
2952 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 6, JUNE 2018

A Comparative Study of Algorithms for Realtime

Panoramic Video Blending

Zhe Zhu , Jiaming Lu, Minxuan Wang, Songhai Zhang, Ralph R. Martin, Hantao Liu,

and Shi-Min Hu, Senior Member, IEEE

Abstract— Unlike image blending algorithms, video blending
algorithms have been little studied. In this paper, we investigate
six popular blending algorithms—feather blending, multi-band
blending, modified Poisson blending, mean value coordinate
blending, multi-spline blending, and convolution pyramid blend-
ing. We consider their application to blending realtime panoramic
videos, a key problem in various virtual reality tasks. To evaluate
the performances and suitabilities of the six algorithms for this
problem, we have created a video benchmark with several videos
captured under various conditions. We analyze the time and
memory needed by the above six algorithms, for both CPU
and GPU implementations (where readily parallelizable). The
visual quality provided by these algorithms is also evaluated both
objectively and subjectively. The video benchmark and algorithm
implementations are publicly available.1

Index Terms— Video blending, video stitching, video quality
assessment, panoramic video.

I. INTRODUCTION

M
ANY image editing [1] tasks involve blending images,

e.g. panorama stitching, or copying-and-pasting of

objects into images. As human eyes are sensitive to color

and lighting inconsistencies within images, image blending is

used to provide smooth transitions between image parts from

different sources. Image blending is now a standard part of

modern image editing tools such as Adobe Photoshop.

While state-of-the-art image blending algorithms [2]–[7]

can achieve good results, it is difficult to find evaluations of

Manuscript received May 10, 2017; revised November 17, 2017 and
January 11, 2018; accepted February 10, 2018. Date of publication
February 22, 2018; date of current version March 27, 2018. This work
was supported in part by the Natural Science Foundation of China under
Grant 61561146393 and Grant 61521002, in part by the Research Grant of
Beijing Higher Institution Engineering Research Center, and in part by the
Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Jianfei Cai. (Corresponding author: Songhai Zhang.)

Z. Zhu, J. Lu, M. Wang, and S. Zhang are with TNList, Tsinghua
University, Beijing 100084, China (e-mail: ajex1988@gmail.com; loyavafor-
ever@gmail.com; hitminxuanwang@gmail.com; shz@tsinghua.edu.cn).

R. R. Martin and H. Liu are with the School of Computer Science
and Informatics, Cardiff University, Cardiff CF24 3AA, U.K. (e-mail:
ralph@cs.cf.ac.uk; liuh35@cardiff.ac.uk).

S.-M. Hu is with TNList, Tsinghua University, Beijing 100084, China, and
also with the School of Computer Science and Informatics, Cardiff University,
Cardiff CF24 3AA, U.K. (e-mail: shimin@tsinghua.edu.cn).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. The supplementary file
includes a PDF that shows representative scenes of the authors’ datasets. The
total size of the file is 32.2 MB. Contact ajex1988@gmail.com for further
questions about this work.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2018.2808766
1http://cg.cs.tsinghua.edu.cn/blending/

the trade-off between their speed and quality of results. This

is mainly because these algorithms can provide high quality

results in a short time: e.g. mean value coordinate blending [5]

can blend a region with 1 million pixels in about 1 s.

For video blending, especially at high resolution, the situ-

ation changes. The quantity of data is much higher, so effi-

ciency becomes a major concern. For example, virtual reality

applications, e.g. involving live sports, can demand real-time

content creation based on 360° panoramic video blending;

these panoramic videos are much larger than ordinary videos.

In a typical 4k 360° 30fps panoramic video, blending must

be done in under 30 ms (and often significantly less to allow

time for other processing tasks on each frame). Thus, real-time

high resolution video blending is much more challenging than

image blending, and indeed, parallelization is often needed.

Recently, many works have considered generating high-

quality panoramic videos by stitching multiple videos together.

The input videos may be captured from structured [8], [9] or

unstructured camera arrays [10], or even multiple moving cam-

eras [11], [12]. Early work [13] addressed the parallax issue by

recovering depth information in the overlap region followed by

new view synthesis. Later, various energy functions [14], [15]

were proposed to calculate a warp to alleviate issues due to

parallax while preserving spatial-temporal coherence. While

such approaches can often generate high-quality panoramic

videos, they rely on sophisticated video content analysis. This

makes such methods unsuitable for realtime processing, and

at times, they may lack robustness.

As noted, then, the aim of this paper is to compare the

suitability of various image blending algorithms for real-time

usage for video blending in high resolution panoramic video

stitching. We first briefly describe each algorithm, as well as

analysing the relationships between them. Then, we conduct

experiments on a benchmark dataset, evaluating both their

performance on different kinds of scenes, considering both

time and memory costs, and the quality of the blended results,

using both objective and subjective assessments. Unlike image

blending, which is a one-shot operation, video blending

involves a sequence of frames, which may share a common

fixed camera position. Some algorithms take advantage of this

by performing a (possibly lengthy) precomputation. For short

video clips, when using methods like mean value coordinate

blending, the precomputation may even comprise the majority

of the computation.

We do not include content-aware blending

algorithms [16], [17] in our comparison as they are unsuited

to real-time video blending, for two reasons: (i) these methods

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0001-7315-9547


ZHU et al.: COMPARATIVE STUDY OF ALGORITHMS FOR REALTIME PANORAMIC VIDEO BLENDING 2953

Fig. 1. Capture device. Left: camera rig holding multiple cameras. Center:
rig mounted on a car. Right: rig mounted on a tripod.

are relatively slow due to the need to analyze content, and

(ii) they cannot readily provide interframe coherence.

We have captured a set of benchmark videos including

various types of scenes, to enable evaluation of different

aspects of the blending algorithms. Each video has 6 separate

overlapping streams; we also provide a stitching template

which defines where the pixels in each stream are to go in

the final panorama. A blending algorithm under test uses this

information to produce the panoramic result.

The contributions of this paper are:

• A comparative study of the suitability of several state-of-

the-art image blending algorithms for panoramic video

blending, making clear the advantages and disadvantages

of each algorithm, as well as the relationships between

them. Our implementations of these algorithms are pub-

licly available.

• A benchmark set of videos for evaluation of panoramic

video blending methods, again publicly available.

In Section II we describe our benchmark. We describe the

different blending algorithms tested and their relationships

in Section III. The behaviour of these algorithms on our

benchmark is examined in Section IV, and we give our

conclusions in Section V.

II. BENCHMARK AND EXPERIMENTAL SETTING

A. Hardware

To evaluate the performance of blending algorithms when

used for panoramic video blending, we captured videos from

various indoor and outdoor scenes to make a benchmark. Our

camera mount was based on a six GoPro camera rig—see

Figure 1. Five cameras were arranged symmetrically in a plane

around a vertical axis, while the last camera pointed vertically

upwards. A GoPro Smart Remote was used to synchronize

video capture from all cameras. Each video has the same

resolution (1920 × 1440, at 30 fps).

B. Formulation

The 6 video streams St , t = 1, . . . , 6, are recorded

simultaneously using the rig. Before blending, these must

be transferred to a single frame of reference in which the

panorama is described. Given our fixed camera rig, and

known camera intrinsic parameters, we first perform radial and

tangential distortion correction for each stream, then match

keypoints [18] between adjacent streams. We pick one frame

as a reference for each stream and apply its correction to

all remaining frames, to ensure coherence between frames.

Fig. 2. A typical stitched panorama. Region 0 is captured by the upwards-
pointing camera. Regions 1–5 are captured by the other cameras. Purple lines
indicate the boundary seams between overlapping adjacent video streams.

We then select one stream as a base, and rotate other streams in

the viewing sphere according to the yaw, pitch and roll which

best match the keypoints. Spherical projection is then used to

map the rotated content in the viewing sphere to the planar

panoramic output video. We finally perform a local varying

warp following [19] to further align details. For example,

the stream of the top camera (see Figure 1) is mapped to

the top region in the output panorama (see Figure 2). The

resulting pixels in the panorama corresponding to each initial

stream are determined by a mapping function:

Pt = ϕt (St ). (1)

The final panorama has resolution 4000 × 2000.

We associate a mask Mt with each mapped stream Pt ,

which contains 1 for panorama pixels covered by that stream,

and 0 for pixels not covered. Each mapped stream overlaps

adjacent streams by about 20% of its total area, an overlap

being necessary for certain blending algorithms. Other blend-

ing algorithms require boundaries between streams, which we

determine in the overlap region using distance transforms [20]

on the first frame to place seams at locations equidistant to

each pair of adjacent streams. This boundary is used to trim

the original mask Mt to a new mask M ′
t . See Figure 2.

We may divide blending algorithms into two categories:

those that calculate the blended pixels directly, and those that

first compute a color offset map, and then add the offset map’s

colour values to each original video. The offset map is an

image with the same resolution as each video frame, in which

the pixel value at each position is the difference between the

desired blended value and the original value.

Algorithms in the first category obtain the final panoramic

video P by computing:

P = f (P1, M1, . . . , Pz, Mz) (2)

where f is some function that performs operations on the

mapped streams P1, . . . , Pz .

Algorithms in the second category produce the final

panoramic video by computing:

P = P ′ + P∗ (3)

where P ′ is a video obtained by directly trimming and

compositing the mapped input streams along precomputed

boundaries, and P∗ is a combined offset map formed from



2954 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 6, JUNE 2018

the offset maps of each mapped input stream, using the same

boundaries. Thus P ′ is computed using:

P ′ =
6

∑

t=1

M ′
t Pt

′ (4)

where P ′
t is the mapped t th stream. P∗ is defined in a similar

way:

P∗ =
6

∑

t=1

M ′
t Pt

∗. (5)

The way in which the individual offset maps P∗
t are computed

varies according to the blending algorithm.

C. Benchmark

To produce the benchmark, we captured videos with vari-

ation in three key properties—illuminance conditions, camera

motion, and object distance to the camera—as the quality

of blending results can be significantly effected by changes

in these properties. In the benchmark, illuminance variations

cover both indoor and outdoor scenes, with adequate and poor

lighting. While video cameras often automatically determine

exposure, changes in illuminance conditions may have a strong

effect on the brightness of the video. We provide videos from

both static and moving camera setups. The latter cause content

to change along the boundary seams, sometimes substantially,

e.g. if the camera rig is mounted on a moving vehicle.

As noted, for video blending, we manually pick one frame as

a reference and compute a stitching template, and apply this

template to all other frames, to ensure coherence in the blended

video. However, even if we perfectly stitch the reference

frame, when the template is applied to other frames, this can

result in misalignments. Thus, distances of key objects from

the video cameras can also affect blending results; objects with

varying distances can cause bleeding artefacts near seams.

As human eyes find larger objects more salient, artefacts in

objects closer to the cameras are often more obvious. We

thus captured scenes with moving objects at near, intermediate

and far distances. In total, we have 4 illumination conditions,

2 motion types, and 3 distance types, giving 24 types of video;

our benchmark provides 2 of each type, giving 48 video scenes

altogether, each lasting from a few to tens of minutes.

III. BLENDING ALGORITHMS

A. Overview

Image blending is well studied. Perhaps the most widely

used approach is multi-band blending [3]. It is easy to imple-

ment and provides stable blending results. It blends the images

at each level of a Laplacian pyramid, and merges them to give

the result.

Perez et al. [6] formulate image blending via a Poisson

equation whose solution can be obtained by solving a large

sparse linear system. Although this is mathematically elegant

and provides perfect results when the intensity changes across

the boundary is smooth, it is time consuming, especially for

large images. It also suffers from bleeding artefacts when the

intensity changes across the blending boundary is insufficiently

smooth.

Agarwala [2] observes that the color offset between the

original content and the blended content in the target region

is piecewise smooth, allowing ready approximation of the

whole offset field by a quadtree. This significantly reduces the

number of variables in the linear system, accelerating blending.

Szeliski et al. [21] further observe that if each image has a

separate offset field represented by a low-dimensional spline,

each offset field is everywhere smooth, not just piecewise

smooth. As the spline has low dimensionality, the number of

variables is further reduced.

To avoid solving linear equations, Farbman et al. [5] instead

use mean-value coordinates (MVC) to interpolate the smooth

offset field from boundary differences. For a target region of

fixed shape, these coordinates can be precomputed and re-

used for all frames of a video. Furthermore, this method is

readily parallelizable, but since it approximates the Poisson

formulation, it too suffers from bleeding artefacts.

In [4] Farbman et al. observe that the key operations

in MVC interpolation are convolution operations with large

kernels; these can be approximated by several small kernels

to further reduce computation.

Poisson blending can also be improved by adding an inten-

sity constraint [7], as explained later (and henceforth referred

to as the modified Poisson approach).

We analyze six representative blending algorithms, chosen

for the following reasons. Feather blending has the lowest

computational expense (apart from trivially clipping images

at the seams), and provides a baseline of visual quality.

Multi-band blending is the most widely used approach in

the open source community [22], and is relatively insensitive

to misalignment. MVC blending can be readily parallelized,

and avoids large linear equations, while providing almost

visually identical results to standard Poisson blending. Using

a convolution pyramid approximates the MVC approach and

further speeds it up. Multi-spline blending offers another

strategy to approximate the original Poisson equation, resulting

in a significantly smaller linear system. The differences in

formulation of modified Poisson blending lead to visually

different blending results.

We do not consider the original Poisson blending method,

which is both slow and memory hungry, so unsuited to high

resolution realtime video blending. We also do not consider

the quadtree approximation to Poisson blending as it uses the

smoothness of the offset map in a similar way to multi-spline

blending, but the latter solves a smaller linear system.

B. Intensity Changes

Since different blending algorithms have different formula-

tions, they affect the pixel intensities in the result in different

ways. We briefly analyse their effects here, and schematically

show the trends of pixel intensity changes produced by differ-

ent blending algorithms in Figure 3 (real examples are given

later).

Feather blending linearly blends the images in the over-

lapped regions, and other regions remain unchanged.



ZHU et al.: COMPARATIVE STUDY OF ALGORITHMS FOR REALTIME PANORAMIC VIDEO BLENDING 2955

Fig. 3. One dimensional schematic illustration of results produced by different blending algorithms.

Multi-band blending blends the images everywhere at dif-

ferent frequencies, causing intensities to be averaged across

the whole image.

Since MVC blending approximates Poisson blending, and

convolution pyramid blending further approximates MVC

blending, in these two algorithms, the regions to be blended

change in intensity to fit the anchor region (the region whose

pixel intensities remain unchanged).

Multi-spline blending uses splines to approximate the offset

map, so lighting inconsistency is obvious along the bound-

ary seams, especially if the input scenes are poorly aligned

(see Figure 13, row 5).

Modified Poisson blending tries to preserve the original

intensities as well as the gradient field of the blended region,

so it produces rather different results to all the other algo-

rithms.

In summary, MVC blending, modified Poisson blending and

convolution pyramid blending are sensitive to choice of anchor

stream, while feather blending, multi-band blending and multi-

spline blending produce the same blending results given an

arbitrary blending order. This implies that MVC blending,

convolution pyramid blending and modified Poisson blending

are not symmetric, treating their two input images differently,

while feather blending, multi-band blending and multi-spline

blending are symmetric. Lack of symmetry is acceptable for

cut and paste applications, but is inappropriate when the two

input images have the same status, as in panorama blending.

They require a blending order to be chosen, and there is no

direct way to choose a good blending order automatically.

In our implementation, we manually choose a blending order.

C. Algorithms

We now detail the algorithms tested.

1) Feather Blending (FB): Feather blending simply linearly

combines the regions to be blended, using:

P =
6

∑

i=1

ωi Pi (6)

where ωi is a per pixel weight for each input stream. At each

pixel, the weights of all streams sum to 1, so FB only affects

areas where streams overlap. The simplest approach uses

weights of 0.5 everywhere in the overlap. A better approach

uses a weight of 0.5 at the seam, with the weight falling as

we go nearer to the edge of the stream, until it becomes

zero. As each pixel is processed independently, FB is fully

parallelizable.

2) Multi-Band Blending (MBB): In essence, multi-band

blending combines feather blending results from versions

of the images containing different frequencies. A Laplacian

pyramid is built, and the regions to be blended are linearly

combined at each level. The final result is obtained by merging

the blended images from the different levels. The Laplacian

pyramids can be constructed in parallel using equivalent

weighting functions [3]. As each level of the pyramid can

be regarded as a function of the original image, it is possible

to precompute the function mapping between the input image

and the other levels, allowing computation of each level of the

pyramid simultaneously. Combination of the Laplacian images

using a Gaussian weight image is also fully parallelizable.

Multi-band blending can be defined as:

P =
l

∑

j=1

U(Q j ), (7)

where l is the number of layers in the pyramid, U() up-samples

an image to the original resolution, and Q j is defined as:

Q j =
6

∑

i=1

G
j
i L

j
i . (8)

Here, G
j
i is the i th stream’s Gaussian pyramid at level j ,

obtained by convolving a small weighting function (for exam-

ple, a 5×5 filter) with the image, and L
j

i is the i th stream’s

Laplacian pyramid at level l. We use 8 levels in our imple-

mentation.



2956 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 6, JUNE 2018

3) MVC Blending (MVCB): MVC blending approximates

the Laplacian membrane used in Poisson blending, construct-

ing a harmonic interpolant from the boundary intensity dif-

ferences. Unlike Poisson blending, which finds the final pixel

values directly, MVC blending computes a color offset map;

the final blended result is obtained by adding this offset map to

the region to be blended: see Equation 3. For each pixel in the

output region, the offset value is a weighted linear combination

of all the boundary differences; the weights are derived from

each pixel’s mean value coordinate. The boundary is the outer

boundary of the region to be blended. In detail, given a point

x in the region to be blended, P∗(x) is calculated by:

P∗(x) =
m−1
∑

i=0

λi (x)�(pi), (9)

where pi is a pixel along the boundary of the region to be

blended, �() is the pixel-wise difference operation between

the two images (to blend Pa and Pb , changing Pb to fit Pa ,

�() computes Pa − Pb along the blending boundary), and

m is the number of boundary points. λi is the mean value

coordinate of x with respect to the current boundary points—

see [5]. As the boundary seams have fixed locations, the mean

value coordinates and weights can be precomputed once, for

all frames, saving effort in video blending. Since the value at

each position of the offset map only depends on the boundary

differences, MVCB is parallelizable.

4) Convolution Pyramid Blending (CPB): In MVCB,

the final membrane (i.e. offset map) can be written as:

P∗(x) =

∑

k

wk(x)b(xk)

∑

k

wk(x)
, (10)

where xk are boundary points, b(x) are boundary values and

wk(x) are corresponding mean value coordinates. As shown

in [4], Equation 10 can be rewritten as a ratio of convolutions

by incorporating a characteristic function χ
P̂

which is 1 where

P̂ is non-zero and 0 otherwise:

P∗(xi ) =

6
∑

j=1

w(xi , x j )P̂(x j )

6
∑

k=1

w(xi , x j )χ P̂
(x j )

= w ∗ P̂

w ∗ χ
P̂

, (11)

and P̂ is an extension of the boundary b to the entire domain:

P̂(xi ) =
{

b(xk), if xi = xk

0, otherwise
. (12)

Calculation of the offset map now involves convolutions with

large filters. Multiscale transforms [4] allow these to be

approximated by a set of smaller filters in linear time.

5) Multi-Spline Blending (MSB): Poisson blending can be

expressed in an energy minimization formulation [6]. The

energy may be written in offset map form as:

E =
∑

i, j

(P∗li+1, j

i+1, j − P∗li, j

i, j − ĝx
i, j )

2

+ (P∗li, j+1

i, j+1 − P∗li, j

i, j − ĝ
y
i, j )

2, (13)

where li, j indicates which stream each pixel comes from

(as given by the mask information), (i, j) indicates the loca-

tion in the image plane, and the (modified) gradient ĝx
i, j is

defined by:

ĝx
i, j = P ′li, j

i, j − P ′li+1, j

i, j + P ′li, j

i+1, j − P ′li+1, j

i+1, j . (14)

Here, P ′li, j

i, j is the pixel intensity at location (i, j) in the

lth stream. The modified y gradient ĝ
y
i, j is defined similarly.

The energy E can be minimized by solving a linear system

Az = b where z represents the unknown pixel values in the

offset map. By using spline cells to approximate the assumed-

smooth offset map, each pixel in the final offset map can be

represented as:

P∗l
i, j =

∑

k,m

cl
k,m B(i − k R, j − m R), (15)

where R is the pixel spacing (we choose 64 in our experiment)

of the spline cells, B(i − k R, j − m R) is the spline basis, and

the ck,m are the spline control points. In this way, the size of

the linear system is reduced significantly.

6) Modified Poisson Blending (MPB): Tanaka et al. [7]

modified the original Poisson energy function by adding an

intensity constraint:

E ′ =
∑

i, j

ε(Ii, j − Pi, j )
2 + (gi, j − ∇ Pi, j )

2, (16)

where Ii, j is the original pixel intensity at location (i, j), Pi, j

is the intensity of the final panorama at that location, ε is

a weight, ∇ Pi, j is the gradient of the final panorama, and

g = gi, j is a gradient map computed by summing the gradients

of each stream gi :

g =
6

∑

i=1

gi M ′
i (17)

Unlike in the original Poisson blending approach, the coor-

dinates (i, j) now range over the whole image, so that all

streams change the pixel value. Tanaka et al. [7] solve this

equation in the frequency domain:

PT
i, j =

vT
i, j − εuT

i, j

dT
i, j − ε

, (18)

where PT
i, j is the discrete cosine transform (DCT) of each

pixel in the final panorama, vT
i, j is the DCT of the Laplacian of

the image (found by combining the Laplacians of each stream

using Equation 17), uT
i, j is the DCT of the original intensity

image, and dT
i, j is the DCT of the Laplacian operator. The

final panorama is obtained by computing the inverse DCT of

PT
i, j . In our implementation ε was set to 1e-8.

D. Requirements for Overlapping Areas

The above blending algorithms have different requirements

for overlapping regions. FB only blends pixels in overlapping

regions. Thus, no blending is performed if there is no overlap.

MBB requires the images to be blended to completely overlap

if we are to use a complete pyramid. In our implementation we



ZHU et al.: COMPARATIVE STUDY OF ALGORITHMS FOR REALTIME PANORAMIC VIDEO BLENDING 2957

TABLE I

COMPUTATION TIMES (PER FRAME) AND MEMORY USAGE FOR 4000 × 2000 RESOLUTION VIDEO, FOR EACH OF THE SIX ALGORITHMS

Fig. 4. Temporal coherence score over time for each blending algorithm
over all the scenes.

achieve this by mirroring each input stream to fill the whole

panorama. Since MVCB and CPB are approximations of

Poisson blending, these two algorithms require pixel intensity

differences along the blending boundary, so there must be

at least a one-pixel wide overlap along the boundary. The

only change MPB makes is to add a color constraint to the

original Poisson blending, so it also only requires a one-pixel

wide overlap along the boundary. MSB requires a two pixel-

wide overlap along the boundary since it diffuses boundary

differences in two opposite directions.

E. GPU Acceleration

As already noted, FB, MBB, MVCB and CPB can be easily

parallelized. As MSB needs to solve an optimization problem

represented by a linear system for each high resolution video

frame, even a parallel solver [23] is still time-consuming.

For MBB and CPB, convolution is the most time-consuming

operation. In our implementation, accessing GPU memory

takes most of the time, as each pixel is accessed c2 times,

where c is the kernel size. We take full advantage of GPU

shared memory, which is much faster than ordinary GPU

memory, by decomposing the 2D convolution into 2 1D

convolutions, vertically then horizontally. Using this strategy,

each pixel is accessed only c times. In our implementation,

due to a limited amount of shared memory for each thread,

we perform this computation 256 pixels at a time.

IV. EXPERIMENTS

Our experiments were performed on a PC with an Intel

Xeon E5-2620 2.0GHz CPU with 32GB memory, and an

NVIDIA GTX 970 GPU with 4GB memory; the bandwidth

between PC memory and GPU memory was 4GB/s. The

blending algorithms were implemented in C++, while GPU

implementations used CUDA.

A. Performance

1) Theory: We initially considered the theoretical time

complexity of these 6 representative algorithms. Since feather

Fig. 5. (a) A blended result using MVCB (cropped from the panorama). (b)
Energy map. (c) Bleeding map.

Fig. 6. (a): Output blended video. (b): Local seam regions.

blending only computes a linear combination for each pixel,

its complexity is O(n) where n is the number of pixels. Multi-

band blending also has complexity O(n), as the extra levels

only multiply the number of pixels to process by a constant

factor. MVC blending requires target region triangulation and

adaptive boundary sampling, with O(m) cost for evaluating

the membrane, where m is the number of pixels along the

boundary; this is typically O(
√

n). Since the last step inter-

polates the membrane values to all n pixels, the total cost is

again O(n). Convolution pyramid blending uses small kernels

to approximate a large kernel, so its complexity is again

O(n). Multi-spline blending needs to solve an O(n/s2) linear

system where s is the sampling space of the spline, which

also has complexity asymptotically O(n). Modified Poisson

blending finds pixels in the frequency domain with complexity

O(n log(n)).



2958 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 6, JUNE 2018

Fig. 7. From left to right, top to bottom: scenes 1–6 used in our evaluation.

2) Practice: We experimentally measured the time required

by each blending algorithm, per output frame, as well as the

memory used, for output videos of size 4000 × 2000 pixels.

Note that for all algorithms, the time and memory costs only

depend on the resolution of the input videos and the shape of

the mask, and not on the video content, so one scene sufficed

for this experiment. I/O times as well as precomputation times

were not considered, as we are interested in how suitable each

method is for continuous realtime operation. Table I gives the

results, both for CPU implementation, and where appropriate,

GPU implementation. They show that, when using a GPU

with sufficient memory, multi-band blending, MVC blending,

feather blending and convolution pyramid blending are fast

enough for realtime performance.

B. Visual Quality

We also both objectively and subjectively evaluated the

blended videos produced by these algorithms.

1) Objective Evaluation: Image and video quality assess-

ment methods can be classified into full-reference and no-

reference approaches [24], [25]. Full-reference approaches

such as PSNR (peak signal-to-noise ratio) and SSIM (struc-

tural similarity index) require an original image or video as

a reference, but in video blending there is no such ground

truth. Thus, our objective evaluation for blended videos relies

on no-reference approaches. We used 6 state of the art no-

reference video quality metrics: BIQI [26], BRISQUE [27],

FRIQUEE [28], NIQE [29], SSEQ [30] and VIIDEO [31].

Each metric was applied to assess the quality of the 42 blended

videos produced by 7 different algorithms (the 6 video blend-

ing algorithms tested plus simple stitching without blending).

The resulting objective scores were statistically analysed. For

each metric, an analysis of variance (ANOVA) was performed

by selecting the predicted quality as the dependent vari-

able, and the blending algorithm as the independent variable.

ANOVA aims to analyse the differences among group means,

providing a statistical test of whether or not the means of

several groups are equal. The ANOVA results show that, for

each case, the algorithm has no statistically significant effect

on video quality (P>0.05 at the 95% confidence level). This

means that combining videos with a sophisticated blending

algorithm is no better than stitching without blending. These

findings are clearly contradictory to a simple visual assessment

TABLE II

TEMPORAL COHERENCE SCORES FOR 6 BLENDING ALGORITHMS

which makes it obvious that the stitched videos have lower

quality. Unfortunately, this implies that the video quality

metrics are not adequate for the kinds of artefacts arising in

blending—indeed, they were mainly devised to assess defects

due to compression and transmission of video. This finding is

in itself an interesting topic for future research. However, for

the topic investigated here, problem-specific objective evalua-

tions as well as subjective quality assessment were required to

determine the effect of different blending algorithms on video

quality.

2) Temporal Coherence: Blending video is unlike blending

still images, in that temporal coherence largely contributes to

the overall blended video quality. Inspired by [32], we calcu-

late the temporal coherence score of the blended video as:

∑

n

∑

x

∥

∥

∥
Pn(x) − warp(Pn−1(x))

∥

∥

∥

2
. (19)

Here x represents the spatial location of the frame, Pn is the

current frame and Pn−1 is the previous frame. warp() is a

mapping given by the optical flow [33] between the previous

frame and the current frame. For each blending algorithm,

we calculate the mean and standard deviation of the temporal

coherence score for all scenes. The temporal coherence score

for each scene is divided by the number of frames. We show

the results in Table II. Lower temporal score indicates better

temporal coherence. Not surprisingly, MVCB and CPB are

worst at providing temporal coherence. Since the blended

result of these two Poisson blending approximations largely

depends on boundary differences, even a subtle change at

the boundary will propagate to the entire blended region.

In practise, misalignment and noise are always present in the

blending boundary, resulting in boundary differences which

temporally vary in an unsmooth manner. MSB and MPB

provide better temporal coherence than MVCB and CPB but

worse than FB and MBB. In MSB only vertex intensities are

calculated from the boundary differences, and the intensity

of the pixels inside each cell are obtained by interpolation



ZHU et al.: COMPARATIVE STUDY OF ALGORITHMS FOR REALTIME PANORAMIC VIDEO BLENDING 2959

Fig. 8. Blending result on local seam regions. From top to bottom: blending results using no-blending, MVCB,FB, MBB, CPB, MSB and MPB.

of the corresponding vertices. Thus, MSB has a smoother

offset map than MVCB and CPB. Compared to the original

Poisson blending formulation, the added color constraint helps

to ensure temporal coherence. Among the 6 blending algo-

rithms tested, MBB and FB have best temporal coherence.

FB computes a linear blend in the overlapping region while

MBB can be regarded as a multi-frequency linear blending

algorithm. Since MBB blends more regions as well as at more

frequencies, the temporal coherence of its is slightly better

than that of FB. We also demonstrate the temporal coherence



2960 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 6, JUNE 2018

TABLE III

BLEEDING DEGREES FOR DIFFERENT ALGORITHMS

score per frame over time for each blending algorithm, for

all scenes in Figure 4. We picked 150 continuous frames

and calculated the temporal coherence scores, plotting the

149 scores in different colours for different algorithms.

3) Bleeding: Poisson image blending and its variants have

elegant mathematical definitions but suffer from bleeding

artefacts when the blending boundary is not smooth. This

artefacts is manifest as a particular color leaking into its

surroundings, as illustrated in Figure 5(a). Since MVCB, CPB,

MSB and MPB are all variants of Poisson image blending,

we assess its significance using the bleeding degree proposed

in [34] to evaluate results for all scenes in our dataset.

To calculate the bleeding map we first calculate an offset map

by subtracting the original image from the blended image.

An energy map (illustrated in Figure 5(b)) is given by the

absolute values of the offset map, and the bleeding map is

computed from the energy map by:

B(x) = max(0, x − α
Eh

Ah + δ
), (20)

where Ah is the number of non-zero values in the binarized

energy map (binarized by Otsu’s method [35]), and Eh is

the sum of the energies at the non-zero positions in the

binarized map. α is a weight, set to 2 in our evaluation, used

to truncate high peak values, and δ is set to 1e-8. An example

of bleeding map is shown in Figure 5(c). Given the bleeding

map, the bleeding degree, i.e. the total amount of bleeding per

frame is given by

V n =
∑

B(x)2. (21)

This quantity is averaged over all frames, for all scenes in

our dataset. The results for MVCB, CPB, MSB and MPB

are shown in Table III. Clearly, MSB and MPB suffer much

less from bleeding artefacts than MVCB and CPB. MVCB

and CPB are particularly affected when there the blending

boundary is not smooth. For MSB, spline cells are used

to approximate the offset map, which largely alleviates the

bleeding artefacts. MPB not only considers gradients, but also

the colors, so it too suffers less from bleeding artefacts.

4) Subjective Evaluation: We did not use all scenes in sub-

jective testing (given that there are 6 algorithms for compar-

ison): to avoid fatigue, we limited the assessment performed

by each observer to last under 20 minutes. We thus used 6

representative scenes from our benchmark for subjective eval-

uation.

The subjective video quality assessment followed the guide-

lines described in [36]. The experiments were carried out in

a standard office environment. The output videos (stimuli)

were displayed on a 24-inch LCD with a native resolution of

3840 × 2160 pixels. The viewing distance was approximately

50 cm. A single-stimulus method was adopted, so that subjects

Fig. 9. Mean opinion score (MOS) averaged over all participants, for each
blended video and each algorithm, in our subjective quality experiment. The
vertical axis gives the MOS, with error bars indicating a 95% confidence
interval.

Fig. 10. Mean opinion score (MOS) averaged over all participants and all
blended videos for each algorithm, in our subjective quality experiment. The
vertical axis gives the MOS, with error bars indicating a 95% confidence
interval.

had to score the overall quality for each stimulus in the absence

of any reference. The ITU-R absolute category rating (ACR)

5-point scale (i.e., 1 = Bad, 2 = Poor, 3 = Fair,

4 = Good, 5 = Excellent) was used for quality scoring. For

the 6 test videos, we picked 10 s from each scene and used

the results of 7 different algorithms (the above 6, plus simple

stitching without blending) as stimuli, giving each participant

420 seconds of video to view. Since artefacts mainly appear

near seams, we also cropped 5 square regions around the

seams between different streams for each scene. We manually



ZHU et al.: COMPARATIVE STUDY OF ALGORITHMS FOR REALTIME PANORAMIC VIDEO BLENDING 2961

Fig. 11. An outdoor scene with obvious illuminance differences for different streams. Top row: results of feather blending and multi-band blending; middle
row: results of MVC blending and convolution pyramid blending; bottom row: results of multi-spline blending and modified Poisson blending.

picked five 300×300 local regions containing the most moving

objects; the areas of the subregions divided by the seam

are approximately in correspondence. During the subjective

assessment, the whole blended video was presented to subjects

to evaluate the overall blending quality, while the local seam

regions were presented to evaluate the artefacts caused by

the blending algorithms. Thus, the total time of videos to be

viewed was 840 seconds, so an entire subjective assessment

could be done in under 20 minutes. The interface for subjective

assessment is illustrated in Figure 6. The participants in the

study consisted of two groups of people. The first group

comprised university students, 18 male and 12 females who

were inexperienced with video quality assessment. The second

group comprised 3 experts in image processing: one uni-

versity faculty member, one postdoctoral associate and one

Ph.D. student.

Before the start of each experiment, written instructions

concerning the experimental procedure, including the scoring

scale and timing, were given to each subject. A training

set of several typical scenes and their blending results was

presented to the participants in order to familiarise them with

the issues in visual blending quality and with use of the

scoring scale. These were annotated with an expert’s remarks

on the video such as “there is an obvious seam and the

color is not very consistent near it” or “there is flickering

around the moving object”. Several kinds of artefact were also

described. The stimuli used in training were different from

those used for assessment. After training, the scenes showing

the results of different blending algorithms were presented to

TABLE IV

ANOVA TEST RESULTS EVALUATING THE EFFECT OF VIDEO CONTENT

AND BLENDING ALGORITHMS ON THE QUALITY OF VIDEO BLENDING

each participant in a random order. Each stimulus was shown

once, and the participants were requested to assess its quality

immediately after viewing it. Figure 7 illustrates scenes 1–6

used in our experiment. Figures 11–13 show some scenes

and the results of the 6 video blending algorithms applied to

each scene. Blending result on local seam regions of different

algorithms are illustrated in Figure 8.

Results of the experiment were filtered [37] to reject outlier

evaluations and individuals. Results more than two standard

deviations from the mean score for a test were considered to be

outliers; an individual was an outlier if 1/3 of scores submitted

were outliers. This caused one participant to be rejected. After

data filtering, the remaining scores were analysed. Figure 9

gives the mean opinion score (MOS) in our subjective exper-

iment, averaged over all participants, for each blended video.

It shows that both video content and blending algorithm affect

the overall perceived blending quality.

The observed tendencies were statistically analysed with a

full factorial ANOVA using subjective quality as the dependent



2962 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 6, JUNE 2018

Fig. 12. An indoor scene. Top row: results of feather blending and multi-band blending; middle row: results of MVC blending and convolution pyramid
blending; bottom row: results of multi-spline blending and modified Poisson blending.

TABLE V

MEAN AND STANDARD DEVIATION OF THE QUALITY SCORE AVERAGED OVER ALL SCENES AND ALL PARTICIPANTS FOR EACH BLENDING ALGORITHM

variable, the video content and blending algorithm as fixed

independent variables, and the participant as the random inde-

pendent variable. Two-way interactions of the fixed variables

were included in the analysis. The results are summarised

in Table IV, where the F-statistic and its associated degrees

of freedom and p-value are reported for each variable. These

results indicate that video content and blending algorithm

have a statistically significant effect on perceived quality.

Not all participants have the same average rating of qual-

ity, which is normal in a typical video quality assessment

experiment, as human observers can have different internal

scales.

The interaction between video content and blending algo-

rithm is significant, which implies that the impact the different

blending algorithms have on video quality depends on the

video content. Not all output scenes have the same overall

quality. The test reveals the output scenes have the following

order of quality (qualities of jointly underlined scenes do

not significantly differ from each other): scene6 < scene4 <

scene1 < scene2 < scene5 < scene3. These differences may

be because different scenes have different levels of interactions

between blending artefacts and visual content, consequently

affecting the visibility of artefacts in different scenes.

There is clearly a significant difference in qual-

ity between the 6 blending algorithms. The analysis

reveals the following order in quality (jointly underlined

algorithms do not significantly differ): No-blending <

MVCB < FB < CPB < MSB < MBB < MPB. Figure 10

and Table V summarises the impact of the 6 different algo-

rithms as well as no blending on video quality, averaged

over all scenes. The subjective evaluation shows that using

a blending algorithm improves output video quality relative to

stitching videos without blending, and that MPB outperforms

other algorithms in terms of final video quality. Considering

the standard deviations in Table V, MPB also provides the

most consistent quality of video results across all test scenes

and all participants.

When considering local seam regions, stitching again has

the lowest quality while CPB, MSB and MPB have the

highest quality. Comparing the mean scores for the whole

video and the local seam regions allows us to draw several

conclusions. MPB provides the highest quality in both global



ZHU et al.: COMPARATIVE STUDY OF ALGORITHMS FOR REALTIME PANORAMIC VIDEO BLENDING 2963

Fig. 13. A challenging scene taken with a moving camera rig. Top to bottom:
results of feather blending, multi-band blending, MVC blending, convolution
pyramid blending, multi-spline blending and modified Poisson blending.

and local evaluation. Stitching has the lowest quality globally,

and second lowest quality in local evaluation, for which FB

is worst. This is because several scenes in the evaluation have

not been well aligned. Such misalignments lead to ghosting

artefacts, which leads to a very poor viewing experience when

concentrating on local windows. MVCB and CPB do poorly

in the global evaluation but rather higher in a local evaluation,

as the bleeding artefacts of these Poisson approximations have

greater effects on a large scale than locally.

V. CONCLUSIONS

We have compared the performance and visual quality

of 6 blending algorithms when used for realtime 4K video

blending for a variety of scenes. Simple approaches such

as FB and MBB are fast when implemented on a GPU,

but do not produce high quality blending results. The main

problem with MVCB and CPB is that they are too sensitive to

boundary conditions, and suffer from bleeding artefacts. MSB

suffers less from bleeding than MVCB and CPB, but obvious

lighting inconsistencies are visible in the output when the input

video streams are not well aligned. Our experiments show that

modified Poisson blending performs surprising well on various

scenes, but it is not as efficient as some other approaches.

This suggests that further work to improve the efficiency of

modified Poisson blending would be useful, making it more

practical in real world applications.

Hopefully, further efficient blending algorithms will become

available in future, with improved capabilities and speed.

We have made our video benchmark and code implementing

each method publicly available to facilitate further evaluation

of new algorithms in this field.

A side-result of this work is that current objective quality

assessment algorithms and metrics are unsuitable for applica-

tion to the results of video blending, having been devised to

evaluate the results of compression and transmission errors,

and work is needed to devise new metrics suited to assessing

results of blending.

Although the objective evaluation results are not exactly

the same as the subjective evaluation results, they are highly

consistent. In future work we hope to combine several objec-

tive evaluation results so as to approximate human judgement.

A potential way forward is to explicitly incorporate brightness

consistency between the blended regions as well as several

other kinds of artefacts as evaluation terms in a new metric.

REFERENCES

[1] Z. Zhu, H.-Z. Huang, Z.-P. Tan, K. Xu, and S.-M. Hu, “Faithful
completion of images of scenic landmarks using Internet images,” IEEE

Trans. Vis. Comput. Graphics, vol. 22, no. 8, pp. 1945–1958, Aug. 2016.

[2] A. Agarwala, “Efficient gradient-domain compositing using quadtrees,”
ACM Trans. Graph., vol. 26, no. 3, p. 94, 2007.

[3] J. Burt and E. H. Adelson, “A multiresolution spline with application to
image mosaics,” ACM Trans. Graph., vol. 2, no. 4, pp. 217–236, 1983.

[4] Z. Farbman, R. Fattal, and D. Lischinski, “Convolution pyramids,” ACM
Trans. Graph., vol. 30, no. 6, pp. 175:1–175:8, Dec. 2011. [Online].
Available: http://doi.acm.org/10.1145/2070781.2024209

[5] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and D. Lischinski,
“Coordinates for instant image cloning,” ACM Trans. Graph., vol. 28,
no. 3, p. 67, 2009.

[6] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM

Trans. Graph., vol. 22, no. 3, pp. 313–318, Jul. 2003.

[7] M. Tanaka, R. Kamio, and M. Okutomi, “Seamless image cloning
by a closed form solution of a modified poisson problem,” in Proc.

SIGGRAPH Asia Posters, 2012, pp. 15:1–15:1. [Online]. Available:
http://doi.acm.org/10.1145/2407156.2407173



2964 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 6, JUNE 2018

[8] R. Anderson et al., “Jump: Virtual reality video,” ACM Trans. Graph.,
vol. 35, no. 6, pp. 198:1–198:13, Nov. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2980179.2980257

[9] K. Matzen, M. F. Cohen, B. Evans, J. Kopf, and R. Szeliski, “Low-cost
360 stereo photography and video capture,” ACM Trans. Graph., vol. 36,
no. 4, pp. 148:1–148:12, Jul. 2017.

[10] F. Perazzi et al., “Panoramic video from unstructured camera arrays,”
Comput. Graph. Forum, vol. 34, no. 2, pp. 57–68, May 2015. [Online].
Available: http://dx.doi.org/10.1111/cgf.12541

[11] H. Guo, S. Liu, T. He, S. Zhu, B. Zeng, and M. Gabbouj, “Joint video
stitching and stabilization from moving cameras,” IEEE Trans. Image
Process., vol. 25, no. 11, pp. 5491–5503, Nov. 2016.

[12] M. Wang, J. B. Liang, S. H. Zhang, S. P. Lu, A. Shamir, and S. M. Hu,
“Hyper-lapse from multiple spatially-overlapping videos,” IEEE Trans.

Image Process., vol. 27, no. 4, pp. 1735–1747, Apr. 2018.

[13] Q. Zhi and J. R. Cooperstock, “Toward dynamic image mosaic genera-
tion with robustness to parallax,” IEEE Trans. Image Process., vol. 21,
no. 1, pp. 366–378, Jan. 2012.

[14] K. Lin, S. Liu, L.-F. Cheong, and B. Zeng, “Seamless video
stitching from hand-held camera inputs,” Comput. Graph. Forum,
vol. 35, no. 2, pp. 479–487, May 2016. [Online]. Available:
https://doi.org/10.1111/cgf.12848

[15] J. Lee, B. Kim, K. Kim, Y. Kim, and J. Noh, “Rich360: Optimized
spherical representation from structured panoramic camera arrays,” ACM
Trans. Graph., vol. 35, no. 4, pp. 63:1–63:11, Jul. 2016. [Online].
Available: http://doi.acm.org/10.1145/2897824.2925983

[16] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, “Drag-and-drop pasting,”
ACM Trans. Graph., vol. 25, no. 3, pp. 631–637, Jul. 2006.

[17] M. W. Tao, M. K. Johnson, and S. Paris, “Error-tolerant image com-
positing,” Int. J. Comput. Vis., vol. 103, no. 2, pp. 178–189, 2013.

[18] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[19] J. Zaragoza, T. Chin, Q. Tran, M. S. Brown, and D. Suter, “As-projective-
as-possible image stitching with moving DLT,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 36, no. 7, pp. 1285–1298, Jul. 2014.

[20] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Theory Comput., vol. 8, no. 1, pp. 415–428, 2012.

[21] R. Szeliski, M. Uyttendaele, and D. Steedly, “Fast poisson blending
using multi-splines,” in Proc. IEEE Int. Conf. Comput. Photogr. (ICCP),
Apr. 2011, pp. 1–8.

[22] M. Brown and D. G. Lowe, “Automatic panoramic image stitch-
ing using invariant features,” Int. J. Comput. Vis., vol. 74, no. 1,
pp. 59–73, Aug. 2007.

[23] C. Wu, M. Zollhöfer, M. Nießner, M. Stamminger, S. Izadi, and
C. Theobalt, “Real-time shading-based refinement for consumer depth
cameras,” ACM Trans. Graph., vol. 33, no. 6, pp. 200:1–200:10,
Nov. 2014. [Online]. Available: http://doi.acm.org/10.1145/2661229.
2661232

[24] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it?
A new look at signal fidelity measures,” IEEE Signal Process. Mag.,
vol. 26, no. 1, pp. 98–117, Jan. 2009.

[25] W. Lin and C. -C. J. Kuo, “Perceptual visual quality metrics: A survey,”
J. Vis. Commun. Image Represent., vol. 22, no. 4, pp. 297–312, 2011.

[26] A. K. Moorthy and A. C. Bovik, “A two-step framework for constructing
blind image quality indices,” IEEE Signal Process. Lett., vol. 17, no. 5,
pp. 513–516, May 2010.

[27] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[28] D. Ghadiyaram and A. C. Bovik, “Perceptual quality prediction on
authentically distorted images using a bag of features approach,” J. Vis.,
vol. 17, p. 32, Jan. 2017.

[29] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[30] L. Liu, B. Liu, H. Huang, and A. C. Bovik, “No-reference image quality
assessment based on spatial and spectral entropies,” Signal Process.,
Image Commun., vol. 29, no. 8, pp. 856–863, 2014.

[31] A. Mittal, M. A. Saad, and A. C. Bovik, “A completely blind
video integrity oracle,” IEEE Trans. Image Process., vol. 25, no. 1,
pp. 289–300, Jan. 2016.

[32] N. Bonneel, J. Tompkin, K. Sunkavalli, D. Sun, S. Paris, and
H. Pfister, “Blind video temporal consistency,” ACM Trans. Graph.,
vol. 34, no. 6, pp. 196:1–196:9, Nov. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2816795.2818107

[33] D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of current
practices in optical flow estimation and the principles behind them,” Int.

J. Comput. Vis., vol. 106, no. 2, pp. 115–137, 2014.
[34] M. Wang, Z. Zhu, S. Zhang, R. Martin, and S. -M. Hu, “Avoiding

bleeding in image blending,” in Proc. IEEE Int. Conf. Image Process.

(ICIP), Sep. 2017, pp. 2139–2143.
[35] N. Otsu, “A threshold selection method from gray-level histograms,”

IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66,
Jan. 1979.

[36] Methodology for the Subjective Assessment of the Quality of Television
Pictures, document ITU-R Rec. BT.500-13, Jan. 2012.

[37] H. Liu, N. Klomp, and I. Heynderickx, “A no-reference metric for
perceived ringing artifacts in images,” IEEE Trans. Circuits Syst. Video

Technol., vol. 20, no. 4, pp. 529–539, Apr. 2010.

Zhe Zhu received the bachelor’s degree from Wuhan
University in 2011 and the Ph.D. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2017. His research interests
are in computer vision and computer graphics.

Jiaming Lu is currently pursuing the Ph.D. degree
with the Department of Computer Science and Tech-
nology, Tsinghua University. His research interests
are in computer vision and fluid simulation.

Minxuan Wang is currently the master’s degree
with the Department of Computer Science and Tech-
nology, Tsinghua University. His research interests
are in computer vision and deep learning.

Songhai Zhang received the Ph.D. degree from
Tsinghua University, China, in 2007. He is currently
an Associate Professor of computer science with
Tsinghua University. His research interests include
image and video processing, geometric computing.

Ralph R. Martin is currently an Emeritus Professor
with Cardiff University.



ZHU et al.: COMPARATIVE STUDY OF ALGORITHMS FOR REALTIME PANORAMIC VIDEO BLENDING 2965

Hantao Liu received the Ph.D. degree from the
Delft University of Technology, Delft, The Nether-
lands, in 2011. He is currently an Assistant Pro-
fessor with the School of Computer Science and
Informatics, Cardiff University, Cardiff, U.K. He
is serving for the IEEE MMTC, as the Chair of
the Interest Group on Quality of Experience for
Multimedia Communications, and he is an Associate
Editor of the IEEE TRANSACTIONS ON HUMAN-
MACHINE SYSTEMS and the IEEE TRANSACTIONS

ON MULTIMEDIA.

Shi-Min Hu (SM’16) received the Ph.D.
degree from Zhejiang University in 1996. He is
currently a Professor in with the Department
of Computer Science and Technology, Tsinghua
University, Beijing. He received the PhD degree
from Zhejiang University in 1996. He has published
over 100 papers in journals and refereed conference.
His research interests include digital geometry
processing, video processing, rendering, computer
animation, and computer-aided geometric design.
He has published more than 100 papers in journals

and refereed conference. He is a Senior Member of the ACM. He is the
Editor-in-Chief of the Computational Visual Media, and on editorial board
of several journals, including IEEE TRANSACTIONS ON VISUALIZATION

AND COMPUTER GRAPHICS, Computer Aided Design and Computer and

Graphics.


