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Abstract— Several extensions to evolutionary algorithms (EAs)
and particle swarm optimization (PSO) have been suggested dur-
ing the last decades offering improved performance on selected
benchmark problems. Recently, another search heuristic termed
differential evolution (DE) has shown superior performance in
several real-world applications. In this paper we evaluate the
performance of DE, PSO, and EAs regarding their general ap-
plicability as numerical optimization techniques. The comparison
is performed on a suite of 34 widely used benchmark problems.
The results from our study show that DE generally outperforms
the other algorithms. However, on two noisy functions, both DE
and PSO were outperformed by the EA.

I. I NTRODUCTION

The evolutionary computation (EC) community has shown
a significant interest in optimization for many years. In par-
ticular, there has been a focus on global optimization of nu-
merical, real-valued ‘black-box’ problems for which exact and
analytical methods do not apply. Since the mid-sixties many
general-purpose optimization algorithms have been proposed
for finding near-optimal solutions to this class of problems;
most notably: evolution strategies (ES) [8], evolutionary pro-
gramming (EP) [3], and genetic algorithms (GA) [6].

Many efforts have also been devoted to compare these al-
gorithms to each other. Typically, such comparisons have been
based on artificial numerical benchmark problems. The goal of
many studies was to verify that one algorithm outperformed
another on a given set of problems. In general, it has been
possible to improve a given standard method within a restricted
set of benchmark problems by making minor modifications to
it.

Recently, particle swarm optimization (PSO) [7] and dif-
ferential evolution (DE) [11] have been introduced and par-
ticularly PSO has received increased interest from the EC
community. Both techniques have shown great promise in
several real-world applications [4], [5], [12], [14]. However,
to our knowledge, a comparative study of DE, PSO, and GAs
on a large and diverse set of problems has never been made.

In this study, we investigated the performance of DE, PSO,

and an evolutionary algorithm (EA)1 on a selection of 34
numerical benchmark problems. The main objective was to ex-
amine whether one of the tested algorithms would outperform
all others on a majority of the problems. Additionally, since
we used a rather large number of benchmark problems, the
experiments would also reveal whether the algorithms would
have any particular difficulties or preferences.

Overall, the experimental results show that DE was far more
efficient and robust (with respect to reproducing the results in
several runs) compared to PSO and the EA. This suggests that
more emphasis should be put on DE when solving numerical
problems with real-valued parameters. However, on two noisy
test problems, DE was outperformed by the other algorithms.

The paper is organized as follows. In Section II we introduce
the methods used in the study: DE, PSO, and the EA. Further,
Section III outlines the experimental setup, parameter settings,
and benchmark problems used. The experimental results are
presented in Section IV. Finally, Section V contains a discus-
sion of the experimental results.

II. M ETHODS

A. Differential Evolution

The DE algorithm was introduced by Storn and Price in
1995 [11]. It resembles the structure of an EA, but differs from
traditional EAs in its generation of new candidate solutions
and by its use of a ‘greedy’ selection scheme. DE works
as follows: First, all individuals are randomly initialized and
evaluated using the fitness function provided. Afterwards, the
following process will be executed as long as the termination
condition is not fulfilled: For each individual in the population,
an offspring is created using the weighted difference of parent
solutions. In this study we used theDE/rand/1/exp scheme
shown in Figure 1. The offspring replaces the parent if it is
fitter. Otherwise, the parent survives and is passed on to the
next iteration of the algorithm.

1The EA used in this study resembled a real-valued GA.
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procedure create offspringO[i] from parentP [i] {
O[i] = P [i] // copy parent genotype to offspring
randomly select parentsP [i1], P [i2], P [i3],
wherei1 6= i2 6= i3 6= i

n = U(0, dim)
for (j = 0; j < dim ∧ U(0, 1) < CR; j++) {

O[i][n] = P [i1][n] + F · (P [i2][n]− P [i3][n])
n = (n + 1) mod dim

}
}

Fig. 1. Pseudo-code for creating an offspring in DE.U(0, x) is a uniformly
distributed number between 0 andx. CR is the probability of crossover,F
is the scaling factor, anddim is the number of problem parameters (problem
dimensionality).

B. Particle Swarm Optimization

PSO was introduced by Kennedy and Eberhart in 1995. It
was inspired by the swarming behavior as is displayed by a
flock of birds, a school of fish, or even human social behavior
being influenced by other individuals [7].

PSO consists of a swarm of particles moving in ann-
dimensional, real-valued search space of possible problem
solutions. Every particle has a position vector~x encoding a
candidate solution to the problem (similar to the genotype in
EAs) and a velocity vector~v. Moreover, each particle contains
a small memory that stores its own best position seen so far~p
and a global best position~g obtained through communication
with its neighbor particles. In this study we used the fully
connected network topology for passing on information (see
[15] for more details).

Intuitively, the information about good solutions spreads
through the swarm, and thus the particles tend to move to good
areas in the search space. At each time stept, the velocity is
updated and the particle is moved to a new position. This new
position is calculated as the sum of the previous position and
the new velocity:

~x(t + 1) = ~x(t) + ~v(t + 1)

The update of the velocity from the previous velocity to the
new velocity is determined by the following equation:

~v(t+1) = ω·~v(t)+U(0, φ1)(~p(t)−~x(t))+U(0, φ2)(~g(t)−~x(t)),

where U(a, b) is a uniformly distributed number betweena
and b. The parameterω is called the inertia weight [10]
and controls the magnitude of the old velocity~v(t) in the
calculation of the new velocity, whereasφ1 andφ2 determine
the significance of~p(t) and ~g(t), respectively. Furthermore,
at any time step of the algorithmvi is constrained by the
parametervmax.

The swarm in PSO is initialized by assigning each particle to
a uniformly and randomly chosen position in the search space.
Velocities are initialized randomly in the range[−vmax, vmax].

C. Attractive and Repulsive PSO

The attractive and repulsive PSO (arPSO) [9], [15] was
introduced by Vesterstrøm and Riget to overcome the problems
of premature convergence [1]. The modification of the basic
PSO scheme is to modify the velocity update formula when
the swarm diversity becomes less than a valuedlow. This
modification corresponds to repulsion of the particles instead
of the usual attraction scheme. Thus, the velocity is updated
according to:

~v(t+1) = ω·~v(t)−U(0, φ1)(~p(t)−~x(t))−U(0, φ2)(~g(t)−~x(t))

This will increase the diversity over some iterations, and
eventually when another valuedhigh is reached, the commonly
used velocity update formula will be used again. Thus, arPSO
is able to zoom out when an optimum has been reached, fol-
lowed by zooming in on another hot spot, possibly discovering
a new optimum in the vicinity of the old one. Previously,
arPSO was shown to be more robust than the basic PSO on
problems with many optima [9].

The arPSO algorithm was included in this study as a
representative for the large number of algorithmic extensions
to PSO that try to avoid the problem of premature convergence.
Other PSO extensions could have been chosen but we selected
this particular one, since the performance of arPSO was as
good (or better) as many other extensions [15].

D. Evolutionary Algorithm

In this study we used a simple EA (SEA) that was previ-
ously found to work well on real-world problems [13]. The
SEA works as follows: First, all individuals are randomly
initialized and evaluated according to a given fitness function.
Afterwards, the following process will be executed as long
as the termination condition is not fulfilled: Each individual
has a probability of being exposed to either mutation or
recombination (or both). Mutation and recombination oper-
ators are applied with probabilitypm and pc, respectively.
The mutation and recombination operators used are Cauchy
mutation using an annealing scheme and arithmetic crossover,
respectively. Finally, tournament selection [2] comparing pairs
of individuals is applied to weed out the least fit individuals.

The Cauchy mutationoperator is similar to the well-known
Gaussian mutation operator, but the Cauchy distribution has
thick tails that enable it to generate considerable changes
more frequently than the Gaussian distribution. The Cauchy
distribution has the form:

C(x, α, β) =
1

βπ

(
1 +

(
x−α

β

)2
)

whereα ≥ 0, β > 0,−∞ < x < ∞ (α andβ are parameters
that affect the mean and spread of the distribution). All of the
solution parameters are subject to mutation and the variance
is scaled with 0.1× the range of the specific parameter in
question.

Moreover, an annealing scheme was applied to decrease the
value ofβ as a function of the elapsed number of generationst.
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α was fixed to 0. In this study we used the following annealing
function:

β(t) =
1

1 + t

In arithmetic crossover the offspring is generated as a
weighted mean of each gene of the two parents, i.e.,

offspringi = r · parent1i + (1− r) · parent2i,

whereoffspringi is thei’th gene of the offspring andparent1i
andparent2i refer to thei’th gene of the two parents, respec-
tively. The weightr is determined by a random value between
0 and 1.

E. Additional Remarks

All methods described above used truncation of infeasible
solutions to the nearest boundary of the search space. Further,
the termination criterion for all methods was to stop the
search process, when the current number of fitness evaluations
exceeded a maximum number of evaluations allowed.

III. E XPERIMENTS

A. Experimental Setup and Data Sampling

The algorithms used for comparison were DE, PSO, arPSO,
and the SEA. For all algorithms the parameter settings were
manually tuned, based on a few preliminary experiments.
The specific settings for each of the algorithms are described
below. Each algorithm was tested with all of the numerical
benchmarks shown in Table I. In addition, we tested the
algorithms onf1–f13 in 100 dimensions, yielding a total of
34 numerical benchmarks. For each algorithm, the maximum
number of evaluations allowed was set to 500,000 for the 30-
dimensional (or less) benchmarks and to 5,000,000 for the
100-dimensional benchmarks. Each of the experiments was
repeated 30 times with different random seeds, and the average
fitness of the best solutions (e.g. individuals or particles)
throughout the optimization run was recorded.

B. DE Settings

DE has three parameters: The size of the population (pop-
size), the crossover constant (CR), and the scaling factor (F).
In all experiments they were set to the following values:
popsize= 100, CR= 0.9, F = 0.5

C. PSO Settings

PSO has several parameters: The number of particles in the
swarm (swarmsize), maximum velocity (vmax), the parame-
ters for attraction towards personal best and the neighborhoods
best found solutions (φ1 andφ2), and the inertia weight (ω).
For PSO we used these settings:swarmsize = 25, vmax =
15% of the longest axis-parallel interval in the search space,
φ1 = 1.8, φ2 = 1.8, andω = 0.6.

Often the inertia weight is decreased linearly over time.
The setting for PSO in this study is a bit unusual, because
the inertia weight was held constant during the run. However,
it was found that for the easier problems, the chosen settings
outperformed the setting whereω was annealed. The setting

with constantω, on the other hand, performed poorly on
multimodal problems. To be fair to PSO, we therefore included
the arPSO algorithm, which was known to outperform PSO
(even with annealedω) on multi modal problems [9].

D. arPSO Settings

In addition to the basic PSO settings, arPSO used the
following parameter settings:dlow = 0.000005 anddhigh =
0.25. The two parameters were only marginally dependent
on the problem, and these settings were consistent with the
settings found in previous studies [9].

E. SEA Settings

The SEA used a population size of 100. The probability of
mutating and crossing over individuals was fixed atpm = 0.9
andpc = 0.7, respectively. Tournament selection with a tour-
nament size of two was used to select the individuals for the
next generation. Further, elitism with an elite size of one was
used to keep the overall best solution found in the population.

F. Numerical Benchmark Functions

For evaluating the four algorithms, we used a test suite of
benchmark functions previously introduced by Yao and Liu
[16]. The suite contained a diverse set of problems, including
unimodal as well as multimodal functions, and functions with
correlated and uncorrelated variables. Additionally, two noisy
problems and a single problem with plateaus were included.
The dimensionality of the problems originally varied from 2
to 30, but we extended the set with 100-dimensional variants
to allow for comparison on more difficult problem instances.
Table I lists the benchmark problems, the ranges of their search
spaces, their dimensionalities, and their global minimum fit-
nesses. We omittedf19 and f20 from Yao and Liu’s study
[16] because of difficulties in obtaining the definitions of the
constants used in these functions (they were not provided in
[16]).

IV. RESULTS

A. Problems of Dimensionality 30 or Less

The results for the benchmark problemsf1–f23 are shown
in Table II and III. Moreover, Figure 2 shows the convergence
graphs for selected benchmark problems. All results below
10−25 were reported as ‘0.0000000e+00’.

For functionsf1–f4 there is a consistent performance pat-
tern across all algorithms: PSO is the best, and DE is almost
as good. They both converge exponentially fast toward the
fitness optimum (resulting in a straight line when plotted using
a logarithmic y-axis). The SEA is many times slower than
the two other methods, and even though it eventually might
converge toward the optimum, it requires several hours to find
solutions that PSO and DE can reach in a few seconds. This
analysis is illustrated in Figure 2 (a).

On function f5, DE is superior to both PSO and arPSO
and the SEA. Only DE converges toward the optimum. After
300,000 evaluations, it commences to fine-tune around the
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TABLE I

NUMERICAL BENCHMARK FUNCTIONS WITH A VARYING NUMBER OF DIMENSIONS(DIM ). REMARKS: 1) FUNCTIONS SINE AND COSINE TAKE

ARGUMENTS IN RADIANS. 2) THE NOTATION (a)T (b) DENOTES THE DOT PRODUCT BETWEEN VECTORSa AND b. 3) THE FUNCTION u AND THE VALUES

yi REFERRED TO INf12 AND f13 ARE GIVEN BY u(x, a, b, c) = b(x− a)c IF x > a, u(x, a, b, c) = b(−x− a)c IF x < a, u(x, a, b, c) = 0 IF

−a ≤ x ≤ a, AND FINALLY yi = 1 + 1
4
(xi + 1). THE MATRIX a USED IN f14 , THE VECTORSa AND b USED IN f15 , AND THE MATRIX a AND THE

VECTOR c USED IN f21–f23 , ARE ALL DEFINED IN THE APPENDIX.

Function Dim Ranges Minimum value

f1(~x) =
∑n−1

i=0
x2

i 30/100 −5.12 ≤ xi ≤ 5.12 f1(~0) = 0

f2(~x) =
∑n−1

i=0
|xi|+

∏n−1

i=0
xi 30/100 −10 ≤ xi ≤ 10 f2(~0) = 0

f3(~x) =
∑n−1

i=0

(∑i

j=0
xi

)2

30/100 −100 ≤ xi ≤ 100 f3(~0) = 0

f4(~x) = max |xi| , 0 ≤ i < n 30/100 −100 ≤ xi ≤ 100 f4(~0) = 0

f5(~x) =
∑n−1

i=0

(
100 · (xi+1 − (xi)

2)2 + (xi − 1)2
)

30/100 −30 ≤ xi ≤ 30 f5(~1) = 0

f6(~x) =
∑n−1

i=0

(⌊
xi + 1

2

⌋)2
30/100 −100 ≤ xi ≤ 100

f6(~p) = 0,

− 1
2
≤ pi < 1

2

f7(~x) =
(∑n−1

i=0
(i + 1) · x4

i

)
+ rand[0, 1[ 30/100 −1.28 ≤ xi ≤ 1.28 f7(~0) = 0

f8(~x) =
∑n−1

i=0
−xi · sin(

√
|xi|) 30/100 −500 ≤ xi ≤ 500

f8( ~420.97) =

12569.5/41898.3

f9(~x) =
∑n−1

i=0
(x2

i − 10 cos(2πxi) + 10) 30/100 −5.12 ≤ xi ≤ 5.12 f9(~0) = 0

f10(~x) =
−20 exp

(
−0.2

√
1
n

∑n−1

i=0
x2

i

)
−

30/100 −32 ≤ xi ≤ 32 f10(~0) = 0

exp
(

1
n

∑n−1

i=0
cos(2πxi)

)
+ 20 + e

f11(~x) = 1
4000

(∑n−1

i=0
x2

i

)
+

(∏n−1

i=0
cos( xi√

i+1
)

)
+ 1 30/100 −600 ≤ xi ≤ 600 f11(~0) = 0

f12(~x) =

π
n
{10(sin(πy1))2+

30/100 −50 ≤ xi ≤ 50 f12( ~−1) = 0
∑n−2

i=0

(
(yi − 1)2(1 + 10(sin(πyi+1))

2)
)

+

(yn − 1)2}+
∑n−1

i=0
u(xi, 10, 100, 4)

f13(~x) =

0.1{(sin(3πx1))2+

30/100 −50 ≤ xi ≤ 50

f13(1, . . . , 1,−4.76)
∑n−2

i=0

(
(xi − 1)2(1 + (sin(3πxi+1))

2)
)

+ (xn − 1) = −1.1428

(1 + (sin(2πxn))2)}+
∑n−1

i=0
u(xi, 5, 100, 4)

f14(~x) =
(

1
500

+
∑24

j=0
(j + 1 +

∑1

i=0
(xi − aij)

6)−1

)−1

2 −65.54 ≤ xi ≤ 65.54
f14( ~−31.95)

= 0.998

f15(~x) =
∑10

i=0

(
ai − x0(b2i +bix1)

b2
i
+bix2+x3

)2

4 −5 ≤ xi ≤ 5
f15(0.19, 0.19, 0.12, 0.14)

= 0.0003075

f16(~x) = 4x2
0 − 2.1x4

0 + 1
3
x6
0 + x0x1 − 4x2

1 + 4x4
1 2 −5 ≤ xi ≤ 5

f16(−0.09, 0.71)

= −1.0316

f17(~x) =
(x1 − 5.1

4π2 x2
0 + 5

π
x0 − 6)2+

2 −5 ≤ xi ≤ 15 f17(9.42, 2.47) = 0.398
10(1− 1

8π
) cos(x0) + 10

f18(~x) =

{1 + (x0 + x1 + 1)2(19− 14x0 + 3x2
0 − 14x1+

2 −2 ≤ xi ≤ 2 f18(1.49e-05, 1.00) = 36x0x1 + 3x2
1)}{30 + (2x0 − 3x1)2

(18− 32x0 + 12x2
0 + 48x1 − 36x0x1 + 27x2

1)}
f21(~x) = −

∑4

i=0

(
(x− ai)

T (x− ai) + ci

)−1
4 0 ≤ xi ≤ 10 f21(≈ ~4) = −10.2

f22(~x) = −
∑6

i=0

(
(x− ai)

T (x− ai) + ci

)−1
4 0 ≤ xi ≤ 10 f22(≈ ~4) = −10.4

f23(~x) = −
∑9

i=0

(
(x− ai)

T (x− ai) + ci

)−1
4 0 ≤ xi ≤ 10 f23(≈ ~4) = −10.5
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optimum at an exponentially progressing rate. We may note
that PSO performs moderately better than the SEA.

DE and the SEA easily find the optimum for thef6

function, whereas both PSOs fail. This test function consists
of plateaus, and apparently both PSO methods have difficulties
with functions of this kind. The average best fitness value of
0.04 for basic PSO comes from failing twice in 30 runs.

Function f7 is a noisy problem. All algorithms seem to
converge in a similar pattern, see Figure 2 (d). The SEA had
the best convergence speed, followed by arPSO, PSO, and
finally DE.

Functionsf8–f13 are highly multimodal functions. On all of
them, DE clearly performs best and it finds the global optimum
in all cases. Neither the SEA nor the PSOs find the global
optimum for these functions in any of the runs. Further, the
SEA consistently outperforms both PSOs, withf10 being an
exception.

Both DE, the SEA, and arPSO come very close to the
global optimum onf14 in all runs, but only DE hits the
exact optimum every time, making it the best algorithm on
this problem. PSO occasionally stagnates at a local optimum,
which is the reason for its poor average best fitness.

On f15 both PSOs perform worse than DE and SEA. DE
converges very fast to good values near the optimum, but
seems to stagnate suboptimally. The SEA converges slowly,
but outperforms DE after 500,000 fitness evaluations. To
investigate if the SEA would continue its convergence and
ultimately reach the optimum, we tried to let it run for 2
million evaluations. In the majority of runs, it actually found
the optimum after approximately 1 million evaluations (data
not shown).

Functionsf16–f18 are all easy problems, and all algorithms
are able to find near optimum solutions quickly. Both PSO
methods have particularly fast convergence. For some reason,
the SEA seems to be able to fine-tune its results slightly better
than the other algorithms.

The last three problems aref21–f23. Again, DE is superior
compared to the other algorithms. It finds optimum in all cases.
DE, the SEA, and PSO all converge quickly, but the SEA
stagnates before finding the optimum, and both PSO methods
converge even earlier. arPSO performs better than PSO, and
is almost as good as the SEA.

B. Problems of Dimensionality 100

On f1, PSO and DE have good exponential convergence to
optimum (similar to the results in 30 dimensions) and the SEA
is much slower. However, onf2 the picture has changed. DE
still has exponential convergence to optimum, but both PSOs
fail to find the optimum – they are now performing worse
than the SEA. The same pattern occurs forf3 and f4. This
contrasts with the 30 dimensional cases, where PSO performed
exceptionally well forf1–f4.

On the difficult f5 problem, DE is superior and finds
optimum after 3.5 million evaluations. The other algorithms
fail to find the optimum. However, the SEA is slightly better
than the basic PSO.

Both DE and the SEA quickly find the optimum off6 in all
runs. PSO only finds the optimum in 9 out of 30 runs. This
is the reason for the average of 2.1 for PSO on this problem.

The results for the 100 dimensional version off7 are similar
to the results in the 30 dimensional case. The SEA has the best
convergence, arPSO is slightly slower, followed by PSO, and
finally DE.

For problemsf8–f13 the results also resemble those from
30 dimensions. One exception is that arPSO is now marginally
worse than the SEA onf10. Thus, in 100 dimensions the SEA
is consistently better than both PSOs on these six problems.

V. D ISCUSSION

Overall, DE is clearly the best performing algorithm in this
study. It finds the lowest fitness value for most of the problems.
The only exceptions are: 1) The noisyf7 problem, where the
nature of the convergence of DE is similar, but still slower
than the other algorithms. Apparently, DE faces difficulties on
noisy problems. 2) Onf15 DE stagnates on a suboptimal value
(and both PSOs even earlier). Only the SEA is able to find
the optimum on this problem, which only has four problem
parameters, but still appears to be very difficult.

We have not tried to tune DE to these problems. Most
likely, one could improve the performance of DE by altering
the crossover scheme, varying the parametersCR and F ,
or using a more ‘greedy’ offspring generation strategy (e.g.
DE/best/1/exp).

DE is robust; it is able to reproduce the same results
consistently over many trials, whereas the performance of
PSO and arPSO is far more dependent on the randomized
initialization of the individuals. This difference is profound on
the 100 dimensional benchmark problems. As a result, both
versions of PSO must be executed several times to ensure good
results, whereas one run of DE and the SEA usually suffices.

PSO is more sensitive to parameter changes than the other
algorithms. When changing the problem, one probably need
to change parameters as well to sustain optimal performance.
This is not the case for the SEA and DE. The 100 dimensional
problems illustrate this point. Thus, the settings for both PSOs
do not generalize to 100 dimensions, whereas DE and the SEA
can be used with the same settings and still give the same type
of convergence.

In general, DE shows great fine-tuning abilities, but on
f16 and f17 it fails in comparison to the SEA. We have not
determined why DE fails to fine tune these particular problems,
but it would be interesting to investigate why.

Regarding convergence speed, PSO is always the fastest,
whereas the SEA or arPSO are always the slowest. However,
the SEA could be further improved with a more ‘greedy’
selection scheme similar to DE. Especially on the very easy
functionsf16–f18, PSO has a very fast convergence (3-4 times
faster than DE). This may be of practical relevance for some
real-world problems where the evaluation is computationally
expensive and the search space is relatively simple and of low
dimensionality.
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TABLE II

RESULTS FOR ALL ALGORITHMS ON BENCHMARK PROBLEMS OF DIMENSIONALITY30 OR LESS(MEAN OF 30 RUNS AND STANDARD DEVIATIONS

(STDDEV)). FOR EACH PROBLEM, THE BEST PERFORMING ALGORITHM(S) IS EMPHASIZED IN BOLDFACE.

Benchmark DE PSO arPSO SEA

Problem Mean Stddev Mean Stddev Mean Stddev Mean Stddev

1 0.0000000e+00 0.00e+00 0.0000000e+00 0.00e+00 6.8081735e-13 5.30e-13 1.7894112e-03 2.77e-04

2 0.0000000e+00 0.00e+00 0.0000000e+00 0.00e+00 2.0892037e-02 1.48e-01 1.7207452e-02 1.70e-03

3 2.0200713e-09 8.26e-10 0.0000000e+00 0.00e+00 0.0000000e+00 2.13e-25 1.5891817e-02 4.25e-03

4 3.8502177e-08 9.17e-09 2.1070152e-16 8.01e-16 1.4183790e-05 8.27e-06 1.9827734e-02 2.07e-03

5 0.0000000e+00 0.00e+00 4.0263857e+00 4.99e+00 3.5509286e+02 2.15e+03 3.1318954e+01 1.74e+01

6 0.0000000e+00 0.00e+00 4.0000000e-02 1.98e-01 1.8980000e+01 6.30e+01 0.0000000e+00 0.00e+00

7 4.9390831e-03 1.13e-03 1.9082207e-03 1.14e-03 3.8866682e-04 4.78e-04 7.1062480e-04 3.27e-04

8 -1.2569481e+04 2.30e-04 -7.1874076e+03 6.72e+02 -8.5986527e+03 2.07e+03 -1.1669334e+04 2.34e+02

9 0.0000000e+00 0.00e+00 4.9170789e+01 1.62e+01 2.1491414e+00 4.91e+00 7.1789575e-01 9.22e-01

10 -1.1901591e-15 7.03e-16 1.4046895e+00 7.91e-01 1.8422773e-07 7.15e-08 1.0468180e-02 9.08e-04

11 0.0000000e+00 0.00e+00 2.3528934e-02 3.54e-02 9.2344555e-02 3.41e-01 4.6366988e-03 3.96e-03

12 0.0000000e+00 0.00e+00 3.8199611e-01 8.40e-01 8.5597888e-03 4.79e-02 4.5626102e-06 8.11e-07

13 -1.1428244e+00 4.45e-08 -5.9688703e-01 5.17e-01 -9.6263537e-01 5.14e-01 -1.1427420e+00 1.34e-05

14 9.9800390e-01 3.75e-08 1.1570484e+00 3.68e-01 9.9800393e-01 2.13e-08 9.9800400e-01 4.33e-08

15 4.1736828e-04 3.01e-04 1.3378460e-03 3.94e-03 1.2476701e-03 3.96e-03 3.7041858e-04 8.78e-05

16 -1.0316285e+00 1.92e-08 -1.0316284e+00 3.84e-08 -1.0316284e+00 3.84e-08 -1.0316300e+00 3.16e-08

17 3.9788735e-01 1.17e-08 3.9788736e-01 5.01e-09 3.9788736e-01 5.01e-09 3.9788700e-01 2.20e-08

18 3.0000000e+00 0.00e+00 3.0000000e+00 0.00e+00 3.5162719e+00 3.65e+00 3.0000000e+00 0.00e+00

21 -1.0153201e+01 4.60e-07 -5.3944733e+00 3.40e+00 -8.1809408e+00 2.60e+00 -8.4076288e+00 3.16e+00

22 -1.0402943e+01 3.58e-07 -6.9460507e+00 3.70e+00 -8.4352620e+00 2.83e+00 -8.9125580e+00 2.86e+00

23 -1.0536412e+01 2.09e-07 -6.7107552e+00 3.77e+00 -8.6155040e+00 2.88e+00 -9.7995696e+00 2.24e+00

TABLE III

RESULTS FOR ALL ALGORITHMS ON BENCHMARK PROBLEMS OF DIMENSIONALITY100 (MEAN OF 30 RUNS AND STANDARD DEVIATIONS (STDDEV)).

FOR EACH PROBLEM, THE BEST PERFORMING ALGORITHM(S) IS EMPHASIZED IN BOLDFACE.

Benchmark DE PSO arPSO SEA

Problem Mean Stddev Mean Stddev Mean Stddev Mean Stddev

1 0.0000000e+00 0.00e+00 0.0000000e+00 0.00e+00 7.4869991e+02 2.31e+03 5.2291447e-04 5.18e-05

2 0.0000000e+00 0.00e+00 1.8045813e+01 6.52e+01 3.9637792e+01 2.45e+01 1.7371780e-02 9.43e-04

3 5.8734789e-10 1.83e-10 3.6666668e+03 6.94e+03 1.8174752e+01 2.50e+01 3.6846433e-02 6.06e-03

4 1.1284972e-09 1.42e-10 5.3121806e+00 8.63e-01 2.4367166e+00 3.80e-01 7.6708840e-03 5.71e-04

5 0.0000000e+00 0.00e+00 2.0203629e+02 7.66e+02 2.3609401e+02 1.25e+02 9.2492247e+01 1.29e+01

6 0.0000000e+00 0.00e+00 2.1000000e+00 3.52e+00 4.1183333e+02 4.21e+02 0.0000000e+00 0.00e+00

7 7.6640871e-03 6.58e-04 2.7845728e-02 7.31e-02 3.2324733e-03 7.87e-04 7.0539773e-04 9.70e-05

8 -4.1898293e+04 1.06e-03 -2.1579648e+04 1.73e+03 -2.1209102e+04 2.98e+03 -3.9430820e+04 5.36e+02

9 0.0000000e+00 0.00e+00 2.4359139e+02 4.03e+01 4.8096522e+01 9.54e+00 9.9767318e-02 3.04e-01

10 8.0232117e-15 1.74e-15 4.4934316e+00 1.73e+00 5.6281044e-02 3.08e-01 2.9328603e-03 1.47e-04

11 5.4210109e-20 0.00e+00 4.1715080e-01 6.45e-01 8.5311042e-02 2.56e-01 1.8932321e-03 4.42e-03

12 0.0000000e+00 0.00e+00 1.1774980e-01 1.75e-01 9.2199219e-02 4.61e-01 2.9783067e-07 2.76e-08

13 -1.1428244e+00 2.74e-08 -3.8604485e-01 9.47e-01 3.3010679e+02 1.72e+03 -1.1428100e+00 2.41e-08
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Fig. 2. Average best fitness curves for selected benchmark problems. All results are means of 30 runs.
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To conclude, the performance of DE is outstanding in
comparison to the other algorithms tested. It is simple, robust,
converges fast, and finds the optimum in almost every run. In
addition, it has few parameters to set, and the same settings
can be used for many different problems. Previously, the
DE has shown its worth on real-world problems, and in this
study it outperformed PSO and EAs on the majority of the
numerical benchmark problems as well. Among the tested
algorithms, the DE can rightfully be regarded as an excellent
first choice, when faced with a new optimization problem to
solve. The results for the two noisy benchmark functions call
for further investigations. More experiments are required to
determine why and when the DE and PSO methods fail on
noisy problems.
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APPENDIX

f14 :

a =
(−32,−16, 0, 16, 32, . . . ,−32,−16, 0, 16, 32

−32, . . . ,−16, . . . , 0, . . . , 16, . . . , 32, . . .

)

f15 :

a = (0.1957, 0.1947, 0.1735, 0.1600, 0.0844,
0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246)

b =
(

1
0.25 , 1

0.5 , 1
1 , 1

2 , 1
4 , 1

6 , 1
8 , 1

10 , 1
12 , 1

14 , 1
16

)

f21–f23 :

a =




4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
3.0 7.0 3.0 7.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 3.6 7.0 3.6




c =
(
0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5

)
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