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Since wind power is directly in	uenced by wind speed, long-term wind speed forecasting (WSF) plays an important role for wind
farm installation. WSF is essential for controlling, energy management and scheduled wind power generation in wind farm. �e
proposed investigation in this paper provides 30-days-aheadWSF. Nonlinear Autoregressive (NAR) and Nonlinear Autoregressive
Exogenous (NARX) Neural Network (NN) with di�erent network settings have been used to facilitate the wind power generation.
�e essence of this study is that it compares the e�ect of activation functions (namely, tansig and logsig) in the performance of
time series forecasting since activation function is the core element of any arti�cial neural network model. A set of wind speed data
was collected from di�erent meteorological stations in Malaysia, situated in Kuala Lumpur, Kuantan, and Melaka. �e proposed
activation functions tansig of NARNN and NARXNN resulted in promising outcomes in terms of very small error between actual
and predicted wind speed as well as the comparison for the logsig transfer function results.

1. Introduction

Not only is the world’s total consumption of electricity
rapidly increasing, but also the greenhouse gas (GHG)
emission is increasing by the power generation from fossil
fuels. Moreover, the world electricity generation rate (2.7%
average annual) is increasing from 2003 to 2015 and it will
continue until 2030 [1]. However, approximately 40% of GHG
emissions of the world’s total emissions are from electricity
generation where most of the industries use fossil fuels,
namely, coal and oil [2]. GHG emission is considered to
be hazardous for the human race, and fortunately fossil
fuels can be omitted by renewable energy sources, namely,
wind, solar, biomass, and rain, to name a few. Demand
of wind energy is increasing to overcome the greenhouse
e�ect and make e�cient usage of the surrounding energy
resources. Because of the free-cost nature and availability,
the wind energy is considered to be the most e�cient and
technologically advanced renewable energy source accessible
[1]. �e site selection for wind turbine installation is very

crucial to obtain maximum wind energy production, and the
maximum wind power generation can be achieved when the
available wind speed is higher than the wind turbine’s cut-in
wind speed. In addition, the relation between wind speed and
wind power is cubic proportional; therefore, slight change
of wind speed will give much higher wind power (cubic).
Consequently, progress in wind speed prediction for wind
energy conversion system will help lessen the risks to install
wind turbines in low-e�ective places.

Although the wind speed is the most challenging factor
for wind power generation, the variation of wind speed found
in nature is chaotic. Sometimes, wind turbine can be a�ected
by high cut-out wind speed, i.e., the production of wind
power generation is stopped when wind speed is very high.
�e WSF plays a very important role for optimum planning
and wind energy applications. Time series forecasting of
the wind speed is de�ned by wind data over time. One-
month-ahead wind speed forecasting data can be developed
by historical weather or wind data [3]. Basically, forecasting
of wind speed can be divided into four-time categories: very
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short-term (VST), short-term (ST), medium-term (MT), and
long-term (LT) forecasting. Meanwhile, VST refers to less
than 30-minutes-ahead of WSF. In real time, wind turbine
can be controlled by ST wind speed forecasting; moreover,
less than 72 hours to 1 hour resides in ST forecasting [4],
and planning of load dispatch can be employed by ST
forecasting.On the other hand, 6 hours to 1-day-ahead resides
in MT wind speed forecasting, which helps to manage power
system and secure operation of wind turbines. Lastly, LT
forecasting is useful to optimize the operation cost and
schedulemaintenance. It can also be applied to save costwhen
operators need to schedule wind project maintenance and
construction. Wind projects o�en require the turbines to be
taken down during the commissioning of new turbines, and
this can take from hours to weeks depending on the weather.
LT forecasting of wind speed can minimize the scheduling
errors and in turn increase the reliability of the electric power
grid and reduce the power market ancillary service costs [5–
7]. �e forecasting process of wind speed is very di�cult as
wind speeds are chaotic depending on the earth’s rotation and
properties of topographical condition such as temperature
and pressure.Methodologically, wind speed prediction can be
classi�ed into four groups, i.e., physical, statistical, arti�cial
intelligence (AI), and hybrid methods [6, 8]. In this study,
AI, namely,NAR andNARX, neural network has been chosen
for wind speed forecasting due to higher forecasting accuracy
and no mathematical model required.

Arti�cial neural network (ANN) is the most promising
arti�cial intelligence. Neural network emulated not only the
human brain but also knowledge gain through a learning
process [9]. In the last few years, ANN has been proven to be
a promising technique for time series prediction, assessment
of energy, and pattern reorganization. For the application
of time series forecasting, several ANN types are used, for
instance, Nonlinear Autoregressive Exogenous Neural Net-
work (NARXNN),NonlinearAutoregressiveNeuralNetwork
(NARNN), and Recurrent Neural Network (RNN). In this
paper, NARNN and NARXNN have been used to execute
wind speed forecasting for the chosen areas in Malaysia.
Since the real-world happenings are dynamic and depend on
their current state, only nonlinear system can properly depict
them. In such dynamic and nonlinear cases, neural network
structures such as the dynamic Recurrent Neural Network
(RNN), the Nonlinear Autoregressive (NAR), and the Non-
linear Autoregressive Neural Network with Exogenous inputs
(NARX) are very advantageous. One of the major bene�ts
of such structures is that they can accept dynamic inputs
represented by time series sets. Neural network (NN) is a
non-parametric method for a time series forecasting where
the knowledge of the process that generate time series is not
crucial. (Please delete ’Time series forecasting using neural
network (NN) is such non-parametric method). Although
the NAR and NARX model uses the past values of the time
series to predict future values, the RNNmodel does not need
past time series values as inputs nor delays [10, 11].

Several researchers have reported di�erent ANN model
for WSF ranging from few seconds to more than one year
ahead. Guo et al. [12] proposed the hybrid backpropagation
neural network for WSF one-year-ahead in order to remove

seasonal e�ects of wind speed from 2001 to 2016 in Min-
qin, China, and their proposed BPNN shows lower mean
absolute percentage error (MAPE) of 28.16% in comparison
to single BPNN. Lui and coauthors [13] have employed a
hybrid Empirical Mode Decomposition and arti�cial neural
networks (MED-ANN) to forecast and eliminate randomness
of wind speed. ForWSF, a highly satis�ed result was obtained
with ANN compared to that of the Autoregressive Integrated
Moving Average (ARIMA) method. Masseran et al. [14] have
considered 10 wind stations to �nd out the most potential
areas in Malaysia for wind speed forecasting. Although the
existing wind speed in Malaysia is quite low compared to
other countries, Mersing has found to have considerably
higher wind speed than other wind station places inMalaysia,
i.e., around 18.2% of power is produced from Mersing wind
station. One-day-aheadWSF has been done by Li and Shi [15]
using three ANNs in North Dakota, United State of America
(USA). Azad et al. [6] considered twometeorological stations
inMalaysia for long-termWSF using ANN.�ey found lower

mean absolute error (MAE) of 0.8 ms−1 using their proposed
algorithm. Short-term WSF at La Venta, Oaxaca in Mexico,
was practiced by Cadenas and Rivera [16] using ANN. �e
accuracy of the proposed ANN is satisfactory based on their
error level, i.e., MAE (0.0399) and MSE (0.0016). In addition,
Candenas and Rivera [17] have proposed a hybrid ARMIA-
ANN model for average WSF in Mexico in 2010 for three
places in Mexico. �e accuracy of hybrid model was higher
than that of single ARMIA and ANN. Jiang et al. [18] applied
v-SVM model for WSF to overcome the similar 	uctuation
information between the adjacent wind turbine generators.
�e proposed Variant Support Vector machine (v-SVM) has
shown better accuracy in comparison to Epsilon Support
Vector machine (�-SVM) model. Men et al. [19] applied
mixture density neural network (MDNN) for ST wind speed
and wind power forecasting in Taiwan using wind farm
data.�eMDNNhad three-layer architecture where di�erent
numbers of hidden layers and nodes were used for each
layer, and this method was e�ective for multistep-ahead wind
power and wind speed forecasting.

In terms of various activation functions in NN, B. Karlik
and A. V. Olgac [20] have used Bi-polar sigmoid, Uni-polar
sigmoid, Hyperbolic tangent (tansig), Conic Section, and
Radial Bases Function (RBF) for the evolution of Multi-
Layer Perceptron (MLP) architecture along with Generalized
Delta rule learning. �ey have found that activation function
Hyperbolic tangent (tansig) was more accurate than the
other functions at 100 and 500 iterations. (Please delete
’In addition, tansig achieved more accuracy to other four
activation functions at 100 and 500 iterations’). Regres-
sion problem can be solved by Random Vector Functional
Link Neural Network (RVFLNN) where statistically tansig
function prefers superior result compared to the other two
functions (logsig, tribas) [21]. Activation function of ANN
applied to forecast 	ows at the outlet of a watershed that is
located in Khosrow Shirin watershed in Iran. �ey found
superior result with tansig-ANN to compare logsig-ANN
and conventional hydrological model [22]. Moreover, tansig-
ANN provided 94% accuracy than logsig-ANN (84% accu-
racy) for psychological variables in ascertaining potential
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archers [23]. M Vafaeipour et al. [24] investigated wind
velocity prediction using neural network with two activa-
tion functions in Tehran, Iran, and found tansig activation
function works better than logsig activation function. �eir
suggestions were based on mean square error (MSE), root
mean square error (RMSE), and correlation coe�cient (R)
performance indicators.

�emost e�ective way of long-termWSF has been found
to be AI methods since they do not require mathematical
model other than their own universal algorithm for future
time series prediction. So, this paper uses NARNN and
NARXNN for WSF. With both of these networks, two di�er-
ent activation functions, namely, “tansig” and “logsig,” have
been used separately in this study to �nd the most suitable
one for NARNN and NARXNN. In previous studies, both of
these activation functionswerewidely used for various neural
network applications including WSF. However, no study has
not yet explored the e�ect of di�erent activation functions
in time series networks to �nd the most e�ective one. It is
known that activation function is a core component in any
neural network model, because they add nonlinearity and
enable the network to converge during backpropagation. So,
if one activation function is better than the other, it would
signi�cantly enhance the time series prediction performance
of the network by enhancing the derivative and thus the
converging performance. �is is why the contribution of this
study is that it examined the performance of two activation
functions: hyperbolic tangent sigmoid (tansig) and logistic
sigmoid (logsig) when used in di�erent time series networks
such as NAR and NARX with di�erent time series datasets
but with the same network parameters and architectures.
Such analysis will reveal if any of the activation functions
consistently perform better than the other in di�erent condi-
tions, so that future researchers choose the proper activation
functions while conducting neural network-based time series
forecasting tasks.

Here, the actual wind speed data from meteorological
department of Malaysia has been used for training and
testing of NAR and NARX neural networks. To evaluate
the proposed models, indicators, namely, MAE, MAPE, and
RMSE, have been used.

�e layout of the paper is as follows: wind speed in
Malaysia is presented in Section 2. Arti�cial intelligence
models are described in Section 3. Accuracy of evolution
method is displayed in Section 4. In Section 5, the results and
discussion are presented. Finally, the conclusion of this study
is presented in Section 6.

2. Wind Speed in Malaysia

All countries are heavily dependent on the energy sector in
their development processes, and the world’s demand for
energy is increasing day by day. According to the British
Petroleum, the utilization of primary energy has expanded
to 2.2% from year 2013 to 2017. In energy consumption, the
largest augmentation among the fuel types is the natural gas
and then oil. Notwithstanding, the requirement of energy,
renewable energy, still does not have huge quota in total
energy portfolio juxtaposed to nonrenewable energy. In 2017,

the most consumed global energy source is oil which was
approximately 34.2% compared to other energy sources.
Likewise, Malaysia is also highly dependent on fossil fuel
which is over 90% to generate energy due to the lack of
renewable energy sources. �us, the Malaysian government
is emphasising on renewable energy for power generation, in
particular, wind energy projects, since wind energy evolution
has major drawback because Malaysia is settled in a lowwind
speed zone [28].

Some of the projects do not carry out to their desired
destination. SK Najid et al. proposed a 150 kW wind tur-
bine project at Pulau Terumbu Layang-Layang in Sabah.
According to them, that was the �rst wind turbine installed
in Malaysia [29]. �at proposed project was expanded by
Universiti Kebangsaan Malaysia (UKM), and it was com-
bined with diesel system that generated power supply to an
army base and the nearest resort. Moreover, they extended
the study for potential wind speed analysis to compare
other areas of Malaysia. In the study, Pulau Terumbu was
considered to be a promising potential area for wind power
generation compared to other areas in Malaysia [30]. In
addition, the most famous wind turbine project was installed
at Tenaga Nasional Berhad (TNB) in Perhentian Island. �is
100 kW project was hybridized with 100 kWphotovoltaic and
100 kWdiesel generator set.�ey recorded themaximumand
minimum wind speed of 3.6 m/s and 15.6 m/s, respectively
[31].

Malaysia is a country located in the south-east part of
Asia. It is surrounded by �ailand, Indonesia, and Brunei
borders. In Malaysia, total coastline area is about 4675 km

which is the 29th longest in the world [32]. For this reason,
Malaysia concedes the importance of RE (Renewable Energy)
as a source of generating electricity instead of fuel. A program
known as Small Renewable Energy Power (SREP) program
had been embraced for boosting up the evolution of RE but
unfortunately the results were not acquired the way they
should be. �e development pace of RE is slow with the
total volume of electricity generated from RE is still small.
A�er that, Malaysian parliament passed Renewable Energy
Act 2011 (Act 725) (a national energy policy) in 2011 for
implementation [33–36]. In the year 2015, the wind power
production target was 985 MW as reported. However, it
produced around 400 MW earlier in 2015. In addition, the
success percentage (50%) was ful�lled to the original target
[37] as it was reported that the target was impossible to
achieve. Other than that, the target for year 2015 was 985MW,
while 2020 and 2030 are projected to contribute 2080 MW
and 4000MW, respectively. In Malaysia, wind energy project
is employed only for education research purpose.

�e climate of Malaysia is categorized by four seasons:
�rst intermonsoon (April), southwest monsoon (Mid-May to
September), the second intermonsoon (October), and north-
east monsoon (November to March) [6, 14]. In Malaysia,
the wind 	ow is uniform and the maximum wind 	ow
occurs in the a�ernoon and the minimum wind 	ow occurs
before sunrise. Figure 1 shows average wind speed each
month in Kuala Lumpur, Melaka, and Kuantan. �e average
wind speed is 6-12 km/h of all places. �e wind data with
one-hour interval have been collected from the Malaysian
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Table 1: Geographical coordinate and altitude of three wind
stations.

Latitude Longitude Altitude (m)

Kuala Lumpur 3∘15�N 103∘06�E 5.2

Kuantan 3∘47�N 103∘13�E 15.3

Melaka 2∘16�N 102∘15�E 8.5
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Figure 1: Average wind speed in three regions.

Meteorological Department (Table 1) over a period of 4
months from January to April in 2017.

3. Artificial Neural Network

3.1. Nonlinear Autoregressive Neural Network. �e applica-
tion of time series has been characterized by chaotic wind
speed. �e linear mathematical model is di�cult to predict
the wind as it varies randomly in real environment. �us, the
	eeting transient and the higher variation wind speed needs
to be predicted by nonlinearmodel as in (1). For this, NARNN
canbe used for e�ective nonlinear time series forecasting.�e
NARNN can be de�ned as given in [38, 39].

y (t) = f (y (t − 1) , y (t − 2) , y (t − 3) , . . . y (t − n))
+ � (t) , (1)

where y is the data series of wind speed at time, n is the
input delay of wind speed series, and f denotes a transfer
function. �e training of the neural network aims to estimate
the function by means of the optimization of the network
weights and neuron bias. �e y series of wind speed has been
determined by approximation of the term �(t) which stands
for error tolerance. Endogenous input of NARNN can be
expressed as follows, given in [10, 40]:

ŷ (t) = f (y (t − 1) , y (t − 2) , y (t − 3) , . . . y (t − 72))
+ � (t) , (2)

where delay of input n = 72. NARNN consists of one
input layer, one or more hidden layer(s), and one output
layer. NARNN is dynamic and recurrent with connection
of feedback as shown in Figure 2. Both hyperbolic tangent
(tansig, (3)) and sigmoid (logsig, (4)) function have been

Hidden Layer Output Layer Input Layer

y(t − n(72))

y(t − 1)

y(t)

y(t − 2)

y(t − 3)

y

Figure 2:�e NAR neural network.

implemented here using MATLAB with narnet() built-in
function for NARNN to compare the network accuracies
for wind speed forecasting. �ese MATLAB functions were
implemented with their default settings as given in [41].
To obtain better performance from the network, topology
of NARNN was optimized by trial and error. It should
be noted that the system will be complex by an increased
number of neurons. �e trial and error procedure has found
that the single hidden layer with 20 hidden neurons yields
the best accuracy. Levenberg-Marquardt Backpropagation
(LMBP) has been chosen as the only training algorithm of
NARNN as it is fast and more accurate than other training
algorithms [42]. Although in previous studies logsig transfer
function has been used intensively, tansig function o�ers
more advantages, i.e., it provides stronger gradients than
logsig and thus reduces the chance of saturation of neurons.
In addition, tansig function avoids ‘biasing’ of the gradients as
explained in [43].Moreover, according to [44], networks with
large amount of connectivity (as presented in this study) get
trained faster with backpropagation algorithm when an anti-
symmetric activation function, e.g. tansig function, is used.
In this study, ‘trainlm’ function of MATLAB has been used
with defaults setting for the LMBP [45]. Since the one-step-
ahead value is being forecasted, an open loop (series-parallel)
structure is used instead of close loop (parallel) structure as
it is typically used for multistep-ahead forecasting:

Otansig = eu − e−ueu + e−u (3)

Ologsig = 11 + e−u . (4)

3.2. NonlinearAutoregressive ExogenousNeural Network. �e
Nonlinear Autoregressive Exogenous input is to predict time
series which is proposed in [46]. For this, NARXNN can be
used for e�ective nonlinear time series forecasting. �e time
series of NARXNN can be de�ned as follows [10]:

y (t) = h (x (t − 1) , x (t − 2) , . . . , x (t − k) , y (t − 1) ,
y (t − 2+) , . . . , y (t − p)) + � (t) , (5)
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Figure 3:�e NARX neural network.

where past value p is predicted time series y(t) and it
has another external time series which is de�ned as x(t).
�e external time series x(t) has a single dimension or is
multidimensional. �e NARXNN prediction is based on the
last output values with exogenous input for future values
estimation. In this study, wind speed is used as input time
series at time t-1, y(t-1) and temperature [47, 48]which is used
as exogenous input at time t-1, x(t-1).�e single output is y(t).
�e NARXNN and NARNN are almost similar. Temperature
is used as an external input in NARX. Figure 3 shows the
architecture of NARXNN.

4. Accuracy of Evolution Method

�e prime goal of WSF is to obtain a satisfactory accuracy
using NARNN and NARXNN, thus selecting potential areas
for further wind turbine installation. �e accuracy of WSP
can be determined by (6)-(8). Here, three indicators have
been used, namely, mean absolute error (MAE), mean abso-
lute percentage error (MAPE), and root mean square error
(RMSE), for the long-termWSP [49, 50].Mean absolute error
is expressed as [51]

MAE = 1
n

n∑
i=1

����Rws − Pws
���� . (6)

MAE is used as an uncertainty measurement indicator to
assess the risk of trusting in the prediction. �e MAE is a
measure of the average of the absolute error whose advantage
is that it is easier for nonspecialists to understand [6].

Mean absolute percentage error is expressed as [52]

MAPE = 1
n

n∑
i=1

����Rws − Pws
����

Rws

× 100. (7)

�eMAPEmakes the comparison of results between the two
models easier because it is percentage-based [53].

Root mean square error is expressed as [54]

RMSE = √ 1
n

n∑
i=1
(Rws − Pws)2, (8)

where RwsRws and PwsPws are the real and predicted of wind
speed, respectively, and n is de�ned by the number of data.

5. Results and Discussion

Firstly, the wind speed data has been collected from
Malaysian Meteorological Department (MMD) of three
regions in Malaysia from January to April, 2017. �e wind
speed data was taken in one-hour interval for all the places.
�e main objective of this study is to compare the perfor-
mance of activation functions of NAR and NARX neural
network for 1-month-aheadWSF for three di�erent regions in
Malaysia.�e�rst threemonths of wind speed data have been
used for training and last one-month data have been used for
testing in NARNN and NARXNN, respectively. �e process
of WSF by NARNN and NARXNN is shown in Figure 4.
�e only di�erence is in input; henceforth, output y(t) takes
account of the external data as it appears in (5). Despite
the 	exibility of NARX to model exogenous input to help
improve results by modelling external dependencies, NAR
models are a good alternative because of their simplicity, as
discussed in [10, 55]. In the experimental section, we make
both approaches.

Figures 5 and 6 show WSF of these places when using
tansig and logsig transfer function of NAR and NARX,
respectively. From Figures 5(a) and 5(b), it can be seen that
the tansig function results in greater accuracy in WSF (MAE
0.014, MAPE 14.79%, and RMSE 1.102) than logsig function
(MAE 0.041, MAPE 16.78%, and RMSE 1.281) for Kuala
Lumpur based on Table 3. �e accuracy of tansig function
(MAE 0.025, MAPE 19.27%, and RMSE 1.15) is greater than
the logsig function (MAE 0.134, MAPE 28.84%, and RMSE
1.788) which can be shown in Figures 5(c) and 5(d) for
Kuantan. As shown in Figures 5(e) and 5(f), a better precision
of tansig function (MAE 0.029, MAPE 10.79%, and RMSE
0.583) is obtained in comparison to logsig function (MAE
0.339, MAPE 11.03%, and RMSE 0.858) for Melaka.

Figure 6 shows a 1-month-ahead WSF at these places
using tansig and logsig functions of NARXNN. For Kuala
Lumpur, the performance of tansig function (MAE 0.046,
MAPE 14.22%, and RMSE 1.231) is slightly higher than the
logsig function (MAE 0.058, MAPE 12.04%, and RMSE
1.028), as shown in Figures 6(a) and 6(b). For Kuantan,
as shown in Figures 6(c) and 6(d), the accuracy of logsig
function (MAE 0.880, MAPE 22.55%, and RMSE 1.485) is
lower than tansig function (MAE 0.550, MAPE 20.46%, and
RMSE 1.212). For Melaka, the performance accuracy between
two activation functions, namely, tansig and logsig, is MAE
0.434,MAPE 11.23%, andRMSE0.853 andMAE0.180,MAPE
15.15%, and RMSE 1.28, respectively, with tansig function
outperforming logsig function in terms of accuracy, as shown
in Figures 6(e) and 6(f).

�e ratio of contraposition of predicted and measured
values’ outcome can be de�ned as correlation of coe�cient(
) which is between -1 and 1. �e R is presented as how
well a regression model �ts the data. �e scattered values
of predicted and measured wind speed have been shown
in Figure 7. Two di�erent activation functions of NARNN
provide WSF results for these places. As expected, most of
the predicted andmeasured values are around to the diagonal
line in all cases. By using tansig function, the correlation
coe�cients in case of Kuala Lumpur, Kuantan, and Melaka
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Figure 4: Wind speed forecasting using NARNN and NARXNN.

Table 2: Model parameters of NAR and NARX neural networks with tansig and logsig functions.

Areas

NAR and NARX Neural Networks

Tansig Logsig

Epoch Time (s) Performance Neuron Epoch Time (s) Performance Neuron

NARNN

Kuala Lumpur 160 58 1.02 20 160 65 1.55 20

Kuantan 160 55 1.21 20 160 65 1.39 20

Melaka 161 62 1.34 20 160 71 2.11 20

NARXNN

Kuala Lumpur 160 66 1.24 20 160 70 1.36 .20

Kuantan 160 99 1.09 20 160 112 1.38 20

Melaka 160 78 1.12 20 160 80 1.29 20

were obtained as 0.9671, 0.9463, and 0.9703, respectively. By
using logsig function, the correlation coe�cients of Kuala
Lumpur, Kuantan, and Melaka were obtained to be 0.9503,
0.8606, and 0.9645, respectively. From Figure 8, the correla-
tion coe�cients from tansig-NARX function were found to
be near value 1 (Kuala Lumpur: 0.9665, Kuantan: 0.9288, and
Melaka: 0.9780) whereby for logsig function, the correlation
coe�cients were more deviated from value 1 (Kuala Lumpur:
0.9514, Kuantan: 0.9115, and Melaka: 0.9561). Based on the
above evaluation, the coe�cient of correlation values for all
cases were found in between 0.85 and 0.97 which are almost
near to 1. Both tansig-NAR and tansig-NARX functions are
displayed to be slightly better than the logsig-NAR and logsig-
NARX for wind speed forecasting in all those places.

Figures 9 and 10 show the success rates of the forecasted
results where the y axis of Figures 9 and 10 represents the
number of instances, i.e. number of test datasets, and x
axis represents the error in percentage. So, Figures 9 and 10
basically show how many test datasets (in percent) reside
in low and high error region. It is noticeable that tansig
function provides better success rates than logsig function
for these places. At Kuala Lumpur, tansig-NAR provides
the 85% success rate where the error percentage is 22%.
While the logsig-NAR achieves 78% success rate at 20%
error. In Kuantan area, the tansig-NAR provides around 57%
instances at 15% error while the logsig-NAR comes around
55% instances within 22% error. For instance, using tansig,
success rates in case of Melaka comes around 95% at 29%
error. On the other hand, at 18% error, the instances of
forecasting deliver 83%.

Figure 10 shows “percentage of instances” vs. “error bin
in percentage,” for two activation functions of NARX. For

instance, using tansig, success rates in case of Kuala Lumpur,
Kuantan, and Melaka come around 85%, 64%, and 96%,
respectively. For instance, using logsig, success rates in case of
Kuala Lumpur, Kuantan, andMelaka come around 76%, 53%,
and 64%, respectively. However, logsig-NARX provides the
percentage of instance slightly higher than the tansig-NARX
in Kuantan while the error percentage of tansig-NARX is
better than logsig-NARX. It can be seen that tansig delivers
better success rates than logsig for all three palaces.

Table 2 shows the key four parameters of NARNN and
NARXNN, namely, epoch, time, performance, and number of
hidden neurons. In this study, epoch and number of neurons
were �xed, where the other two parameters were varied
with input characteristics, i.e., 	uctuation of wind speed. For
NARNN, the neural network performance values of tansig
function are 1.02, 1.21, and 1.34 for Kuala Lumpur, Kuantan,
and Melaka, respectively. On the other hand, the logsig-
ANN shows higher performance of 1.39 at Kuantan while
the lower performance of 2.11 was delivered at Melaka. �e
tansig training function was completed at the shortest time,
i.e., 55s. �e performance of tansig function has showed the
lowest value of 55s for Kuantan in comparison with Kuala
Lumpur and Melaka. In terms of the operation time, 65s is
needed for logsig function for Kuantan and KL, which is
lower thanMelaka. For NARXNN, the performance of neural
network of tansig function has shown the lowest value at
1.09 for Kuantan as compared with the other two areas. For
Kuantan, Kuala Lumpur, and Melaka, the neural network
performance values of logsig function are 1.38, 1.36, and 1.29,
respectively. By using tansig function, the operation time
values taken for Kuala Lumpur, Kuantan, andMelaka are 66s,
99 s, and 78s, respectively. For logsig function, the operation
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Table 3: Performance indicators of WSF.

Areas

NAR and NARX Neural Networks

Tansig Logsig

MAE (m/s) MAPE RMSE MAE (m/s) MAPE RMSE

NARNN

Kuala Lumpur 0.014 14.79 1.102 0.041 16.78 1.281

Kuantan 0.025 19.27 1.15 0.134 28.84 1.788

Melaka 0.029 10.79 0.583 0.339 11.03 0.858

NARXNN

Kuala Lumpur 0.046 14.22 1.231 0.058 12.04 1.028

Kuantan 0.550 20.46 1.212 0.880 22.55 1.485

Melaka 0.0317 9.53 0.833 0.434 11.23 0.853
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Figure 5: Comparison of wind speed forecasting values from the proposed activation functions of NARNN methods at Kuala Lumpur,
Kuantan, and Melaka.

time values of the same places are 70s, 112s, and 80s in that
order. It can be concluded that, based on the above discussion,
the performance of the tansig activation function has always
made signi�cant contribution not only to assessment of the
logsig function, but also at the operation timeneural network.

�ree performance indicators are used to measure the
accuracy of WSF for three di�erent regions with two transfer

functions of NARNN and NARXNN, as shown in Table 3.
Firstly, by considering MAE, tansig function shows a better
result in terms ofMAE, i.e., 0.014 for KL as comparedwith the
other twowind stations.�e logsig training function provides
the best result with MAE of 0.041 for KL wind station in
comparison to Kuantan and Melaka. MAE results of both
tansig-NARNN and logsig-NARNN are found to be lower
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Figure 6: Comparison of wind speed forecasting values from the proposed activation functions of NARXNN methods at Kuala Lumpur,
Kuantan, and Melaka.

than MAE of 0.8 m/s, which was provided by Azad et al. [6]
for long-term wind speed forecasting at Malaysia. Secondly,
considering the MAPE, the lowest MAPE value was found
for Melaka when using tansig function (MAPE of 10.79). In
addition, theMAPE values of Kuala Lumpur and Kuantan are
14.79 and 19.27, respectively. �e lowest MAPE value among
these places when using logsig function is 11.03 for Melaka
station.�irdly, by considering theRMSE, the tansig function
provides a smaller value (RMSEof 0.583) forMelaka, whereby
the other two areas show almost similar values of RMSE of
around 1.15. Moreover, the logsig function shows the lowest
RMSE value, i.e., 0.858 for Melaka. �e RMSE value of Kuala
Lumpur is almost similar toKuantan (RMSEof around 1.788).
For NARXNN, three performance indicators, namely, MAE
(0.0317),MAPE (9.53), and RMSE (0.833), have showed lower
values for tansig in comparison to the logsig transfer function
as shown in Table 3. From Table 3, it can be decided that
the tansig function displays lower error based on the RMSE,
MAE, and MAPE indicators for wind speed forecasting.

In support of the above outcome, Table 4 shows the
outcome of di�erent studies that used both tansig and logsig
activation functions for various forecasting tasks. It can be
seen that the results of these studies also found tansig to be
a better activation function. �erefore, it can be concluded
that tansig activation function should be used in NAR and
NARX neural networks to obtain a better accuracy on time
series forecasting jobs. �e primary reason is that logsig
function is more prone to neuron-saturation. If an input
value is large, logsig function makes the gradient close to
zero, whereas tansig function providesmuch greater gradient.
�erefore, for the same number of epochs, logsig function
makes NARNN learn lesser than tansig function. �is is why
for the exact same epochs, topology, initial weights, and other
similar settings, tansig always provides a better accuracy than
logsig function, as presented above. �erefore, it can be said
that the outcome of some previous similar studies on time
series forecasting which used only logsig such as [56, 57]
could have been better if tansig had been used.
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Figure 7: Correlation of coe�cient of wind speed forecasting at Kuala Lumpur, Kuantan, andMelaka using both activation functions (tansig
and logsig) of NARNN.

Table 4: Supportive outcome of other studies.

Studies ANNModel Objective
Accuracy with

tansig
Accuracy with logsig

M.
Rezaeianzadeh
et al. [25]

Multi-Layer
Perceptron
(MLP)

To predict daily
out	ow

(R2 = 0.89 and
RMSE = 1.69)

(R2 = 0.80 and RMSE
= 2.30)

M. Vafaeipour et
al. [24]

MLP
To predict Wind

velocity

(MAE = 1.48,
RMSE = 1.22 and

R2 = 0.843)

(MAE = 1.48, RMSE =
1.218 and R2 = 0.844)

M.
Rezaeianzadeh
et al. [22]

MLP
To forecast daily

out	ow
(R2 = 0.87 and
RMSE = 1.87)

(R2 = 0.84 and RMSE
= 2.1)

R. MuazuMusa
et al. [23]

MLP

To identify potential
archers of

psychological coping
skill variables

94% e�ciency 84% e�ciency

Aladag, and
Hakan [26]

ANN
To forecast the

number of outpatient
visits

(RMSE = 203.06) (RMSE = 243.28)

GSS Gomes [27] ANN
To forecast �nancial

time series
(MAPE=20%) (MAPE =25.7 %)
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Figure 8: Correlation of coe�cient of wind speed forecasting at Kuala Lumpur, Kuantan, andMelaka using both activation functions (tansig
and logsig) of NARXNN.

6. Conclusion

�e forecasting of wind speed plays an important role in
producing wind energy and it is one of the rapid growing
renewable energy sources in the world. To improve and
optimize wind power generation, an accurate forecasting of
wind speed is an important key. Speci�cally, long-term speed
forecast can help us enable model predictive management of
wind turbines as well as real-time expansion of wind farm
operation. Overall, the WSF is important for engineering,
number of operations, and �nancial reasons. In this paper,
accuracy of the proposed NARNN and NARXNN with two
di�erent activation functions, namely, tansig and logsig for
WSF, is increased by using four statistical indicators such

as MAE, MAPE, RMSE, and R2. It is observed that the
most suitable model can be identi�ed with the value of the
indicators: MAE, MAPE, and RMSE. �e average value of
tansig-NARNN has given a promising result (MAE 0.0082,
MAPE 11.39%, and RMSE 0.86) compared to that of the
logsig-NARNN (MAE0.0163,MAPE 15.36%, andRMSE 1.13).
In addition, the average value of logsig-NARXNN (MAE0.10,
MAPE 15.40%, and RMSE 1.16) has provided a lower result
than tansig NARXNN (MAE 0.06, MAPE 9.06%, and RMSE
0.53). �e comparison between tansig and logsig functions
was carried out in a standard benchmark by keeping the

network settings (e.g., topology, number of epochs, number
of hidden neurons, and initial weights) �xed. Since tansig
function provides better results in both neural networks
(NAR and NARX) at network settings with the same input
data, it is therefore the suitable activation function compared
to logsig function. �e e�ectiveness of tansig-NARNN and
tansig-NARXNN can be used for long-term wind speed
forecasting based on error evolution.

Apart from the control and optimization of wind farm
operation, forecasting the behaviour of the wind resources
can provide valuable information for energy managers,
energy policy makers, and electricity traders. Moreover,
forecasting information can also help in times of operation,
repair, and replacement of wind generators and conversion
lines.

�e tansig and logsig methods are compared and investi-
gated for improving the performance of the proposed neural
networks. It is to be mentioned that the performance of the
ANNs is heavily dependent on the selection of activation
functions. Moreover, compared to other activation functions,
tansig can learn more e�ectively in the training process and
was selected as the best nonlinear activation function for both
the hidden and output layers of the NAR and NARX neural
network to predict nonlinear wind speed environments. �is
is considered to be one of the most signi�cant �ndings from
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Figure 9: Success rate of test wind speed data for Kuala Lumpur, Kuantan, andMelaka using both activation functions (tansig and logsig) of
NARNN.

this study. However, this study will help the practitioners
to gain valuable knowledge about the ANN over the more
widely used conceptual wind speed forecasting.

Although an immense number of research and develop-
ment works are going on in this �eld, further investigations
are required in the following areas to develop wind speed
forecasting using tansig and logsig activation functions:

(i) to applymore e�ective activation functions for similar
applications

(ii) to utilize activation functions at hybrid arti�cial
neural network

(iii) to develop short-term and very-short-term wind
speed forecastingmodel in di�erent areas inMalaysia.

Nomenclature

ANN: Arti�cial neural network
NAR: Nonlinear Autoregressive
NARX: Nonlinear Autoregressive Exogenous
WSF: Wind speed forecasting
GHG: Greenhouse gas
VST: Very-short-term
ST: Short-term
MT: Medium-term
LT: Long-term
AI: Arti�cial intelligence
RBNN: Radial basis neural network

RNN: Recurrent Neural Network
EMD-ANN: Empirical Mode Decomposition and

Arti�cial Neural Networks
ARIMA: Autoregressive Integrated Moving Average
v-SVM: Variant Support Vector machine�-SVM: Epsilon Support Vector machine
MLP: Multilayer Perceptron
MDNN: Mixture density neural network
LMBP: Levenberg-Marquardt Backpropagation
MAPE: Mean absolute percentage error
MAE: Mean absolute error
RMSE: Root mean square error
R: Coe�cient of correlation

R2: Coe�cient of determination
RVFLNN: Random vector functional link neural

network
MMD: Malaysian Meteorological Department
KL: Kuala Lumpur
SREP: Small renewable energy power program
tansig: Hyperbolic tangent sigmoid
logsig: Logistic sigmoid
TNB: Tenaga Nasional Berhad

Symbols

y: Data series
n: Input delay�(t): Error tolerance
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Figure 10: Success rate of test wind speed data for three di�erent areas in Malaysia using both activation functions (tansig and logsig) of
NARXNN.

y(t): Time series
x(t): External time series
Rws: Real wind speed
Pws: Predict wind speed.
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