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Accurate catchment level water resource assessment is the base for integrated river basin management.
Due to the complexity in model structure and requirement of a large amount of input data for
semi-distributed/distributed models, the conceptual models are gaining much attention in catchment
modelling these days. The present study compares the performance of three conceptual models,
namely GR4J, Australian Water Balance Model (AWBM) and Sacramento for runoff simulation.
Four small catchments and one medium catchment in the upper Godavari river basin are selected
for this study. Gap-filled daily rainfall data and potential evapotranspiration (PET) measured from
the same catchment or adjacent location are the major inputs to these models. These models are
calibrated using daily Nash–Sutcliffe efficiency (NSE) with bias penalty as the objective function.
GR4J, AWBM and Sacramento models have four, eight and twenty-two parameters, respectively,
to optimise during the calibration. Various statistical measures such as NSE, the coefficient of
determination, bias and linear correlation coefficient are computed to evaluate the efficacy of model
runoff predictions. From the obtained results, it is found that all the models provide satisfactory results
at the selected catchments in this study. However, it is found that the performance of GR4J model is more
appropriate in terms of prediction and computational efficiency compared to AWBM and Sacramento
models.
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1. Introduction

Hydrologic models have been widely used for
assessing the impact of climate and land-use change
on water budget and for predicting extreme events
such as flood and drought (Green et al. 2006;
Sorooshian et al. 2008; Pechlivanidis et al. 2011;
Fowler et al. 2016). The complexity of hydrologic
models varies from simple empirical models to com-
plex process-oriented mathematical models. With

the development of technology and computing
systems, complex catchment models that can
include distributed information about catchment
such as land use, soil properties, etc., have been
developed. These distributed models predict state
variables as local averages, by dividing the catch-
ment into grid cells or small units. Distributed
models are capable of presenting the spatial vari-
ability of processes, boundary conditions and
parameters to some extent. However, in an
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operational context, these models are limited due
to high data requirement and computational
time.

Despite these distributed models, lumped
models, which generally require very fewer inputs,
simulate streamflow in response to precipitation,
empirically or conceptually, with acceptable
accuracy (Chiew et al. 2002; Croke et al. 2006).
Generally, lumped models have differential and
empirical equations representing different hydro-
logic processes in rainfall-runoff modelling. It does
not consider the spatial variability of topogra-
phy, land use and inputs. Regardless of their
lumped nature, these models help water engineers
and hydrologists in reservoir management (Yang
et al. 1995), flood and drought forecasting (Yang
and Michel 2000) and flood frequency assessment
(Cameron et al. 1999) as given in many case studies
in the literature. However, these models have lim-
ited capability to predict streamflow changes with
respect to land-use changes (Lavabre et al. 1993;
Lørup et al. 1998).

The choice of right models for hydrologic
assessment is one of the crucial phases of mod-
elling practices. The modelling interfaces, which
gather all the information about catchment and
different rainfall-runoff models in one platform, are
used commonly these days for hydrological studies
(Rassam et al. 2011; Carr and Podger 2012; Dutta
et al. 2012; Mannik et al. 2012). The Source
modelling platform developed by eWater limited,
Australia, is one such example. The Source is a
modelling interface developed for addressing many
water management issues. The Source mainly has
three modes of operation such as catchment mode,
river operational mode and river management
mode as used in past studies (Carr and Podger
2012; Dutta et al. 2012). The Source framework
includes about 11 rainfall-runoff models, among
which GR4J, Australian Water Balance Model
(AWBM) and Sacramento are adopted for the
present study.

The GR4J (Edijatno et al. 1999) is a
four-parameter daily lumped conceptual rainfall-
runoff model, which is proven to be more effective
than complex conceptual models such as TOP-
MODEL, IHACRES, etc. (Perrin et al. 2003). The
GR4J model is the modified version of the three-
parameter model GR3J developed by Edijatno
(1989). The AWBM was developed by Boughton
(2004). This model is a lumped conceptual
model primarily developed for river basin man-
agement in Australia. The Sacramento model was

originally developed for the United States National
Weather Service and State of California, Depart-
ment of Water Resources by Burnash et al. (1973).
Compared to GR4J and AWBM, Sacramento is a
complex model with 22 parameters and 5 water
stores.

The Godavari river basin in India is the
second largest river basin after the Ganges. Many
farmers and industries are depending on this river
for irrigation and other purposes. The river basin
includes many reservoirs and irrigation projects.
Due to these reasons, integrated management of
water in this basin is very important. Most of the
river basins in India are heterogeneous in terms
of land use, topography, climatology, etc. There-
fore, distributed models such as SWAT (Soil Water
Assessment Tool), Variable Infiltration Capacity
(VIC) model, etc., are being used in these catch-
ments for hydrologic modelling (Gosain et al.
2006, 2011; Prabhanjan et al. 2014; Narsimlu
et al. 2015; Hengade et al. 2017; Madhusood-
hanan et al. 2017). However, hydrologic modelling
experiments with these models are limited by the
lack of ground data for model simulations (Refs-
gaard 1997). As discussed above, the conceptual
lumped models require a very limited number of
inputs for generating stream discharge in compar-
ison with distributed models. Nonetheless, very
limited numbers of studies are reported with the
use of lumped models in Indian river basins. Thus,
in this study, we have attempted to understand
the capability of lumped models such as GR4J,
AWBM and Sacramento in diversified Godavari
river basin catchments. Potential evapotranspira-
tion (PET) and rainfall are the major inputs to
these models. The key objectives of the present
study include: (i) compare the efficacy of the
selected lumped rainfall-runoff models in Source
platform; (ii) find the best lumped model for catch-
ments in the upper Godavari basin; and (iii) discuss
the advantages and limitations of models used in
this study.

2. Methodology

2.1 Study area

The Godavari river basin is India’s second largest
river basin after the Ganges in length, area and
water abundance. It flows towards the Bay of
Bengal predominantly through seven Indian states
(Maharashtra, Telangana, Andhra Pradesh, Kar-
nataka, Madhya Pradesh, Chhattisgarh and Orissa)
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Figure 1. DEM of the upper Godavari basin with study catchments, ET stations and streamflow gauges/dams
highlighted.

Table 1. Summary of the study catchments.

Min/Max

Area elevation Calibration Validation

Catchments (km2) (m) Major land use period period

Adhala 134 660/1358 Barren land, agriculture land 1995–2009 2010–2013

Bhandardara 98 747/1646 Agriculture land, forest 1995–2009 2010–2013

Gargaon 616 616/1459 Agriculture land, forest 2000–2004 2004–2005

Kadwa 162 578/1486 Agriculture land 2001–2010 2011–2014

Mula 2300 515/1460 Agriculture land, barren land 1995–2009 2010–2013

and Pondicherry (Yanam) (Hengade and Eldho
2016). In this study, we are comparing the var-
ious hydrological models in the upper Godavari
basin which lies entirely in Maharashtra state
(figure 1). The catchment area, which contributes
to the Godavari river up to Paithan dam or Jayak-
wadi reservoir is referred to as upper Godavari
river basin. The geographical extent of the area
is 21, 048 km2 spreading from longitude 73◦29′30
to 75◦29′6′′E and from latitude 19◦2′25′′ to 20◦24′

58′′N. The elevation of the upper Godavari basin
varies from 449 to 1486 m sloping from Western
Ghats to east (figure 1).

The south-west monsoon prevails over the basin
during the months of June to September and the
Godavari basin receives 85% of its annual rain-
fall during this season. The annual rainfall depth

across the basin varies from 600 to 3000 mm/yr.
Water resources of the upper Godavari basin are
mainly used for irrigation. Many low head dams
are constructed in this basin for diverting water for
irrigation purposes. A big project such as Ganga-
pur was also constructed to supply drinking water
to nearby towns.

For this study, four small catchments
(namely Adhala, Bhandardara, Gargaon and
Kadwa) and one medium catchment (Mula) with
good streamflow record in the upper Godavari
basin are selected to perform the calibration
experiments (figure 1). All the catchments are
upstream unregulated catchments without any
storage structures such as dams or reservoirs. The
details of the selected catchments are given in
table 1.
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2.2 Source model

The Source is a modelling platform developed by
eWater, Australia, for both catchment and river
basin modelling (https://wiki.ewater.org.au). The
structure of the model is flexible for both sim-
ple and complex water management problems.
The Source modelling comprises four steps: model
building, calibration, running the model and finally
preparation of the report (Dutta et al. 2012;
eWater Australia 2017). The Source platform is
best used for developing river operational mod-
els (helps water authorities to optimise day-to-
day operations), river system models (helps to
understand the impacts of water resource pol-
icy on system storages, flows and water shares),
catchment models (helps to model water quality
constituents) and urban models (helps to opti-
mise the urban supply systems) (Carr and Podger
2012).

Since the aim of the current study is to analyse
the efficacy of the rainfall-runoff models avail-
able in the Source platform for catchments in the
upper Godavari river basin, the calibration exper-
iments were performed in catchment mode. The
catchment mode helps to model the catchment
management processes such as downstream flow,
upstream flow, total flow, etc. Catchment scenarios
are usually developed with ‘Geographic Wizard for
catchments’ in the Source, which include the sys-
tematic procedure to proceed. The Source catch-
ment mode includes a conceptual rainfall-runoff
modelling framework for estimating catchment
water yield and runoff characteristics (Dutta et al.
2012) using models such as AWBM (Boughton
2004), GR4J (Edijatno et al. 1999; Perrin et al.
2003) and Sacramento (Burnash et al. 1973).
These models are configured within the frame-
work to allow the user to run the rainfall-runoff
models mainly at a lumped scale with lumped
input for the catchments. In the Source, catch-
ments can be delineated into subcatchments with
spatially explicit inputs with lumped outputs.
These models can be calibrated using an observed
discharge in the gauged catchments using avail-
able objective functions and optimisation methods
in the Source framework (https://wiki.ewater.org.
au).

In this study, we tested the efficacy of AWBM,
GR4J and Sacramento models in the Source
rainfall-runoff framework. A detailed description
of these models is given in the following
sections.

2.2.1 GR4J

The GR4J model is one of the simplest lumped
hydrological models. GR4J has two water stores
(production and routing) and has only four param-
eters to optimise during the calibration (Perrin
et al. 2003). They are given in table 2.

The two inputs to the model are daily rainfall
(P ) and evapotranspiration (ET). The schematic
diagram of GR4J model is given in figure 2. At
first, the model neutralises P by ET to deter-
mine the net rainfall Pn and net evapotranspiration
ET n (Perrin et al. 2003), calculated by:

if P > ET , then

Pn = P − ET and ETn = 0. (1)

If P < ET , then

Pn = 0 and ETn = ET − P. (2)

The net rainfall is distributed to storage (Ps)
and surface runoff (Pn − Ps) (figure 2). Ps goes
to production store and drains as ET from the
storage and percolation. This percolation and the
Pn−Ps form the total runoff, which is then divided
into two parts. Ninety percent of it is routed by
the unit hydrograph one (UH1) and routing store.
The remaining 10% of runoff is routed by UH2. The
length of UH2 is twice the length of UH1.

2.2.2 Australian Water Balance Model

The AWBM is a simple catchment water balance
model with three surface storages to simulate par-
tial area of runoff, a baseflow store and a surface
runoff routing store. The water balance for AWBM
surface partial areas (A1, A2, A3) are calculated
separately, each store has its own storage capaci-
ties (C1, C2, C3) (Boughton 2004). A1, A2 and A3
represent the user-defined land use or soil classifi-
cation as proportions of the area of the catchment.
Thus, the sum of A1, A2 and A3 must be 1
(https://wiki.ewater.org.au). The schematic dia-
gram of AWBM is shown in figure 2. The AWBM
model has eight parameters as shown in table 2.

At each time step of the model, rainfall is added
to surface storages and the evaporation is sub-
tracted from each store separately. Daily rainfall
spills are becoming excess rainfall. This excess rain-
fall is shared between baseflow store and surface
routing store. The parameter baseflow index deter-
mines the amount of water to be transferred to each

https://wiki.ewater.org.au
https://wiki.ewater.org.au
https://wiki.ewater.org.au
https://wiki.ewater.org.au
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Table 2. Parameters of GR4J, AWBM and Sacramento models.

Parameter Description Units Min Max

GR4J model

X1 Maximum capacity of the production store mm 1 1500

X2 Water exchange coefficient for the catchment mm − 10 5

X3 One-day maximum capacity of the routing

store

mm 1 500

X4 Time-base of the unit hydrograph Days 0.5 4

AWBM model

KS Surface flow recession constant 0 1

K Base flow recession constant 0 1

C1 Capacity of surface store 1 mm 0 50

C2 Capacity of surface store 2 mm 0 200

C3 Capacity of surface store 3 mm 0 500

BFI Base flow index 0 1

A1 Partial area of surface store 2 0 1

A2 Partial area of surface store 1 0 1

Sacramento model

LZPK Ratio of water in LZFPM Fraction 0.001 0.015

LZSK Ratio of water in LZFSM Fraction 0.03 0.2

UZK Fraction of water in UZFWM Fraction 0.2 0.5

UZTWM Upper zone tension water maximum mm 25 125

UZFWM Upper zone free water maximum mm 10 75

LZTWM Lower zone tension water maximum mm 75 300

LZFSM Lower zone free water supplemental maximum mm 15 300

LZFPM Lower zone free water primary maximum mm 40 600

PFREE The minimum proportion of percolation from

the upper zone to the lower zone directly avail-

able for recharging the lower zone free water

stores

Percent/100 0 0.5

REXP An exponent determining the change of the

percolation rate with changing lower zone

water storage

None 0 3

ZPERC Parameter defining the maximum percolation

rate

None 0 80

SIDE Ratio between non-channel baseflow and chan-

nel baseflow

Ratio 0 0.8

SSOUT Channel loss through the porous material in

the bed of the stream

mm 0 0.1

PCTIM Permanently impervious fraction of the basin Percent/100 0 0.05

ADIMP Fraction of the catchment, which is impervious

under soil saturation conditions

Percent/100 0 0.2

SARVA A decimal fraction of the basin, which can

deplete stream flow by evapotranspiration

Percent/100 0 0.1

RSERV Fraction of lower zone free water unavailable

for transpiration

Percent/100 0 0.4

UH1 First component of the unit hydrograph Percent/100 0 1

UH2 Second component of the unit hydrograph Percent/100 0 1

UH3 Third component of the unit hydrograph Percent/100 0 1

UH4 Fourth component of the unit hydrograph Percent/100 0 1

UH5 Fifth component of the unit hydrograph Percent/100 0 1
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Figure 2. The schematic diagram of (a) GR4J (modified from Perrin et al. 2003), (b) AWBM (modified from Boughton
2004) and (c) Sacramento (modified from Ajami et al. 2004) models.

store. The total runoff is the sum of surface runoff
and baseflow (Jones et al. 2006).

2.2.3 Sacramento

Sacramento is a complex model compared to other
two models, and uses daily rainfall and PET to esti-
mate the daily runoff. Sacramento has 5 stores and
22 parameters (table 2). Sacramento represents the
hydrologically active zone of the soil conceptually
as two layers, a thin upper layer and a much thicker
lower layer. Each layer consists of tension and free
water storages that interact to generate soil mois-
ture states and five components of runoff (Burnash
et al. 1973; Bumash 1995; Anderson et al. 2006).
The schematic diagram of Sacramento is shown in
figure 2.

There are five stores in the Sacramento model:

(1) upper zone tension water (UZTW);
(2) upper zone free water (UZFW);
(3) lower zone tension water (LZTW);
(4) lower zone primary free water (LZFWP); and
(5) lower zone supplementary free water

(LZFWS).

In tension water stores, water is stored between the
soil profile by surface tension and water is removed
from this layer only through evapotranspiration.
In free water store, water can move vertically and
laterally through the soil, and can be released as
interflow (upper zone) or baseflow (lower zone).
The Sacramento model divides the catchment into
impervious and pervious areas. Generally, lakes,
rivers, pavement and other impervious surfaces,
which directly linked to the stream network, cover
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the impervious area. The impervious area produces
runoff for any rainfall while the pervious area
only produces runoff during heavy rainfall
(https://wiki.ewater.org.au).

Streamflow prediction from Sacramento is the
aggregate impervious runoff from permanent
impervious areas and variable impervious areas,
surface runoff, interflow and baseflow. Impervious
runoff, direct runoff and surface runoff are occur-
ring in the same time interval as the rain, with
no time delay, generating the runoff component.
Time delay for interflow is in days, supplemental
baseflow has a delay of weeks or months and pri-
mary baseflow has a delay of months or years
(https://wiki.ewater.org.au).

2.3 Data

Rainfall and PET are the two major inputs to
the selected models. Rainfall data was available for
102 rain gauges (figure 2) in the upper Godavari
basin for a period of 1985–2015. The rainfall data
records with missing data were infilled with data
from other well-correlated gauges at a minimum
distance. Using these rainfall records, eWater, Aus-
tralia, has generated the rainfall data for each
subcatchment in the upper Godavari basin using
the Theissen polygon weighted rainfall method
(Şen 1998). The Theissen polygons were drawn
for all 102 rain gauge stations and rainfall data
from the polygons intersecting each subcatchment
were used to represent the subcatchment rainfall
(Redpath and Daamen 2018). The observed pan
evaporation data was used as a surrogate of PET
in this study. The pan evaporation data was avail-
able from 13 stations in the upper Godavari basin
as shown in figure 1. Therefore, the PET data for
each catchment was calculated by summing up the
pan evaporation data from adjacent stations by
giving equal weight. If the pan evaporation data
from those stations is for the very short period, the
daily mean value of PET was calculated for each
day in a year for the available period and copied for
the entire calibration period. Daily observed runoff
data is available for all the selected catchments for
at least 6 yrs during 1985–2013.

2.4 Model calibration

There are mainly two steps for calibrating a
hydrologic model in the source platform (https://
wiki.ewater.org.au). They are model building and

calibration. The procedure is similar for all the
rainfall-runoff models in the Source platform.

In model building, a geographic model is built
for a selected catchment using the digital eleva-
tion model (DEM) of the catchment in the Source
using ‘create new project’ wizard. Further, we have
to assign climate inputs to rainfall-runoff models.
The rainfall-runoff model configuration dialogue
box provides default parameters or likely ranges
for the chosen rainfall-runoff model. In the Source,
there is an option for defining the functional units
within the catchment. Functional units represent
areas within sub-catchments that behave in func-
tionally similar ways. In the present study, the
functional unit is just one.

Combination of Shuffled Complex Evolution
(SCE) and Rosenbrock optimisation was used to
calibrate each model. No land use land cover data
was used to define the functional units in the
catchment. Each catchment was considered as one
unit. Calibration and validation period chosen for
each catchment is given in table 1. The input
observations should be on daily scale to inform
Source rainfall-runoff models. The objective func-
tion considered for calibrating the model was daily
Nash–Sutcliffe efficiency (NSE) with bias penalty.
Bias penalty represents the log transformation of
the absolute value of relative bias between obser-
vations and simulations (Viney et al. 2009). Bias
penalty is included in the calibration of rainfall-
runoff models in the Source framework along with
NSE to counteract biased solutions.

2.5 Model evaluation

The consistency, adaptability, performance and
accuracy of the model must be evaluated. NSE,
percent bias (PBIAS) and linear correlation coeffi-
cient (R) have been used as the efficiency criteria to
evaluate the performance of models in this study.

The Nash–Sutcliffe model efficiency is used to
test the predictive power of hydrological models.
The NSE has a range between − ∞ and 1. When
NSE is equal to 1, it indicates a perfect match
of estimated discharge with the observed data,
whereas an efficiency of 0 suggests that the predic-
tions of the model are as accurate as the observed
data’s mean. While an efficiency, which is less than
zero (NSE < 0), corresponds that the observed
mean is better than model predictions (Nash and
Sutcliffe 1970):

https://wiki.ewater.org.au
https://wiki.ewater.org.au
https://wiki.ewater.org.au
https://wiki.ewater.org.au
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NSE = 1 −

∑n
i=1 (Qoi − Qsi)

2

∑n
i=1 (Qoi − Qom)2

, (3)

where Qoi is the observed discharge, Qsi is the sim-
ulated discharge and Qom is the mean observed
discharge.

PBIAS calculates the percentage of simulations
above or below the observations. The optimal value
for PBIAS is zero and the low magnitude repre-
sents the accurate model simulation. The positive
value of PBIAS indicates an underestimation of
simulations and negative values represent the over-
estimation of simulations (Gupta et al. 1999). It is
calculated using the following equation:

PBIAS =

∑n
i=1 Qoi − Qsi
∑i

n=1 Qoi

∗100. (4)

Pearson’s correlation coefficient, commonly
known as the linear correlation coefficient (R),
estimates the linear relationship between the obser-
vations and simulations. The value of R ranges
from −1 to 1, R = 0 is a symbol of no relationship
and −1 indicates the inverse relationship (Moriasi
et al. 2007):

R(Qo,Qs) =
cov (Qo, Qs)

σoσs

, (5)

where σo and σs are the standard deviations of
observations and simulations.

Model predictions are evaluated graphically as
well, using the time series plot, cumulative dis-
tribution of streamflow as well as the exceedance
probability curve. Monthly time series plots are
drawn as the daily time series plots and are
difficult to interpret.

3. Model results

All the models GR4J, AWBM and Sacramento
have been calibrated in all the selected catchments
in the upper Godavari basin using the Flow Cali-
bration Wizard in Source 4.1.0. The optimisation
method used was SCE with Rosenbrock algorithm
and the objective function chosen was NSE daily
with bias penalty. Daily calibration was performed
in all cases. The efficacy of models GR4J, AWBM
and Sacramento was compared by calculating the
statistical measures such as daily NSE, PBIAS
and correlation coefficient of simulated stream-
flow. It was also analysed by plotting event-based

streamflow, an exceedance probability curve and
cumulative streamflow diagram.

Figure 3 compares the NSE of streamflow
obtained for GR4J, AWBM and Sacramento mod-
els for both calibration and validation period in
all the study catchments. For all the catchments,
NSE was close to or greater than 0.5 in both cali-
bration and validation period. From the figure, it is
clear that GR4J is either better or performing sim-
ilar to AWBM or Sacramento in both calibration
and validation period. During the validation, GR4J
provided slightly better NSE than AWBM and
Sacramento for all the catchments except Adhala
and was above 0.5 in all cases. The monthly NSE
for GR4J model was around 0.8 for most of the
cases.

PBIAS, which is the percentage deviation of
simulations from the observations, is given in
figure 4 for both calibration and validation period.
Best results are obtained when PBIAS is zero
(Moriasi et al. 2007). Compared to other two mod-
els, GR4J was giving good results with PBIAS less
than ± 5% in the calibration period. Positive val-
ues of PBIAS in the calibration period indicate
the underestimation of streamflow by the models.
The high values of PBIAS (+60%) by AWBM and
Sacramento in Bhandardara and Gargaon catch-
ment were due to the inability of these models to
capture peak flow (figure 6). Nonetheless, the high
value of parameter x2, which controls the baseflow
component of the GR4J model, improves the peak
flow in Bhandardara and Gargaon. However, due
to high x2, streamflow predictions at Bhandardara
were affected adversely by increased low flows. Dur-
ing the validation, AWBM performs slightly better
than GR4J in the catchments Kadwa and Mula in
terms of PBIAS.

R illustrates the linear relationship between the
observations and simulations. A value greater than
0.5 is advised as the good fit (Moriasi et al. 2007).
In the present study, all the models provided R

greater or equal to 0.7 for both calibration and
validation period (figure 5). The R value given
by each model at every catchment was almost the
same. From the numerical analysis performed, it is
concluded that all models are giving satisfactory
results with GR4J performing marginally better.

Graphical techniques are used to visually
interpret the predictive capacity of the models. In
this study, monthly time series plots for stream-
flow were drawn for each catchment for a better
understanding of the results. The daily predic-
tions were converted into monthly values and
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Figure 3. The comparison of streamflow NSE for the models GR4J, AWBM and Sacramento in the study catchments.

Figure 4. The comparison of streamflow PBIAS for the models GR4J, AWBM and Sacramento in the study catchments.

Figure 5. The comparison of R of streamflow for the models GR4J, AWBM and Sacramento in the study catchments.

plotted in figure 6. These hydrographs help to
identify the bias in the predictions and shifts in
timing and magnitude of peak flows. Monthly
time series of streamflow predictions for the study

catchments for different models are given in
figure 6. Streamflow peaks were matching well
in both calibration and validation period with-
out much time delay for all the catchments except
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Figure 6. Time series of monthly streamflow predictions from GR4J, AWBM and Sacramento compared with observations
at selected catchments.

Bhandardara. It was observed that in all the
catchments GR4J was predicting the peaks better
than AWBM and Sacramento. In most cases, the
models were underestimating streamflow, which in
turn provided positive value for PBIAS calculated
in the numerical analysis.

In Bhandardara, the peaks were highly
underestimated especially in the calibration period
and GR4J captures peaks better than AWBM and
Sacramento. No rain gauge stations are present
inside Bhandardara catchment and the rainfall
data of nearby catchments is used for estimating
the rainfall using the Theissen polygon method.
Since Bhandardhara is situated very near to
the ridgeline, the rainfall must be higher than the
nearby catchments, which are farther from the
ridgeline. This underestimated rainfall can be a
reason for the underestimation of streamflow.

Cumulative discharge curve was plotted for each
model in all the catchments to understand the
best-fit model to the observations (figure 7). Daily

cumulated value of discharge was plotted against
time. From this figure, it is noticed that GR4J fits
well with observations in the catchments Adhala,
Bhandardara and Gargaon. In Kadwa, GR4J fit-
ted well in the calibration period; however, it was
hard to choose one model during the validation.
GR4J gave better fit during the calibration period
for Mula catchment, but AWBM was superior
during the validation period.

Percent exceedance probability curve, otherwise
called as flow duration curve explains how well
the model reproduces the observed flows dur-
ing the calibration and validation period. This
curve is plotted between the discharge and per-
centage of time that a particular discharge was
equalled or exceeded. The flow duration curve
plotted for all the study catchments is given in
figure 8. In Adhala, all the three models gave
similar exceedance probability for the calibration
period and GR4J performs better in the valida-
tion period especially in the case of medium flows.
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Figure 7. Cumulative daily streamflow predictions from
GR4J, AWBM and Sacramento are compared with obser-
vations at selected catchments.

In Bhandardara, GR4J gave exceedance plot close
to observations for high and medium flows and
AWBM and Sacramento predict low flow frequency
accurately. GR4J reproduces the observed flow well
in the case of Gargaon. For Kadwa catchment, all

Figure 8. Flow exceedance curve for streamflow observa-
tions and predictions from GR4J, AWBM and Sacramento
for both the calibration and validation period.

three models produce similar results. In the case of
Mula, flow duration curve was better simulated by
AWBM than GR4J.

The numerical and graphical analysis performed
above implies that GR4J, AWBM and Sacramento
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are equally good for catchment modelling at the
selected catchments. However, GR4J is
recommended over the other models due to the fol-
lowing reasons:

(1) GR4J provided slightly better NSE, R and
PBIAS for most of the catchments during
calibration and validation period.

(2) GR4J showed the best fit in cumulative dis-
charge and exceedance probability graph
except for Mula catchment.

(3) It was also noted that GR4J captures high flow
events better than AWBM and Sacramento.

(4) GR4J is a simple two-store model compared
to the five-store complex models AWBM and
Sacramento.

(5) GR4J has only four parameters to optimise
during the calibration, while AWBM has eight
parameters and Sacramento has 22 parame-
ters. The increment in a number of parameters
during the calibration will increase the calibra-
tion time due to the time delay in convergence
of parameters.

(6) Being a simple model, GR4J requires less time
for calibration.

Except for Mula and Gargaon, all other study
catchments are small catchments with an area
of < 300 km2. Gargaon has an area of 616 km2.
Mula is a medium-sized catchment with an area
of 2300 km2. For Mula, it has been observed dur-
ing the graphical analysis that AWBM was giving
better results than GR4J, especially during the val-
idation period. This is mainly due to the ability of
AWBM to predict medium flows better than GR4J.
For bigger catchments such as Mula, AWBM is also
recommended.

4. Discussion

As seen in the case of GR4J, AWBM and
Sacramento, the calibration of conceptual models
is easy to carry out. However, in Indian basins, a
model that simulates results based on distributed
information is practised due to the heterogeneity in
catchment topography and land uses (Gosain et al.
2006, 2011; Garg et al. 2013; Prabhanjan et al.
2014; Narsimlu et al. 2015). The literature reveals
that distributed models such as VIC and SWAT
are commonly used for hydrologic studies in the
Godavari basin (Gosain et al. 2006; Uniyal et al.
2015; Hengade and Eldho 2016; Madhusoodhanan

et al. 2017; Hengade et al. 2017). A study con-
ducted in Tekra catchment of Godavari using VIC
model received a daily NSE of 0.68 and monthly
NSE of about 0.86 (Hengade and Eldho 2016; Hen-
gade et al. 2017). In the study by Madhusoodhanan
et al. (2017), the calibration at different catchments
in Godavari provided monthly NSE of 0.7–0.9 using
the VIC model. Similar efficiency is obtained in
the present study also using the conceptual mod-
els GR4J, AWBM and Sacramento. A study by
Aatish et al. (2018) concluded that GR4J per-
forms better than SWAT model in Mula catchment,
which is one of the catchments used in the present
study.

Compared to distributed models, it is easy to
interpret the results from the lumped rainfall-
runoff models because of its simple structure.
Lumped models treat the complete basin as a
homogeneous system and estimate streamflow at
the outlet node rather than calculating specific
flows in the catchment. They simulate the aver-
age runoff inside the catchment satisfactorily at a
high computational speed using catchment rainfall
and PET as input. However, these models are inef-
ficient to model the spatially distributed flow of
the catchment for the changes in land use, topog-
raphy and climate. Distributed or semi-distributed
models such as VIC or SWAT, which require the
land use and soil data as input will be a better
choice for those studies. Streamflow is the major
output from these conceptual models working in
the Source platform. These models cannot be used
for simulating other components of water balance
such as soil moisture, baseflow, vegetation biomass,
etc., as in distributed models.

Conceptual models are input–output-based
models. During the calibration, these models tune
the parameters according to match output best
with observations. Therefore, the optimised values
for parameter values obtained after calibration fall
in different regions of parameter ranges for each
catchment in most of the cases as seen in table 3
for GR4J and table 4 for AWBM.

The problem with rainfall-runoff model working
in modelling interfaces such as Source has limited
control for users on the model structure. The user
can only define forcing data, parameter range and
catchment properties. The model works as a black-
box model, without any control on model structure.
Uncertainty in input data is another major issue to
be dealt with in hydrologic modelling. For Bhan-
dardara catchment, the rainfall data from adjacent
stations is used to calculate the catchment rainfall
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Table 3. Optimised parameters for GR4J model.

Catchments x1 x2 x3 x4

Adhala 1.00 − 10.00 227.92 1.02

Bhandardara 1.00 5.00 14.34 1.08

Gargaon 1.00 5.00 85.98 1.13

Kadwa 18.72 2.56 276.16 1.20

Mula 26.02 2.23 182.02 0.97

Table 4. Optimised parameters for AWBM model.

Catchments A1 A2 BF1 C1 C2 C3 Kbase Ksurf

Adhala 0.39 0.51 0.65 0.00 67.72 414.83 0.62 1.00

Bhandardara 7.510×−14 6.010×−16 0.08 0.00 16.39 0.00 0.00 0.27

Gargaon 1.110×−5 5.010×−8 0.80 0.00 0.00 0.00 0.46 0.82

Kadwa 0.10 0.75 0.47 0.00 0.00 148.86 0.70 0.70

Mula 0.01 0.38 0.50 0.00 84.37 0.00 0.89 0.48

using the Theissen polygon method. The underes-
timated streamflow by the models illustrates that
this can be due to an underestimated rainfall in
that catchment. All the catchments in this study
used ET data from nearby stations, which is also
a source of uncertainty. A further study with these
models should be performed to quantify the uncer-
tainty in model structure and inputs on model
predictions.

The main scope of conceptual models is in water
resources management studies, where streamflow
is the output of concern. Considering the sim-
ple structure, low data requirements and com-
putational efficiency of conceptual models, they
are being used in flood and drought forecasting,
flood management, river basin management and
reservoir management studies (Yang et al. 1995;
Cameron et al. 1999; Yang and Michel 2000).

5. Conclusions

In this study, the performance of the models GR4J,
AWBM and Sacramento was compared at five
catchments in the upper Godavari basin. Con-
ceptual models are gaining popularity among the
different hydrological models used for catchment
modelling due to their simple structure and sat-
isfactory performance, worldwide. However, the
choice of right model for water resource assessment
in a particular region is a big challenge to hydrol-
ogists. Modelling platforms such as Source, by
eWater, Australia, are reducing that challenge by

integrating all the information for water resources
management and modelling tools in one plat-
form. This study was considered in finding the
more appropriate conceptual model among GR4J,
AWBM and Sacramento included in the Source
framework.

Daily calibration is performed at Source
calibration framework using NSE with bias penalty
as the objective function. Based on the
calibrations performed, the GR4J is suggested as
the best model. It was noticed that GR4J cap-
tures high flow events better than Sacramento
and AWBM. GR4J was slightly better in terms
of NSE, PBIAS and correlation coefficient. Com-
pared to AWBM and Sacramento, the GR4J is a
simple two-store model and has only four param-
eters to optimise during the calibration, which in
turn reduces the calibration time.
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