoland

Client contains only information about the time and value of

observations, improving performance. An equivalent FROST-

SensorThings API query, limiting result details to observation

time and value, was created for comparison with Helgoland

(called FROST reduced). The test queries below obtain 1,000

observations.

• 52North-SOS - getObservation: This query uses the

standard SOS getObservation request. A getObservation

request file containing query parameters for procedure

(monitoring station), observed property and temporal

filter, is posted to the server via HTTP POST using

the service URL. The server then sends a response file

with the corresponding observations. Standard SOS uses

XML encoding, but 52North-SOS supports JSON format,

which is used in this request.

– URL:

+serverPath:port/52n-sos-webapp/service

– Post data:

{"request": "GetObservation",

"service": "SOS",

"version": "2.0.0",

"procedure": "270043001951343334363036",

"observedProperty": "Battery",

"temporalFilter": {

"during": {

"ref": "om:phenomenonTime",

"value": ["2019-01-14T14:14:52.000Z",

"2019-01-21T11:20:52.000Z"]}}}

• 52North-SOS Helgoland Client: 52North-SOS Hel-

goland Client queries are executed on the client interface.

The query parameters are inserted by selecting the proce-

dure on a map, observed properties (phenomena) from a

list. The time parameters are selected in a consecutive

step. The API URL is then compiled and sends an

HTTP GET request to the server, which returns the

requested values and time stamps and displays them in

an interactive diagram.

+serverPath:port/52n-sos-webapp/

api/datasets/quantity_9/data?expanded=true&

format=flot&generalize=false&locale=de&

timespan=2019-01-14T14:14:52%2B01:00%

2F2019-01-21T11:20:52%2B01:00

• FROST: FROST observations are obtained with an HTTP

GET request. The target URL is extended with the query

parameters. This query URL uses top to specify the

number of obtained observations and filter to add time

constraints.

+serverPath:port/FROST-Server/v1.0/

Datastreams(18)/Observations?$top=1000&$filter=

phenomenonTime%20gt%202019-01-14T14:14:52Z%20

and%20phenomenonTime%20lt%202019-01-21T11:20:52Z

• FROST (reduced): Here the query URL from above is

further extended with the select operator, allowing the re-

striction of output attributes of the obtained observations.

+serverPath:port/FROST-Server/v1.0/Datastreams(18)

/Observations?$top=1000&$select=phenomenonTime,

result&$filter=phenomenonTime%20gt%202019-01-14T

14:14:52Z%20and%20phenomenonTime%20lt%20

2019-01-21T11:20:52Z

The results for the monitored performance parameters were

extracted, stored and analysed. Response times and file sizes

were measured using Postman collections, while JMeter and

cAdvisor was used to monitor CPU and memory.

A. Client side: response times and sizes

This section contains graph visualisation for response time

and size data from the client point of view. Figure 5 shows

the sizes of the response files of the different queries by

the different services. The output file size for 52North-SOS

is the largest, resulting in 1,110 kb at 1,000 observations.

Helgoland Client requests return the smallest file sizes, with

returned files holding 22.77 kb at 1,000 observations, though

the files also contain the shortest amount of metadata. Standard

FROST-SensorThings API requests reach up to 557 kb at 1,000

observations, which is reduced to 81.28 when reducing output

files to contain only timestamps and values. Figure 5 shows

the file sizes growing at a linear rate.

An essential feature in both SOS and SensorThings API is

the SWE DataArray format. This feature is used to reduce

the size of the observations transmitted over the network

for measurement insertion or retrieval. The SWE DataArray

contains 1) values metadata: number of values, time and

values encoding, and 2) values: sensor data according to the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 13

1 100 200 400 500 600 800 1000
0

200

400

600

800

1000

1200

52North-SOS 52North-SOS Helgoland FROST-SensorThings API FROST-SensorThings API (reduced)

HTTP response size for observation retrieval

Observations

K
il
o

b
y
te

s
(K

B
)

Fig. 5. Response sizes between 52n-SOS, 52N-SOS

Helgoland, FROST-SensorThings API and

FROST-SensorThings API (reduced).

value’s metadata. In 52North SOS, a request for 100 SEnviro

observations reaches from a size of 107 KB in the default

format to 8.77 KB using the getObservation operation with

the MergeObservationsIntoDataArray parameter set to true.

Similar to the SWE DataArray in the OGC SOS, SensorThings

API also provides the support of DataArray to aggregate

multiple Observation entities and reduce the request and

response size. SensorThings API mainly uses SWE DataAr-

ray in two scenarios: (1) get observation entities in SWE

DataArray, and (2) create observation entities. In FROST

a request of 100 SEnviro’s observations is 48.6 Kb, and

with the SWE DataArray extension, we obtain a response

of 9.63 KB. In order to request for DataArray, users must

include the query option $resultFormat = dataArray when

requesting Observation entities. FROST response sizes using

SWE DataArray are larger because for each observation five

different components are added (” result ”,” resultTime ”,”

resultQuality ”,” validTime ”,” parameters ”).

Response times between all implementation variants are dis-

played in Figure 6. This chart shows the fastest response times

for reduced FROST requests at an average speed of 218 ms,

closely followed by 52North-SOS and Helgoland Client at 229

ms and 233 ms respectively. FROST requests hold the longest

response times with an average of 315 ms. Generic FROST

observation requests have the highest response times in most

of the requests, peaking at 436 ms at the 600 observation mark.

Standard 52North-SOS getObservation requests are faster than

FROST by an average of 86.12 ms, though they take longest

for a single observation, FROST by 75 ms. The Helgoland

Client’s API shows a similar behaviour to 52North-SOS, but

spikes when requesting 800 observations with an average

response time of 401 ms. In terms of computational time, all

scenarios follow a linear time (O(n)).

B. Server side: web service metrics

The observation retrieval HTTP requests used for the response

times and sizes analysis for FROST-SensorThings API and

52North-SOS were configured in JMeter and executed in

test runs of three minutes with one request per second as

done in [26, 27]. Using the cAdvisor API and the automated

requests in JMeter, container CPU usage and memory usage

were extracted and written into CSV files by the container

monitoring script. Figure 7 shows graph visualisations of the

1 100 200 400 500 600 800 1000
0

100

200

300

400

500

52North-SOS 52North-SOS Helgoland FROST-SensorThings API FROST-SensorThings API (reduced)

HTTP response times for observation retrieval

Observations

M
il
li
se

co
n

d
s

(m
s)

Fig. 6. Response times between 52n-SOS, 52N-SOS Hel-

goland, FROST-SensorThings API and FROST-SensorThings

API (reduced).

CPU metrics output for both services. 52N-SOS Helgoland

and FROST-SensorThings API (reduced) are not considered

because from the client side they carry the same computational

cost as the original standards.

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

FROST-SensorThings API 52North-SOS

Container CPU usage during requests of 1000 observations in FROST-SensorThings API
and 52North-SOS

Time (seconds)

CP
U

 u
sa

ge
 (%

)

Fig. 7. CPU usage behaviour from FROST-SensorThings API

and 52North-SOS during responses of 1000 observations.

Plotting the results for both services in active state (Figure

7) shows FROST’s higher CPU usage. FROST-SensorThings

API uses an average of 22.58% more processing power than

52North-SOS during observation requests. The difference in

the CPU maximum between the two services lies at 86.03%.

Figure 8 shows the average CPU values of both FROST-

SensorThings API and 52North-SOS increasing amounts of re-

quested observations. FROST-SensorThings API average CPU

usage shows all values for different response sizes between

4.4% and 22.3%. In 52North-SOS, average CPU values lie

between 2.6% and 3.1%. Neither of the services show a con-

tinuous increase of CPU usage with increasing response sizes

in observation requests, instead rising and falling seemingly

at random. The colour areas show the standard deviation;

CPU usage is more fluctuant in FROST-SensorThings API

measurements than in 52North-SOS.

The CPU usage behaviour for FROST-SensorThings API and

52North-SOS, both services show a noticeable activity during

constant observation requests. The usage does not change with

increasing response sizes up to 1,000 observations. Overall,

52North-SOS shows lower and more stable CPU values.

The graph in Figure 9 shows the RAM behaviour under

request activity of 1,000 observations. Both graphs show very

little activity during the monitoring run, though the average

values are higher than in idle state. In idle state, 52North-SOS

uses approx. 2,572MB RAM, while FROST-SensorThings API

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

1 100 200 400 500 600 800 1000
0

5

10

15

20

25

30

FROST-SensorThings API 52North-SOS

CPU usage for different response sizes in FROST-SensorThings API and 52North-SOS

Observations

CP
U

 u
sa

ge
 (%

)

Fig. 8. CPU usage for different response sizes in

FROST-SensorThings API and 52North-SOS.

requires 3,116MB. These values include the RAM for the

corresponding database containers, which may increase with

a growing amount of data. FROST-SensorThings API average

memory usage in an active state lies at 3,363MB, resulting in

an increase of 247MB. Similarly, 52North-SOS memory usage

lies at 2,741.7MB, incrementing RAM usage by 170MB.

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

4000

FROST-SensorThings API 52North-SOS

Container memory usage during requests of 1000 observations
in FROST-SensorThings API and 52North-SOS

Time (seconds)

M
em

or
y

us
ag

e
(M

B)

Fig. 9. Memory usage behaviour from FROST-SensorThings

API and 52North-SOS during responses of 1000

observations.

When looking at the RAM behaviour during different ob-

servation requests, average values do not show significant

changes reflecting the response sizes (Figure 10). This test-

ing method was repeated several times and showed slightly

different results every time, indicating that the memory is not

meaningfully affected by observation requests. In this case,

the standard deviation is grouped in both developments.

1 100 200 400 500 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

FROST-SensorThings API 52North-SOS

Memory usage for different response sizes in FROST-SensorThings API and 52North-SOS

Observations

M
em

or
y

us
ag

e
(M

B)

Fig. 10. Memory usage for different response sizes in

FROST-SensorThings API and 52North-SOS.

VII. DISCUSSION

When comparing SOS and SensorThings API along with their

implementations, one should keep in mind that the more

modern SensorThings API is in many ways tailored for the

usage with IoT devices (hence its name) and therefore may

have an advantage when contrasting it with SOS in terms

of IoT adequacy. However, both standards can be applied

effectively in an IoT context, and therefore a comparison

does highlight the key differences, along with strengths and

weaknesses.

52North started developing its SOS implementation in 2010.

Over the past nine years, technology has advanced consider-

ably, and 52North has been adding features regularly to stay

up-to-date. This becomes evident in the multitude of encoding

formats and bindings, the extended operations with added

functionality and the extent of configuration options. These

extra features enhance the accessibility and configurability of

SOS in several ways, contributing to the interoperability of the

standard.

A significant addition to 52North-SOS is the support for

JSON encoding format. JSON has emerged as a popular

encoding format in recent years due to its simple syntax

and easy serialisation to JavaScript variables, making it more

compatible with modern web applications. Further arguments

that favour the usage of JSON versus XML are that it has

little overhead and that less bandwidth is required to transmit

messages [28]. 52North-SOS supports JSON format for all

the SOS core and transactional operations and most of the

enhanced SOS operations, but XML messages are still encoded

inside the JSON.

All encoding types for 52North-SOS operations including

the JSON version are HTTP POST requests. The objects

posted to the SOS server for transactional operations have

different sizes but are generally larger than data insertions

into FROST-SensorThings API. Requesting observations also

requires posting an object containing the query parameters,

while in FROST-SensorThings API this can be done with

a GET request to the target URL using the API’s query

extensions. Request output is also more abundant in SOS for

the most part than it is in SensorThings API GET requests,

leading to general inflation of data traffic. A list of the different

operations, their request type input and output sizes are shown

in Table I.

52North-SOS FROST

Operation
Request

type

Size

In

Size

Out

Request

type

Size

In

Size

Out

Insert single
device

POST 4829 202 POST 4731 223

Request device
information

POST 671 15986 GET - 10103

Insert single
observation

POST 1168 88 POST 105 65

Request single
observation

POST 105 1361 GET - 616

Delete device POST 105 230 DELETE - 230

Update single
device property

POST 5733 226 PATCH 41 148

TABLE I. 52North-SOS and FROST-SensorThings request

types and approximated input and output object sizes in

bytes for SEnviro.

52North-SOS data can be accessed, visualised and maintained

using an extensive client interface. Particularly the integration

of the Helgoland client gives users an effective, easy-to-use

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 15

and resource efficient data visualisation tool, saving users

some effort in developing their interfaces. However, SEnviro

already has its stand-alone web interface for data visualisation

and analysis, therefore the Helgoland Client is not necessary.

Moreover, the 52North-SOS service interface may confuse

some users. The interface has so many options, settings and

features that non-expert users may easily be overwhelmed by

the vastness of its possibilities. SWE standards like SOS are

as complex as needed, aiming to include support tasks ranging

from the management of in-situ stations to the control of satel-

lites. 52North-SOS is designed to support a vast spectrum of

tasks, many of which are not necessary for IoT environmental

monitoring applications like SEnviro, where devices run with

limited resources.

In terms of performance 52North-SOS getObservation re-

quests performs better than SensorThings API GET requests.

This came as a surprise since the data traffic in SOS is heavier

given the number of objects transferred and the object’s sizes

(see Table I). Furthermore, 52North’s Helgoland client uses

an API that improves response speed even further by reducing

output information.

The SensorThings API (and FROST) surpasses 52North-SOS

by a large margin in terms of flexibility and scalability. While

52North-SOS transactional operations can be configured to

some extent, the input data must follow strict formats and

semantics in order for requests to be successful. Once inserted,

many of the service properties are difficult or impossible to

update. In contrast, the SensorThings API data model and API

makes inserting data extremely flexible [29]. Since multiple

types of related entities can be inserted within the same

request, clients can construct the JSON objects to be inserted

in a ”building block” fashion, assembling related entities as a

single object. Additionally, the entities can be inserted sepa-

rately and consequently linked with HTTP PATCH requests.

This also allows any property of any entity within the service

(apart from the unique ID) to be updated in an easy, developer-

friendly way.

SensorThings API also provides a multitude of scaling possi-

bilities for data output. 52North-SOS queries can be configured

using up to five query parameters (e.g., spatial, temporal,

properties) to narrow down output observations, which always

include the full observation object and cannot be modified.

SensorThings API queries can consist of an almost unlimited

amount of query operators, which can be used to query any

property of any entity within the service. The operators can

be chained within the target URL, so no object needs to be

posted to the server.

The fact that FROST does not include a user interface is

irrelevant in a project like SEnviro, since a custom client

interface has already been developed. Furthermore, Fraunhofer

IOSB is developing FROST-Client and FROST-Dashboard

client applications that provide user interfaces connecting to

FROST-Server. Nonetheless, the SensorThings API’s flexi-

bility makes it easy to connect custom client interfaces to

the service. SensorThings’ usage of frequently used data

standards like ISO8601 for dates and GeoJSON for spatial

data combined with JSON encoding format facilitates spatial

web development in countless ways, demonstrating the Web

Standard’s superiority over other standards and ensuring its

interoperability.

In terms of response times, FROST-SensorThings API did not

excel 52North-SOS, instead showing longer response times

for getting observations with the minimum number of query

operators. When applying query filters to reduce the size

of data requested the response times are reduced to similar

response times as SOS getObservation requests.

The results from the CPU and RAM usage show 52North-SOS

as being less demanding than FROST-SensorThings API. This

did come as a surprise since the FROST-SensorThings API

functionalities are more focused on the essential data exposure

using the REST API and does not include the array of different

features 52North-SOS has (e.g., binding and encoding formats,

client interface, configurable settings etc.). To fully understand

the reason for 52North-SOS’ superior performance, further

investigations are necessary, analysing the core mechanisms

of the services in detail. It was eventually concluded that

52North-SOS has been developed for a longer period of time

than FROST-SensorThings API and therefore performance was

optimised.

Unmodified response sizes from observation requests are

smaller in FROST-SensorThings API. This promises reduced

data traffic when requesting observations, for example in web

applications for visualising large amounts of observations. As

mentioned above, to make a tangible quantitative compari-

son requests were limited to 1,000 observations within the

performance analysis. Attempts to retrieve larger amounts of

observations were made though. On the one hand, 52North-

SOS would frequently freeze or crash when requested amounts

of data were too large. FROST-SensorThings API, on the other

hand, can handle any amount of requested observations due

to the approach of limiting file output but providing web links

to the still pending data.

FROST-SensorThings API and 52North-SOS CPU and mem-

ory usage do not increase proportionally to the number of ob-

servation requests. However, this may change when requesting

larger data sets.

Although the performance analysis does not favour FROST-

SensorThings API over 52North-SOS, it was nonetheless

concluded that FROST’s advantages in the qualitative analysis

sufficiently outweigh 52North-SOS. Finally, it is important to

note that the performance results do not only derive from

the web standards themselves, but rather from their imple-

mentations. When looking past FROST-SensorThings API and

52North-SOS at the mere web standards, the SensorThings

API’s data model and operations comply more fully with the

IoT concept and with the requirements of current environmen-

tal monitoring and Smart Farming applications.

VIII. CONCLUSIONS

Investigating SOS it was concluded to be outdated many of

aspects, lacking support for modern web technology trends,

such as the use of JSON, RESTful binding and MQTT [30].

52North-SOS has compensated many of these shortages with

a multitude of features and has the capabilities to integrate

with a large range of device types and can be applied to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

a wide spectrum of use cases. However, many of these

features are workarounds for the outdated SOS data model

and operations [29]. What 52North-SOS adds in functionality

it lacks in flexibility and scalability, which has a strong

impact on developer experience. Furthermore, the myriad of

configurations and settings in the client interface render the

software overwhelming. Since SEnviro has it is own client

interface the extensive front-end features of SOS are not

relevant to SEnviro, but may be useful in projects in need of

an effective data visualisation tool such as the 52North-SOS

Helgoland Client.

The SensorThings API proves to be an excellent choice for

interoperability enhancement for SEnviro and environmental

monitoring applications in the IoT field. FROST-SensorThings

API implements the complete SensorThings API data model

and functionalities of the standard as a back-end server in-

stance, making it suitable for the integration into SEnviro. The

API is flexible, scalable and follows modern web development

trends. It focuses on the essential functionalities required in

an IoT environment. Interoperability is guaranteed by using

up-to-date technologies. Data is stored in compact JSON

encoding and can be easily inserted, updated and removed via

HTTP requests. Stored entities can be accessed by HTTP GET

requests and data output can be customised by large variety of

query parameters. A good developer experience is ensured by

making the service flexible and scalable. While showing higher

resource consumption and response times than 52North-SOS,

performance issues can easily be overcome by using URL

extensions to select only the required data, maintaining a low

overhead.

One of the main limitations of the work can be seen in

the selection of the chosen web standard implementations.

Although a semantic comparison should not vary, since it is

based on the regulations of the standard itself, the performance

obtained in terms of time and CPU/memory resources of each

option can be strongly linked to the developed software itself,

therefore producing very different results.

An important point to note is that both implementations have

been deployed following the default configuration parameters.

For example, in FROST, only primary and foreign keys have

indexes on them. It implies that if the database grows, a sig-

nificant decrease in performance may occur. So it is advisable

to identify which queries are used most frequently and add

the appropriate indexes. In our study (SEnviro’s use case), a

large number of observations are not stored. It consisted of five

nodes and operated during a vine season (4 months). In total,

the experiments were realised using 197,887 observations. In

case of expanding the number of vine seasons, we would apply

these optimisations as future work.

This study not only answered questions about the researched

topic, but also revealed some further issues and possible

future work. Firstly, more web standards are bound to be

released in the coming years and should be investigated. The

SensorThings API shows great potential as it stands, but also

needs to be further tested, especially considering the OGC’s

release of the SensorThings API’s Tasking capabilities in

January 2019.

A feature that strongly favours SensorThings API over other

standards is its data publish/subscribe support via MQTT,

avoiding larger data traffic via the HTTP protocol. FROST

includes this service, making it possible for devices to publish

directly to the FROST-server. This feature was not experi-

mented on in this research because of the configuration of

SEnviro Nodes and SEnviro Connect. Including the FROST

MQTT support would include modifying the existing SEnviro

architecture, which is outside the scope of this project but

should be considered in future work.

Finally, another experimentation would be to carry out this ap-

proach from the Things’ side. For this, a central server would

not be used, and each Thing would have the ability to execute

operations autonomously. The services would be embedded in

each device. New implementations of the standards should be

developed capable of being performed in environments with

restrictive features in terms of computational cost, memory,

connectivity and energy.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, et al., “Internet of Things (IoT): A vi-
sion, architectural elements, and future directions,” Future Generation
Computer Systems, 2013.

[2] R. Sutaria and R. Govindachari, “Making sense of Interoperability:
Protocols and Standardization Initiatives in IoT,” The 2nd ComNeT-
IoT workshop in the 14th International Conference on Distributed
Computing and Networking (ICDCN 2013), 2013.

[3] A. Bassi and G. Horn, “Internet of Things in 2020: A Roadmap for
the Future,” European Commission: Information Society and Media,
vol. 22, pp. 97–114, 2008.

[4] R. Alur, E. Berger, A. W. Drobnis, et al., “Systems computing
challenges in the internet of things,” arXiv preprint arXiv:1604.02980,
2016.

[5] M. T. Lazarescu, “Design of a WSN Platform for Long-Term Environ-
mental Monitoring for IoT Applications,” IEEE Journal on Emerging
and Selected topics in Circuits and Systems, Vol. 3, NO. 1, 2013.

[6] IEEE, “IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries,” IEEE Std 610, pp. 1–217, Jan. 1991.

[7] B. Weinberg, “The Internet of Things and Open Source (Extended
Abstract),” in Interoperability and Open-Source Solutions for the
Internet of Things, ser. SoftCOM 2014, 2014.

[8] C. Granell, A. Kamilaris, A. Kotsev, et al., “Internet of things,” in
Manual of Digital Earth, Springer, 2020, pp. 387–423.

[9] A. Kotsev, K. Schleidt, S. Liang, et al., “Extending inspire to the
internet of things through sensorthings api,” Geosciences, vol. 8, no. 6,
p. 221, 2018.

[10] S. Trilles, O. Belmonte, L. Diaz, et al., “Mobile access to sensor
networks by using gis standards and restful services,” IEEE Sensors
Journal, vol. 14, no. 12, pp. 4143–4153, 2014.

[11] S. T. Oliver, A. González-Pérez, and J. H. Guijarro, “An iot proposal
for monitoring vineyards called senviro for agriculture,” in Proceedings
of the 8th International Conference on the Internet of Things, ser. IOT
’18, Santa Barbara, California: ACM, 2018, 20:1–20:4.

[12] S. Trilles, A. González-Pérez, and J. Huerta, “An iot platform based on
microservices and serverless paradigms for smart farming purposes,”
Sensors, vol. 20, no. 8, p. 2418, 2020.

[13] C.-Y. Huang and C.-H. Wu, “A Web Service Protocol Realizing
Interoperable Internet of Things Tasking Capability,” Sensors, 2016.

[14] C. Reed, “Data integration and interoperability: Iso/ogc standards for
geo-information,” Development directions, Feb. 2004.

[15] J. Fredericks and M. Botts, “Promoting the capture of sensor data
provenance: a role-based approach to enable data quality assessment,
sensor management and interoperability,” Open Geospatial Data, Soft-
ware and Standards, vol. 3, no. 1, 2018.

[16] Open Geospatial Consortium, opengeospatial.org,
http://www.opengeospatial.org, Accessed: 2019-01-14, 2019.

[17] ——, Sensor Observation Service,
https://www.opengeospatial.org/standards/sos, Accessed: 2019-
01-14, 2007.

[18] ——, OGC SensorThings API - Sensing,
http://www.opengeospatial.org/standards/sensorthings, Accessed:
2019-01-14, 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 17

[19] J. Pradilla, M. Esteve, and C. Palau, “SOSLite: Lightweight Sensor Ob-
servation Service (SOS),” IEEE LATIN AMERICA TRANSACTIONS,
vol. 13, 2015.

[20] Open Geospatial Consortium, Best practice for sensor web enablement
lightweight sos profile for stationary in-situ sensors, Open Geospatial
Consortium, 2014.

[21] J. Pradilla, M. Esteve, and C. Palau, “SOSFul: Sensor Observation
Service (SOS) for Internet of Things (IoT),” IEEE LATIN AMERICA
TRANSACTIONS, vol. 16, 2018.

[22] A. Samourkasidis and I. N. Athanasiadis, “A sensor observation
service extension for internet of things,” in International Workshop on
Interoperability and Open-Source Solutions, Springer, 2016, pp. 56–71.

[23] S. Trilles, J. Torres-Sospedra, Ó. Belmonte, et al., “Development
of an open sensorized platform in a smart agriculture context: A
vineyard support system for monitoring mildew disease,” Sustainable
Computing: Informatics and Systems, 2019.

[24] A. Kamilaris, F. Gaoy, F. X. Prenafeta-Boldú, et al., “Agri-IoT: A
Semantic Framework for Internet of Things-enabled Smart Farming
Applications,” 2016 IEEE 3rd World Forum on Internet of Things (WF-
IoT), 2016.

[25] S. Trilles, A. Lujan, O. Belmonte, et al., “Senviro: A sensorized
platform proposal using open hardware and open standards,” Sensors,
vol. 15, no. 3, pp. 5555–5582, 2015.

[26] M. A. da Cruz, J. J. Rodrigues, A. K. Sangaiah, et al., “Performance
evaluation of iot middleware,” Journal of Network and Computer
Applications, vol. 109, pp. 53–65, 2018.

[27] J. d. C. Silva, P. H. Pereira, L. L. de Souza, et al., “Performance
evaluation of iot network management platforms,” in 2018 Interna-
tional Conference on Advances in Computing, Communications and
Informatics (ICACCI), IEEE, 2018, pp. 259–265.

[28] A. Tamayo, C. Granell, and J. Huerta, “Using SWE Standards for
Ubiquitous Environmental Sensing: A Performance Analysis,” Sensors
2012, 2012.

[29] J. A. B. S. Teixeira, “Using sensorthings api to enable a multi-platform
iot environment,” 2018.

[30] H. Van Der Schaaf, J. Moßgraber, S. Grellet, et al., “An environmental
sensor data suite using the ogc sensorthings api,” in International Sym-
posium on Environmental Software Systems, Springer, 2020, pp. 228–
241.

Daniel Marsh-Hunn currently works as a spa-
tial web developer at geOps - Open Source
Spatial Web. He received an Erasmus Mundus
Scholarship for the Erasmus Mundus Master in
Geospatial Technologies at Jaume I University,
from which he graduated in March 2019. More-
over he holds a BSc. in Environmental Systems
Sciences with emphasis on geography. His main
interests lie in all things spatial, be it GIS, spatial
web or geo-enabled IoT applications.

Sergio Trilles has a PhD in Integration of
Geospatial Information from the Jaume I Univer-
sity in 2015 and he is currently a post-doctoral
fellow at University Jaime I, holding a Juan de
la Cierva-Incorporación fellowship. His research
lines are centre on geospatial fields such as
the Internet of Things (sensors), interoperability,
geoprocessing or web mapping. He is author
of more than fifty journal and conference peer-
reviewed publications.

Alberto González is currently pursuing his
Ph.D. in Computer Science thanks to an FPU
grant from the Spanish Ministry of Science, Inno-
vation and Universities. Previously, he received
his master’s Degree in Intelligent Systems in
2018 and a bachelor’s degree in Computer Sci-
ence in 2017. He has experience developing
web applications, mobile applications and web
services, also working with embedded hard-
ware. He aims to expand his developer toolbox
adding data scientist skills during his Ph.D. stud-

ies, concretely geospatial analysis skills.

Joaquı́n Torres-Sospedra received his PhD
about Ensembles of Neural Networks and Ma-
chine Learning from Universitat Jaume in 2011
I. Since January 2020 he is the Scientific Co-
ordinator of UBIK Geospatial Solutions. He has
authored more than 120 articles in journals and
conferences. His current research interests in-
clude indoor positioning solutions based on Wi-
Fi & BLE, Machine Learning and Evaluation. He
is the chair of the IPIN International Standards
Committee and IPIN off-site Competition.

Francisco Ramos is associate professor in the
Department of Computer Languages and Sys-
tems at UJI (Spain). He got his Ph.D. with hon-
ours from this University in 2008. His research
interests are in the areas of mobile interaction,
computer graphics, visualization and GIS. He
is CTO and co-founder of Emotional Apps, an
enterprise which combines technology and emo-
tions by means of creating innovative mobile
apps.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

