
����������
�������

Citation: Wang, C.; Yao, C.; Zhao, S.;

Zhao, S.; Li, Y. A Comparative Study

of a Fully-Connected Artificial

Neural Network and a Convolutional

Neural Network in Predicting Bridge

Maintenance Costs. Appl. Sci. 2022,

12, 3595. https://doi.org/10.3390/

app12073595

Academic Editor: Sang-Hyo Kim

Received: 27 February 2022

Accepted: 29 March 2022

Published: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Comparative Study of a Fully-Connected Artificial Neural
Network and a Convolutional Neural Network in Predicting
Bridge Maintenance Costs
Chongjiao Wang, Changrong Yao *, Siguang Zhao, Shida Zhao and Yadong Li

Department of Bridge and Tunnel Engineering, School of Civil Engineering, Southwest Jiaotong University,
No. 111, North 1st Section of Second Ring Road, Jinniu District, Chengdu 610031, China;
chongjiao1995@163.com (C.W.); 2019310044@my.swjtu.edu.cn (S.Z.); shida@my.swjtu.edu.cn (S.Z.);
yadong_li2009@hotmail.com (Y.L.)
* Correspondence: 2017310053@my.swjtu.edu.cn

Abstract: The cost assessment of bridge maintenance is a difficult topic to study, but it is critical
for a bridge life cycle cost analysis. The maintenance costs sample database was established in
this study according to actual engineering data, and a bridge maintenance cost prediction model
was developed using a fully-connected artificial neural network (ANN) and convolutional neural
network (CNN), respectively. First, eight main factors affecting maintenance costs were evaluated
based on the random forest method, and the evaluation results were verified by an exploratory data
analysis. The original data were then screened based on the isolation forest principle, and the recent
gross domestic product (GDP) growth rate was used to illustrate the relationship between economic
development and bridge maintenance costs. Finally, these two neural networks were used to establish
maintenance cost prediction models, respectively. The results from the two models were compared
and their prediction accuracies were analyzed. The prediction performance of the CNN model for
bridge maintenance costs was found to be better than that of the traditional fully-connected ANN
model. The results of this study will enhance the opportunity for bridge managers to balance lifecycle
maintenance costs.

Keywords: bridge engineering; bridge maintenance cost; fully-connected ANN; CNN; Bayesian
optimization; deep learning; intelligent prediction model

1. Introduction

Bridges are important parts of transportation infrastructure; the expected service life
of a bride is (at least) several decades and possibly more than 100 years. Bridges need to be
maintained continuously to ensure their safety and applicability during the service period.
The 2021 Infrastructure Report Card by the American Society of Civil Engineers (ASCE)
states that about 7.5% of bridges in the USA were structurally deficient in 2020 [1]. An
estimated USD 123 billion was invested into bridge maintenance in the USA, at all levels
of government, in 2019 [2]. In 2016, there were 86,000 bridges in need of maintenance in
China, which is approximately 10% of the total number of bridges [3], roughly equivalent
to the proportion of structurally deficient bridges in the USA. The total number of highway
bridges in China reached 912,800 at the end of 2020, which brought tremendous pressure
on bridge maintenance [4]. Both China and the USA are facing difficulties in having
such a large number of aging bridges. Maintenance is arduous and requires huge capital
investments. Correct maintenance cost estimations are important in the planning of bridge
maintenance [5].

Current maintenance cost studies primarily focus on the optimization of cost-oriented
maintenance scenarios. Barone and Frangopol considered the interactions among compo-
nents in the system, and selected the most cost-effective maintenance measures according
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to detection results and preset damage threshold [6]. Sabatino et al. combined maintenance
costs, failure losses, and choice preferences to optimize multiple objectives in the mainte-
nance planning simultaneously, with the goal of finding a set of Pareto optimal solutions [7].
Condition states and reliability indicators were defined as performance indicators, and a
multilinear model was used to describe the degradation process of performance indicators
under different maintenance scenarios. Ghodoosi et al. selected the most cost-effective one
by comparing different maintenance scenarios based on a genetic algorithm engine [8].

Many domestic and foreign researchers have carried out extensive research in the
cost assessment of bridge maintenance theory, making significant progress. There are
cost estimation methods based on numerical analyses, for example, maintenance cost
estimations based on the bridge performance degradation model and binary programming
algorithm [9], bridge maintenance cost allocation based on the priority index [10], pre-
diction of daily maintenance costs of bridges based on linear regression and time series
analyses [11], and the cost assessment of bridge maintenance based on system reliability
analyses and multiple regression algorithms [12]. Such evaluation models are established
based on the statistical analysis and parametric analysis results of maintenance costs. As
for their advantages: they do not require large amounts of samples and the evaluation
of maintenance costs could be achieved with fewer computational steps/computational
effort. However, these models have some drawbacks. For example, the model prediction
accuracy is not high because the parametric analysis does not fully learn the characteristics
of the data.

At the same time, there are cost prediction studies based on data analyses and the in-
telligent algorithm. For example, Bayzid et al. established a cost prediction model through
the particle swarm algorithm based on big data analysis. This method can predict the
short-term maintenance costs of the structure under the current performance [13]. Echaveg-
uren and Dechent allocated the costs of bridge maintenance based on prioritization indices,
according to the condition, strategic importance, and vulnerability of the bridge. This
method involves simple/a small amount of calculations, which is helpful in short-term
maintenance decision-making [14]. Shi et al. established a database of the daily mainte-
nance costs of bridges in the United States, with the logarithm of the maintenance cost as
a dependent variable and the service life of the bridge as an independent variable, and
they proposed a prediction model based on a backtracking search algorithm [15]. Zhu et al.
proposed a decision-making method based on performance detection and maintenance
cost records of Chinese bridges, and used an annealing algorithm to evaluate the future
maintenance costs and expected losses of bridges [16]. Then, the genetic algorithm was
used to find the decision-making scheme with the lowest maintenance costs in the whole
life cycle of the bridge. This is a decision-making method combining bridge performance
and costs but does not explain the quantitative relationship between bridge performance
and maintenance costs. Most of the existing bridge maintenance cost prediction models
are based on the maintenance cost prediction of a single type of input indicator with a
small sample base. This affects the applicability and generalization ability of the model.
Bridge maintenance cost prediction is a typical and complex nonlinear regression problem.
The prediction models established based on traditional statistical analysis methods and
simple data-driven intelligent algorithms have certain defects in prediction accuracy and
generalization performance. It is necessary to analyze, in detail, the degree of influence of
many factors that affect the costs of bridge maintenance and, on this basis, use intelligent
algorithms to deeply learn and extract the characteristics of actual engineering data. Thus,
a set of computing processes and methods that combine data preprocessing, influencing
factor analyses, and intelligent predictions are established. An effective “reference” for
bridge managers would involve quantitative prediction of bridge maintenance costs using
conventional bridge maintenance data.

Based on the above, a database of the maintenance costs in bridges was constructed in
this study, based on practical engineering data, containing the maintenance cost samples
of 268 bridges in Chinese inland and coastal areas. The database includes many factors



Appl. Sci. 2022, 12, 3595 3 of 21

that affect maintenance costs, for example bridge location, bridge technical condition,
bridge maintenance time. The fully-connected ANN and CNN were used to establish
the intelligent prediction model of maintenance costs, respectively, and the prediction
accuracies were compared. We also propose a new method to optimize bridge life cycle
maintenance costs and predict the time-varying law of maintenance cost.

2. Bridge Maintenance Cost Database

A variety of external factors could affect the maintenance costs of bridges [17]. The
bridge maintenance-related costs in China’s coastal and inland areas are highly discrete
and influenced by multiple factors. The obtained data are classified according to the
seven main factors that affect the maintenance costs (maintenance time, bridge technical
condition, bridge location, bridge age, bridge grade, superstructure, highway grade).
Classifications of all data in the database are shown in Figure 1. The database contains a
total of 399 maintenance cost samples.

The classification standards of highway grades are based on the Chinese “Technical
Standard of Highway Engineering (JTG B01-2019)” and are divided according to the design
service life of the highway on which the bridge is located [18]. The details are presented in
Table 1. The technical condition grades are classified according to the Chinese “Highway
Performance Assessment Standards (JTG 5210-2018)” and are divided according to the
weighted score of the overall technical conditions of the bridge [19]. The details are
presented in Table 2; “Highway Bridge Design standard” is the reference standard for
classification of bridge grades and the details are presented in Table 3 [20].

Table 1. Standards for dividing highway grade indicators.

Highway Grade Highway Traffic Grade Design Service Life

High Expressway,
First class highway 20 years

Medium Second class highway 15 years

Low Third class highway,
Fourth class highway 10 years

Table 2. Indicators classification of bridge technical conditions.

Weighted Mark for
Overall Technical

Condition of Bridges

Bridge Technical Condition Grade Dj

First Class
Bridge

Second
Class Bridge

Third Class
Bridge

Fourth Class
Bridge

Fifth Class
Bridge

Dr (95,100) (80,95) (60,80) (40,60) (0,40)

Table 3. Indicators classification of bridge grade indicators.

Extra-Large
Bridge Large Bridge Medium Bridge Small Bridge

Full length (m) (1000,+∞) (100,1000) (30,100) (8,30)
Single span (m) (150,+∞) (40,150) (20,40) (5,20)

In China, bridge maintenance costs are considered public expenditures. All levels of
government investments in bridge maintenance are affected by economic development.
GDP growth rate was used as the eighth influencing factor in this study in order to assess
the impact of economic effects on investments in bridge maintenance. GDP growth rates
from previous years could be queried on government websites; its predicted values were
calculated using the prediction models developed by economists [21]. The prediction model
for Chinese GDP growth rate used in this study was established by Jiang [22]. The values
of the Chinese GDP growth rate in past years are presented in Figure 2 [23].
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3. Neural Network-Based Bridge Maintenance Cost Prediction Framework

In recent years, with the development of computer technology, neural networks have
become more mature and diverse. For example, the fully-connected ANN is widely used
to solve engineering problems. The deep learning proposed by Geoffrey Hinton in 2006
broke the limitations of traditional neural networks on the number of layers and further
broadened the application scope of neural networks [24].

Therefore, this section introduces a comparative study of a fully-connected ANN and
CNN for predicting bridge maintenance costs. The calculation framework of the two models
is shown in Figure 3. It was necessary to preprocess the dataset of bridge maintenance
costs prior to establishing the neural network model. This included an exploratory data
analysis, selection of input indicators, and sample screening. The database was divided
into a training set and a test set, which were used to train the neural network model and
verify the prediction performance of the model, respectively.
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3.1. Selecting Input Indicators Based on Random Forest

Random forest is a classification index test method based on decision trees. It is widely
applied and achieves good results in the index selection of low feature dimensions and low
sample size data [25,26]. The VIM is used to express the importance of indicators, and the
Gini index [27], which represents the probability that a randomly selected sample in the
sample set has been classified by mistake, is used to calculate the VIM value.

Suppose that there are n indicators X1, X2, X3 . . . Xn, the Gini variable importance
measure of each indicator Xj is calculated and represented by VIM(Gini)

j , which represents
the average change of node splitting impurity in the j-th variable in all decision trees in the
random forest [28]. The detailed calculation process of VIM(Gini)

j is as follows:

(1) Calculate the Gini index of the node m in a certain category K. The formula for
calculating the Gini is:

GIm =
K

∑
k=1

ˆPmk
(
1− ˆPmk

)
(1)

where K is the number of categories in the sample set and ˆPmk is the estimated probability
that the sample of node m belongs to the k-th category; when the sample belongs to one of
categories, K = 2.

(2) The decision trees in the random forest used in this study only had two branches.
Therefore, the Gini index of node m could be calculated as:

GIm = 2P̂m
(
1− P̂m

)
(2)

where P̂m is the estimated probability that the sample belongs to any category at node m.

(3) Calculate the VIM value of node m. The importance of indicator Xj at node m; that is,
the variable quantity in the Gini index before and after the branch at node m is:

VIM(Gini)
jm = GIm − GIl − GIr (3)

where GIl and GIr represent the Gini indexes of two new nodes split by node m.

(4) Calculate the VIM value of indicator Xj in the random forest. If the indicator Xj
appears M times i-th in the tree, the importance of the indicator Xj in the i-th tree is:

VIM(Gini)
ij =

M

∑
m=1

VIM(Gini)
jm (4)

The VIM of the indicator Xj in the random forest is defined as:

VIM(Gini)
ij =

1
n

n

∑
i=1

VIM(Gini)
ij (5)

where n is the number of decision trees in the random forest.

3.2. Bayesian Optimization

To improve the prediction performance of the model, this study uses Bayesian opti-
mization to determine some important hyperparameters in random forest, isolation forest,
and fully-connected ANN and CNN. The hyperparameters herein are the non-trainable
parameters in the model. Those parameters (for example, the number of neurons and the
structure of the network layer) are set before the training process starts. Nevertheless, a
few hyperparameters, such as the number of trees and the number of predictor variables to
sample at each node, are important hyperparameters in random forest and isolation forest.
These parameters may have an important impact on the calculation performance of the
forest [29]. Other parameters, such as the regularization coefficient and the learning rate,
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are important hyperparameters in neural networks. These parameters are very important
for the neural network model to improve robustness to databases with small sample sizes.

Since Bayesian optimization has the advantage of sample efficiency, a relatively good
hyperparameter combination can be found with a very small number of cycles. The
calculation principle of adopting it to determine hyperparameters is as follows:

The basic assumption that the objective function Ev
(
θ
)

is adopted for Bayesian op-
timization is obtained, a priori, by the Gaussian process (GP), Ev

(
θ
)
∼ N(0, K); θ is the

hyperparameter vector considered in this study. Since Ev
(
θ
)

is corrupted by Gaussian
noise with a mean value of zero and a standard deviation of σnoise, the kernel matrix can be
expressed as [30]:

K =

k
(
θ1, θ1

)
· · · k

(
θ1, θt

)
...

. . .
...

k
(
θt, θ1

)
. . . k

(
θ1, θt

) + σ2
noiseI (6)

where k
(
θt, θt

)
is the covariance function. The results of previous iterations are expressed

as: D1:t =
(
θ1:t, EV

1:t
)
, where EV

1:t = Ev
(
θ1:t
)
. Assume θt+1 as the next point to estimate

and the value of the function at θt+1 as EV
t+1 = Ev

(
θt+1

)
. EV

1:t and EV
t+1 are joint Gaussian

expressions under GP prior. The predictive distribution can be obtained as follows [31]:

EV
t+1

∣∣∣D1:t ∼ N(µ
(
θt+1

)
, σ2(θt+1

)
+ σ2

noise (7)

where
µ
(
θt+1

)
= kT

(
K + σ2

noiseI
)−1

EV
1:t (8)

σ2(θt+1
)
= k

(
θt+1, θt+1

)
− kT

(
K + σ2

noiseI
)−1

k (9)

k =
[
k
(
θt+1, θ1

)
k
(
θt+1, θ2

)
· · · k

(
θt+1, θt

)]T
(10)

It can be seen from the above formulas, that both the predicted variance function
σ2(θt+1

)
and the predicted mean function µ

(
θt+1

)
depend on the choice of the

covariance function k
(
θt, θt

)
, and they jointly determine the choice of the covariance

function EV
t+1

∣∣D1:t.
This study uses the automatic relevance determination (ARD) Matérn 5/2 kernel [32].

This choice adapts to the problem of the ARD squared index kernel. It is impractical for such
a covariance function to appear in the actual sample function optimization problem [33].
For t = 1, 2, . . . N, the detailed calculation steps of the hyperparameter determination
algorithm based on Bayesian optimization are shown in Figure 4 [34].

3.3. Exploratory Data Analysis

We performed an exploratory data analysis on bridge maintenance cost data to verify
the effectiveness of the random forest method. Exploratory data analysis methods focus
on the true distribution of data and emphasize the visualization of data. It can help users
see the relationship between the data and the selected feature at a glance, so as to detect
the validity of the feature [35]. EDA is different from the initial data analysis (IDA) in that
it focuses more on checking the assumptions required for the model fit and hypothesis
testing, deals with missing values, and performs variable transformations as needed [36].

3.4. Sample Screening

Anomaly detection is an important step in pre-processing the training data. The main
function of anomaly detection is to check whether there are input errors and unreason-
able data. Ignoring the existence of outliers in engineering practices is very dangerous.
Incorporating outliers into the calculation and analysis processes of data without excluding
them will adversely affect the training and prediction results. For the outlier detection of
actual engineering data, scholars have carried out valuable research. For example, Xu et al.
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adopted wavelet transform and generalized Pareto distribution for data processing and
proposed a two-level anomaly detection method, namely the threshold-based anomaly de-
tection and anomaly trend detection [37]. Zhang et al. proposed an online detection method
for structural health monitoring data anomalies based on the Bayesian dynamic linear
model. This method has better calculation accuracy and higher calculation efficiency [38].
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The isolation forest method was proposed by Zhou et al. in 2008 [39]. In 2011, the
method was applied to the anomaly detection of data samples [40]. In isolated forests,
anomalies are defined as points that are more sparsely distributed and further away from
high-density groups. In the feature space constructed by the isolation forest, if the data
distribution in a certain area is sparse, it means that the probability of normal data values
appearing in that area is very low. Therefore, if a certain data frequently appears in these
areas, it is judged as an anomaly. Isolation forest is an unsupervised anomaly detection
method suitable for continuous numerical data. That is, it does not require labeled samples
for training, and the method has good robustness to data with low feature dimensions.
Taking into account the data characteristics of the bridge maintenance costs in this study, it
was necessary to choose an anomaly detection method that was suitable for small datasets
with low feature dimensions. The isolation forest method has been widely used in the
detection of anomalies in actual engineering data. For example, smart grid data [41] and
optical emission spectroscopy data [42]. The isolation forest method has been proven
to process data quickly and efficiently. It is particularly suitable for small and medium
datasets with low feature dimensions. Therefore, this study adopted it as a method of
anomaly detection.

Consider a dataset X = {x1, x2, . . . , xn} with n samples and d features. First, decision
trees are built. Then, a feature q and its segmentation threshold p are selected randomly.
Finally, the dataset X is segmented recursively until there is only one sample xi on the node.
The length of the segmentation path of sample xi from the root node to the leaf node in
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the decision tree is represented by h(x). For the dataset X, the average path length of the
decision trees is:

c(n) =


2H(n− 1)− 2(n− 1)/n f or n > 2

1 f or n = 2
0 otherwise

(11)

where n is the number of samples and H(k) is the harmonic number, which can be estimated
by H(k) = ln k + ξ, where ξ is Euler’s constant. As c(n) is the average of h(x) for the
given n, we use it to normalize h(x). The anomaly score s of an instance x is defined as:

s(x, n) = 2−
E(h(x))

c(n) (12)

where E(h(x)) is the average value of h(x) is the average value of. The following conditions
apply to the three special values of abnormal scores:

(a) When E(h(x))→ 0, s→ 1 ;
(b) When E(h(x))→ n− 1, s→ 0 ;
(c) When E(h(x))→ c(n), s→ 0.5 .

We can make the following assessment based on the anomaly score s. If an instance
returns a value of s that is very close to 1, then it is definitely an anomaly. If an instance
has an s value much less than 0.5, then it can quite safely be regarded as a normal instance.
If all instances return s ≈ 0.5, then there are no significant anomalies for all data in this
sample set.

3.5. The Fully-Connected ANN Model

The fully-connected ANN is an information system constructed by theoretically ab-
stracting, simplifying, and simulating the structure, function, and basic characteristics of
the real neural network in the human brain [43]. The BP neural network, currently the most
widely used fully-connected ANN, is a multi-layer feedforward neural network trained ac-
cording to the error backpropagation algorithm. The transfer function used by the neurons
of the BP neural network is usually a differentiable function that can realize any nonlinear
mapping between the input and the output. Therefore, the BP neural network has a wide
range of applications in pattern recognition, risk evaluation, intelligent prediction, etc. [44].

The BP neural network has arbitrarily complex pattern classification capabilities and
excellent multi-dimensional function mapping capabilities. The objective function of it is
the square of the network error; the minimum value of the objective function is calculated
through the gradient descent method [45]. The detailed calculation process is as follows:

(1) The connection weight value and threshold are initialized based on random values.
(2) The output of each unit of the hidden layer and the output layer is calculated according

to the parameters selected by the input mode and output mode. In this study, the
ReLU [46] is used as the activation function of the hidden layer. The Tanh [47] is used
as the activation function of the output layer.

The ReLU can be defined as

f (x) = max(0, x) (13)

The Tanh can be defined as

f (x) =
ex − e−x

ex + e−x (14)

(3) The new connection weights and thresholds are calculated using the Equations (13)–(16).
The modification of the neuron threshold:

θk(t + 1) = θk(t) + ηtσk, (t = 1, 2, . . . , p; k = 1, 2, . . . , l) (15)



Appl. Sci. 2022, 12, 3595 10 of 21

θj(t + 1) = θj(t) + ηtσj, (t = 1, 2, . . . , p; j = 1, 2, . . . , m) (16)

where θj and θk are the threshold values of the j-th node in the hidden layer and the k-th
node in the output layer, respectively; σj and σk are errors of the j-th node in the hidden
layer and the k-th node in the output layer respectively. ηt is the learning rate of the t-th
training iteration.

The update formula of the weight is as follows:

ωjk(t + 1) = ωjk(t) + ∆ωjk(t), (t = 1, 2, . . . , p) (17)

νij(t + 1) = νij(t) + ∆νij(t), (t = 1, 2, . . . , p) (18)

where t is the number of iterations in the training process; νij is the weight value updating
from the input layer to the hidden layer; ωjk is the weight value updating from the hidden
layer to the output layer.

(4) Return to the second step to train the neural network and update the learning input
mode continuously until the number of training times reaches the preset value. The
basic flow of the above calculation process is shown in Figure 5:
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3.6. CNN Model

CNN is currently one of the most widely used deep learning algorithms. Compared
to the fully-connected ANN, the most important features of CNN are local perception and
parameter sharing [48]. The main parts of a CNN are the convolutional layer, pooling
layer, and activation function [49]. CNN reduces the complexity of the network model
through three strategies: a local receptive field, weight sharing, and downsampling. They
are widely used in the fields of image classification, speech recognition, and intelligent
prediction [50].

CNN has proven to be a reliable technique for extracting hidden features because
it can complete the automatic creation of filters [51]. By using the convolution filter to
act on all the feature spaces of the input data, for each perception area, the data at the
corresponding position are multiplied by the weight in the convolution filter, and then
summed as the input of the next layer of neurons. In the same convolution layer of CNN, all
neurons are set to have no connection and only the weight of the filter is shared. Therefore,
CNN is more effective than multi-layer perceptron training with the same structure. Each
convolution layer can be expressed as [52]:

yi = f
(
∑n

i=1 Wixi + b
)

(19)
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where yi indicates the results after convolution, f denotes the activation function, Wi
indicates the weights of the convolution filter, b indicates the bias terms.

The CNN model was built based on Python and TensorFlow in this study. On the basis
of the aforementioned fully-connected ANN model, a convolution operation was added,
and the other parts were similar to the fully-connected ANN model. The CNN consisted
of an input layer, a convolutional layer, a flattening layer, a fully connected layer, and an
output layer. The convolution kernel size was 2 × 1, the channels of the convolutional layer
were 64. After convolution, the number of nodes changed from 9 to 576, realizing the deep
extraction of features. In view of the few input parameters of this model, pooling operation
was not performed.

ReLU was used as the activation function of the convolutional layer and the fully
connected layer. Tanh was used as the activation function of the output layer. Adam [53]
was the optimization algorithm in this study.

Adam can be defined as

mt = µ×mt−1 + (1− µ)× gt (20)

nt = ν× nt−1 + (1− ν)× g2
t (21)

m̂t =
mt

1− µt (22)

n̂t =
nt

1− νt (23)

θt = −
m̂t√

n̂t + ε
× η (24)

where µ, ν indicate the exponential decay rates for the moment estimates, gt indicates
the gradients of stochastic objectives at timestep t, mt indicates the biased first moment
estimation of gradients, nt indicates the second raw moment estimation of gradients, m̂t
and n̂t respectively, indicate the unbiased estimate after correcting mt and nt, θt indicates
the result parameter. After Bayesian optimization, the hyperparameters in the neural
network are η = 0.001, µ = 0.9, ν = 0.999 and ε = 10−8. The basic flow of the above
calculation process is shown in Figure 6:
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4. Implementation Results of a Fully-Connected ANN and CNN
4.1. Influencing Factors of Bridge Maintenance Costs

The random forest method in Section 3.1 was used to calculate the VIM values of eight
influencing factors (GDP growth rate, maintenance time, bridge grade, bridge technical
condition, bridge location, bridge age, superstructure, and highway grade). The calculation
results are shown in Figure 7.
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It can be seen from Figure 7 that the importance values of the four indicators of
maintenance time, technical conditions, highway class, and GDP growth rate are all greater
than 0.2. The importance of these four indicators is significantly higher than the other
indicators, and the importance value of the other indicators is less than 0.1. Therefore, we
select GDP growth rate, bridge technical conditions, highway grade, and maintenance time
as the input parameters of the prediction models.

The scatter graph matrix was adopted to conduct an exploratory data analysis on the
database, to test the correlation between the four input parameters selected in the previous
section and bridge maintenance costs. The probability histogram is on the diagonal line of
the matrix, which represents the frequency of occurrence of a corresponding label for a cer-
tain feature. The scatter diagram is on the non-diagonal line of the matrix, which represents
the correlation between labels, corresponding to different maintenance cost characteristics.

A total of five characteristics of the four selected indicators, plus maintenance costs, were
involved in the exploratory data analysis. Thus, the matrix consists of 5 probability histograms
and 20 scatter plots. As can be seen from Figure 8, there is a certain correlation between the
selected indicators and maintenance costs, while ensuring certain independence.

4.2. Sample Classification Based on Selected Indicators

All samples are classified according to four input indicators, as shown in Figure 9. The
samples only contain three indicators: maintenance time, bridge technical condition, and
highway grade.
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In Figure 9, the maintenance cost samples are divided into three categories according
to the highway grade. According to the technical conditions of the bridge, each category
was divided into four sub-categories and the samples were sorted by maintenance time. The
sample values increased significantly as the technical conditions of the bridge worsened. As
the highway grade worsened, the sample values also tended to increase, and they gradually
increased with maintenance time. These results demonstrate the feasibility of predicting
the maintenance costs based on the classification of these indicators.

4.3. Sample Screening Based on Isolation Forest

Twenty-seven maintenance samples (6.8% of the total) were identified as outliers by
the isolation forest method. We replaced the outliers with the average of the same type of
data to ensure that the prediction accuracy improved without reducing the sample size.
The sample distribution after replacement is shown in Figure 10.

4.4. Structure of the Sample Database

The constructed database contained a total of 399 maintenance cost samples. All
samples were classified according to the highway grade and bridge technical condition.
The 80% of samples with the earliest maintenance times in each type of data were selected
into the training set for training. The 20% of samples with the latest maintenance times
constituted the prediction set as the verification of the calculation results. A total of
320 samples were selected into the training set and 79 samples were selected into the
prediction set. The detailed classification of the database is shown in Table 4.
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Table 4. Classification of the database.

Highway Grade Bridge Category Training Set Prediction Set

High
Second 14 3
Third 23 5

Fourth 54 13

Medium

Second 5 2
Third 11 3

Fourth 84 21
Fifth 27 7

Low

Second 64 16
Third 30 7

Fourth 6 1
Fifth 2 1

Total 320 79



Appl. Sci. 2022, 12, 3595 16 of 21

4.5. Topology of the Fully-Connected ANN Model and CNN Model

In this study, a fully-connected ANN model was designed for maintenance cost
prediction. It contained three layers: an input layer, a fully connected hidden layer, and an
output layer. There are 9 neurons in the input layer, 980 neurons in the hidden layer, and
1 neuron in the output layer. The topology of the proposed model is shown in Figure 11.
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It can be seen from Figure 12 that the output of the convolutional layer is a 9 × 64 matrix.
The third layer is a flattening layer containing 576 neurons. The fourth layer is a fully
connected layer containing 1280 neurons, and the final layer is the output layer.
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4.6. Accuracy Analysis of Prediction Model

The established fully-connected ANN model and CNN model were used to predict
the cost of bridge maintenance in the future. To verify the prediction accuracy of the model,
the prediction result of the model was compared to the actual bridge maintenance costs.
Figure 13 shows a comparison between the predicted values given by the two prediction
models and the actual maintenance costs under the corresponding indicators.
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The relative error distribution of the fully-connected ANN model is shown in Figure 14.
It can be seen from Figure 14 that the relative error is less than 20% for 84.8% of the
prediction data and less than 30% for 93.6% of the prediction data.
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The relative error distribution of the CNN model is shown in Figure 15. It can be seen
from Figure 15 that 87.4% of the prediction results have a relative error of less than 20%
and less than 30% for 98.7% of the prediction data.
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To compare the predictive performance of the two models, a linear regression model
was added as a baseline for comparison. Linear, quadratic, and exponential curve fitting
equations can be established based on regression analysis. Finally, the quadratic curve with
the highest average goodness of fit (R2) was selected as the fitting form, a prediction model
was established, and the regression coefficient was calculated. The regression analysis
model form is defined as follows:

y = at2 + bt + c (25)

where y indicates the maintenance costs for the bridge; a, b, and c are parameters for
regression analysis; t indicates time.

The relevant prediction error indicators for the fully-connected ANN model, the CNN
model, and regression model are presented in Table 5.

Table 5. Relevant error indicators of the fully-connected ANN model, CNN model prediction, and
regression model.

Prediction Model Mean Absolute Error
(Yuan/m2)

Maximum Error
(Yuan/m2)

Minimum Error
(Yuan/m2)

Root Mean Square Error
(Yuan/m2)

ANN 16.8 59.4 0.2 19.7

CNN 12.5 52.6 0.3 16.7

Regression model 20.6 57.8 3.6 21.9

Prediction Model Average Relative Error
(%)

Maximum Relative Error
(%)

Minimum Relative Error
(%)

Mean Absolute Percent
Error (%)

ANN 12.05% 52.71% 0.28% 11.89%

CNN 9.45% 29.83% 0.24% 9.35%

Regression model 15.95% 46.51% 3.15% 15.22%
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It is apparent—from the prediction results and error analyses of the two models—that
the CNN model provides better predictions of the bridge maintenance costs than the fully-
connected ANN. Through the convolution operation, multi-dimensional feature extraction
can be applied to each maintenance cost indicator, improving the prediction accuracy.

5. Conclusions

This paper established a sample database of bridge maintenance costs over the period
2010–2019, based on the actual engineering data of 268 bridges in coastal and inland areas
of China. Two bridge maintenance cost prediction models were developed based on fully-
connected ANN and CNN approaches, respectively, and their prediction results were
compared. The conclusions of this study are as follows:

(1) The eight main factors of bridge maintenance costs were evaluated based on the
random forest method. The VIM of four indicators (technical condition, maintenance time,
GDP growth rate, and highway grade) were greater than 0.2. The VIM values of the bridge
age, superstructure, bridge grade, and bridge location were all less than 0.1.

(2) An outlier detection method based on the isolation forest method was adopted
to identify maintenance cost samples that were significantly different from the bridge
maintenance costs. As a result, 27 maintenance samples, accounting for 6.8% of the total,
were identified as outliers and replaced by the average values of similar data.

(3) Prediction models were established based on fully-connected ANN and CNN,
respectively. The mean absolute error, root mean square error, average relative error,
and mean absolute percent error of the fully-connected ANN model were 17.4 Yuan/m2,
21.2 Yuan/m2, 13.02%, and 12.59% respectively. The mean absolute error, root mean square
error, average relative error, and mean absolute percent error of the CNN model were
12.5 Yuan/m2, 16.7 Yuan/m2, 9.45%, and 9.35%, respectively. It can be concluded from the
comparative analysis that the prediction accuracy of the CNN model is higher than that of
the fully-connected ANN model.

6. Prospect

There are several limitations in this paper, which could guide the directions of future
studies. The sample size of the database was limited, and the coverage was not wide enough.
As a result, indicators, such as geological conditions and extreme weather conditions, were
not fully considered. A more comprehensive bridge maintenance cost database is needed
to support future studies. Social and economic development is a relatively broad concept
and a complex economic problem. How to quantify and find the relationship between
it and bridge maintenance costs is a topic worthy of in-depth study. This study used
GDP growth rate as an indicator of social and economic development (and achieved good
results). Further research could explore other economic indicators to quantify this impact
based on an in-depth analysis of the correlation between economic development and bridge
maintenance costs.
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