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C. Schäfer8 and R. Speith8

1Stockholm University, AlbaNova University Centre, SE-106 91, Stockholm, Sweden
2Department of Physics and Astronomy, University of Rochester, NY 14627, USA
3University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
4University Observatory Munich, Scheinerstr. 1, D-81679 Munich, Germany
5Nicolaus Copernicus Astronomical Centre, Bartycka 18, Warsaw, PL-00-716, Poland
6Astronomy Unit, Queen Mary, University of London, Mile End Road, London E1 4NS
7School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL
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ABSTRACT

We perform numerical simulations of a disc–planet system using various grid-based and

smoothed particle hydrodynamics (SPH) codes. The tests are run for a simple setup where

Jupiter and Neptune mass planets on a circular orbit open a gap in a protoplanetary disc during

a few hundred orbital periods. We compare the surface density contours, potential vorticity and

smoothed radial profiles at several times. The disc mass and gravitational torque time evolution

are analysed with high temporal resolution. There is overall consistency between the codes.

The density profiles agree within about 5 per cent for the Eulerian simulations. The SPH results

predict the correct shape of the gap although have less resolution in the low-density regions and

weaker planetary wakes. The disc masses after 200 orbital periods agree within 10 per cent.

The spread is larger in the tidal torques acting on the planet which agree within a factor of

2 at the end of the simulation. In the Neptune case, the dispersion in the torques is greater than

for Jupiter, possibly owing to the contribution from the not completely cleared region close to

the planet.

Key words: accretion, accretion discs – hydrodynamics – planets and satellites: general.

1 I N T RO D U C T I O N

Hydrodynamics is a difficult subject, which has caused many prob-

lems for many distinguished physicists. However, it is not a topic

⋆E-mail: miguel@astro.su.se

which can be avoided due to the central part that gas plays in the

cosmos.

The basic equations of hydrodynamics are the Navier–Stokes

equations, and have been known for almost two centuries:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)
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∂v

∂t
+ (v · ∇)v = −

1

ρ
∇ p − ∇� + ∇ · T, (2)

where ρ is the density, v is the velocity of the fluid, p is the pressure,

� is the gravitational potential and T is the full viscous stress tensor

(see e.g. Mihalas & Weibel Mihalas 1984). The first equation de-

scribes the conservation of mass and the second, the conservation

of momentum. An equation of state closes the system of equations,

and additional terms may be added as required. Despite their com-

paratively simple form, the Navier–Stokes equations have proved

remarkably stubborn to mathematical analysis.

The problem lies in the v · ∇v terms (the so-called advection

terms). These arise because the equations describe a fluid moving

past a fixed point in space (the Eulerian point of view). The advection

terms make the equations non-linear (since they are effectively pro-

portional to v2), rendering many mathematical techniques useless.

Indeed, no one has yet proven that solutions to the Navier–Stokes

equations are unique. This is in sharp contrast to many other im-

portant equations in physics. For example, the Poisson equation is

linear, and has unique solutions. This opens up many avenues for

obtaining solutions – the method of images being a well-known ex-

ample. As a result of this non-linearity, theoretical investigation of

fluids has to be restricted to highly idealized flows.

To make progress then, we are forced to turn to computers. Nu-

merical algorithms for solving complex equations have been stud-

ied for centuries, and computers are ideal for implementing these.

Unfortunately, computers are tricky beasts, with a habit of doing

precisely what you told them to, just when you least expected it.

The ‘obvious’ way of computing a numerical solution may well be

unstable (this is particularly true of the Navier–Stokes equations),

and an implementation of a stable method may well contain bugs.

Floating point numbers have finite accuracy, and various subtleties

arise when codes approach this limit. In particular, arithmetic ceases

to be distributive and tests for equality cease to be reliable. Different

architectures, operating systems and compilers all add to the mix.

For this reason, work performed on computers is better described

as a ‘numerical experiment’ rather than a ‘simulation’.

Fortunately, there is no need to be overly pessimistic about the sit-

uation. For example, although the minutiae of floating point numbers

and the vagaries of different compilers can be troublesome, these

should not give problems in the majority of cases. Unless agreement

to the last bit is required, there should be no significant difference in

results obtained with different architectures and compilers. Instead,

it suffices to focus on differences between algorithms for solving

the Navier–Stokes equations. Of course, all hydrodynamics codes

are carefully tested against simple problems (such as shock tubes).

It is on more complex problems that differences and difficulties can

be exposed.

Within the context of the EU-RTN ‘The Origin of Planetary Sys-

tems’,1 we have conducted a comparison of hydrodynamics codes,

which we present in this paper. The problem we selected was that

of a planet in a fixed circular orbit in a circumstellar disc. This has

the virtue of simplicity, while still retaining sufficient complexity

to allow us to see meaningful differences between the various algo-

rithms. We ran the test problem on 17 independent codes.

A comparison of several numerical methods on the problem

of a planet embedded in a disc was performed by Bryden et al.

(1999) using smoothed particle hydrodynamics (SPH), van Leer and

Godunov methods with different equations of state. In particular,

1 http://www.usm.uni-muenchen.de/Planets/

they studied the accretion on to the planet after it had cleared a

gap. Other examples of comparisons in different fields to verify al-

gorithms and implementations published during the last few years

include the Santa Barbara cluster project (Frenk et al. 1999), the

non-local thermodynamic equilibrium radiative transfer code com-

parison (van Zadelhoff et al. 2002), the Rayleigh–Taylor instability

study by the Alpha-Group collaboration (Dimonte et al. 2004) and

the comparison of models of photoionization regions (Péquignot

et al. 2001).

The aim of this project is to test the reliability of present numerical

computations of disc–planet interaction with a quantitative compar-

ison and generate a benchmark for future simulations. In Section 2,

we briefly describe the interaction between a planet and a protoplan-

etary disc and outline the motivation for this study. The initial setup

and boundary conditions of the problem are described in Section 3.

In Section 4, the numerical methods used in the comparison are de-

scribed. The results are shown in Section 5. We discuss the results

in Section 6, and in Appendix A we summarize our experience with

this project that could be useful for future comparisons.

2 D I S C – P L A N E T I N T E R AC T I O N

Over 150 extrasolar planetary systems have been discovered by

radial velocity measurements during the last years (e.g. Mayor &

Queloz 1995; Marcy & Butler 1996). Giant planets have been found

in very close orbits around the central star with orbital periods of

a few days and almost circular orbits, the so-called Hot Jupiters.

Planets orbiting at larger distances from the star show a broad ec-

centricity distribution reaching roughly e = 0.9 (for recent reviews

of the properties of the observed systems, see Marcy et al. 2003,

2005). The origin of the differences with the planets in the solar

system is not well understood, although various explanations have

been proposed. The standard models explain giant planet formation

through either planetesimal accumulation followed by rapid gas ac-

cretion on to the planet core (Pollack et al. 1996) or gravitational

instabilities in the disc (see e.g. Boss 1998, 2001). In both cases, the

planets are likely to have formed at larger distances from the central

star than observed.

Orbital migration due to gravitational interaction between the

planet and the gaseous disc is a possible mechanism to bring planets

to a close orbit. The tidal interaction between a planet and a gaseous

disc was studied before the discovery of extrasolar planetary systems

by Goldreich & Tremaine (1979, 1980) and Lin & Papaloizou (1979,

1986a,b). In the linear approximation, the planet excites waves at

the Lindblad resonances that deposit angular momentum in the disc.

The flux of angular momentum has different signs in the inner and

outer discs causing the orbital migration of the planet.

Ward (1997) proposed that two different types of planetary drift

exist. Type I migration occurs when the planet mass is small and

migrates relative to the disc with a rate proportional to its mass and

the surface density of the disc. This migration is quite fast and the

orbital decay time-scale of the order of 105 yr is comparable to the

formation time-scale of a giant planet by planetesimal accumulation.

In type II migration, the planet is massive enough to open a gap in the

disc. The planet is then locked to the viscous evolution of the disc and

its migration rate will be determined by the strength of the viscosity.

The estimated time-scale for type II migration is one or two orders

of magnitude larger than the type I migration time-scale for the same

planetary mass. Type II migration is believed to be responsible for

the presence of planets at short orbital distances (Trilling, Lunine &

Benz 2002; Udry, Mayor & Santos 2003). Numerical simulations

of planet migration in a viscous disc (see e.g. Nelson et al. 2000;
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D’Angelo, Kley & Henning 2003) confirm the inward migration of

the planet on the viscous time-scale predicted by linear theory for

both accreting and non-accreting planets.

The non-linear interaction between disc and planet cannot be

fully described analytically or reproduced in laboratory experi-

ments. Therefore, multidimensional hydrodynamical simulations of

protoplanetary discs with embedded planets during many orbital pe-

riods are necessary to understand the formation and evolution of ex-

trasolar planetary systems. However, some differences are found in

the simulations depending on the numerical algorithm employed.

The spiral waves generated around the planet may be stationary

in the corotating frame (e.g. ZEUS-based results of Lubow, Seibert

& Artymowicz (1999)). Other higher order hydrodynamical codes

show time variability of the flow in the spiral arms propagating

along the shock. The quasi-periodic disturbances in the shocks have

important implications for the formation and evolution of vortices

along the edges of the gap opened by the planet. In some simu-

lations, wavy structures and vortices are observed at the edge of

the gap opened by the planet which interact with the shocks (see

e.g. Nelson & Benz 2003). In this paper, we have used different

algorithms presently in use in the astrophysical community to study

the planet–disc system in a simple but meaningful case.

3 S E T U P D E S C R I P T I O N

We examined the gap opening by a giant planet in an infinitesi-

mally thin disc with a constant surface density. The numerical setup

was defined in the web2 where interested modellers were invited to

participate in the comparison.

The planet’s gravitational potential was given by the formula

φ =
−μ

√
r 2 + ε2

, (3)

where r is the distance from the planet and ε is the gravity softening.

The simulations were run with two different softening coefficients:

ε1 = 0.2rL, (4)

where r L = (μ/3)1/3 is the size of the Roche lobe of the planet, and

the larger value

ε2 = 0.6Hp, (5)

with H p is the disc scaleheight at the planet location. The second

softening was mainly introduced to mimic the torque cut-off due

to the effect of the disc vertical distribution. The results discussed

in this paper concern mostly the calculations that use the larger

softening. In our simulations, the self-gravity, energy transfer and

magnetic fields in the gaseous disc were not considered.

The mass relation between the planet and the star was chosen

so that μ = M p/(M ∗ + M p) = 10−3 and 10−4, corresponding to

roughly Jupiter and Neptune masses when the star mass M ∗ = M⊙.

The planet was kept in a circular orbit at approximately semima-

jor axis a = 1 ignoring the effect of the gravitational torques on

the planet. The position of the planet in the cell with respect to

the cell’s corner is given in Table 1. The computations were per-

formed in the radial domain [0.4a, 2.5a] to study the influence of

the planet in a sufficiently large fraction of the disc. In the cylin-

drical grid codes, the number of cells in the radial and azimuthal

directions were n r × nφ = (128, 384) with uniform spacing in

both dimensions. Therefore, the cells around the planet position

2 http://www.astro.su.se/groups/planets/comparison/

were approximately square. Several tests were done with differ-

ent schemes at resolution n r × nφ = (256, 768) and n r × nφ =
(512, 1536) to check the convergence of the results. The polar co-

ordinates schemes used a corotating reference frame. The centre of

the frame was not specified in the problem description and codes

with frames centred in the centre of mass (CM) and central star were

used. The star position was fixed at r , φ = (0, 0) and the planet at

r , φ = (1, 0) in corotating coordinates, where the azimuthal range

was [−π, π]. The Cartesian schemes FLASH-AP and PENCIL were run

on a uniform non-rotating grid at resolution nx × ny = (320, 320),

and nx × ny = (640, 640). The computational domain was [−2.6a,

2.6a] × [−2.6a, 2.6a]. The unit of time used in the simulations was

the orbital period at a = 1 which is defined as

Pp = 2π

[
a3

G(M∗ + Mp)

]1/2

= 2π, (6)

where G = 1 and M ∗ + M p = 1. The angular frequency of the

planet was �p = 1 in our units.

3.1 Initial conditions

The modelled disc was two-dimensional so that the vertically inte-

grated quantities were solved. The initial surface density was con-

stant and given by the expression

�0 = 0.002
M∗

πa2
, (7)

where a is the semimajor axis of the planet. We assume that the

heat generated by viscous dissipation and tidal forces in the disc is

radiated away, so the disc remains geometrically thin. The initial

angular velocity was fixed to the local Keplerian frequency at the

given radial position and the radial velocity was zero initially.

We used the standard sound speed profile of a slightly flaring

solar nebula H/R = cs/vK = 0.05, where H is the disc scaleheight,

R is the distance from the centre of the star, vK is the local Keplerian

velocity and cs is the isothermal sound speed defined as

c2
s =

∂p

∂�
, (8)

which has a dependence on radius cs ∝ r−1/2. This corresponds

to a locally isothermal equation of state with a profile T (r ) ∝ r−1

maintained through the simulation. The disc height at the planet

location remains constant during the opening of the gap.

The planet mass was gradually increased during the first five

orbital periods using the expression

M(t)

Mp

= sin2

(
πt

10Pp

)
(9)

to avoid the appearance of strong shocks seen when the planet is

introduced instantaneously. The gas accretion from the disc on to

the planet was ignored. This situation can be realistic in the case

when the planet’s atmosphere fills the Roche lobe and no further

accretion is allowed.

The problem was originally proposed to be run with no artificial

viscosity or as low as possible as allowed by the code. Some of

the used codes include artificial viscosity to smooth out the shock

fronts and prevent unphysical results as described in Section 4. We

performed simulations for each planet mass including a physical

viscosity that generates a stress tensor with a turbulent viscosity

coefficient ν (see e.g. Landau & Lifshitz 1959; Kley 1999). The val-

ues of the kinematic viscosity used in our simulations were ν = 0 and
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10−5 in units where a = 1 and G(M ∗ + M p) = 1. The simulations

were run typically during several hundred orbital periods for each

of the planet masses and viscosity coefficients.

3.2 Boundary conditions

To completely define the problem, we describe the implemented

boundary conditions. The disc was considered as an isolated system

with no mass inflow. We used solid boundary conditions with wave

killing zones next to the boundaries to reduce wave reflection in

the cylindrical coordinates codes. In the polar coordinates schemes,

the damping regions were implemented in the radial ranges [0.4a,

0.5a] and [2.1a, 2.5a], where the following equation was solved

after each time-step:

dx

dt
= −

x − x0

τ
R(r ), (10)

where x represents the surface density and velocity components, τ

is the orbital period at the corresponding boundary and R(r) is a

parabolic function which is 1 at the domain boundary and 0 at the

interior boundary of the wave killing zones. This wave damping

condition does not conserve mass, but the mass loss is very small

as shown below.

The grid-based codes in Cartesian coordinates implemented the

same wave killing condition as the polar codes in the ring [2.1a,

2.5a]. Tests were done including the damping condition in the region

[0.4a, 0.5a] although this is not necessary since there is no inner solid

boundary. There was free outflow in the x and y boundaries in the

Cartesian implementations.

Note that the SPH codes implement different boundary conditions

using rings of virtual particles as described in Section 4.

3.3 Output data

2D snapshots of the density and velocity components were output at

2, 5, 10, 20, 50, 100 and 200 orbital periods for grid codes, although

in some cases the simulations were run up to 500 periods. All the

physical quantities were given at the cell centres.

In the case of SPH codes, the output quantities at the previ-

ous times were particle positions, velocity components, smoothing

length and mass. The particles were projected to a two-dimensional

cylindrical grid with the resolution n r × nφ = (128, 384) to com-

pare directly with the lower resolution results from the Eulerian grid

codes. The associated kernel for each particle used internally by our

codes was the third-order spline function introduced by Monaghan

& Lattanzio (1985) with a multiplicative coefficient corresponding

to a two-dimensional simulation. The density at a given point was

calculated by interpolation with the spline kernel using the expres-

sion

〈ρ(r i )〉 =
N∑

j=1

m j W (|r i − r j |, h j ), (11)

where m j is the mass of the particle, W (r , hj) is the spline kernel and

|r i − r j | is the distance from the cell centre to the given particle. The

smoothing length hj has different values for each particle. In a similar

manner, the velocity components were interpolated to the grid with

the kernel function and normalized with respect to the integrated

kernel. The resolution element of the SPH models is given by the

smoothing length of the particles. For the number of particles used in

the SPH calculations, the effective resolution is similar to the number

of cells in the hydro models at the aforementioned resolution, were

the particles distributed in an equivalent spatial domain. SPHTREE

uses a smaller smoothing length than PARASPH and therefore should

have a slightly better spatial resolution in our calculations.

The azimuthally averaged density was obtained as

�̂ =
1

2π

∫ 2π

0

� dφ. (12)

Slices of the surface density were taken at the planet position and

Lagrangian points in the radial and azimuthal directions.

We calculated the vortensity or potential vorticity, defined as the

ratio of vorticity and surface density,

ζ =
(∇ × v)z

�
. (13)

In the frame rotating with the planet, the vortensity is given by the

expression (∇ × v+ 2�p)/�, where �p is the orbital frequency of

the planet.

The gaseous disc interacts gravitationally with the planet

by means of the torques generated by the spiral arms (see

e.g. Goldreich & Tremaine 1979; Papaloizou & Lin 1984). Ev-

ery few time-steps the contributions from the inner disc excluding

the Hill sphere, outer disc excluding the Hill sphere and the torque

from the material between 0.5 and 1 Hill radius to the torque are

recorded. The disc mass interior and exterior to the planet orbit was

also obtained with the same output frequency.

The torques were calculated in units where a = 1, P = 2π and

M ∗ = 1 − μ integrating over the corresponding region. In the case

of a two-dimensional disc, the torque has only a vertical component

which is given by

Tz = G Mp

∫
� r p ×

r e(
r 2

e + ε2
)3/2

r dr dφ, (14)

where � is the surface density, r p is the planet position and r e is the

distance between the planet and the fluid element.

We performed Fourier analysis of the torque data to understand

the cause of the observed variability. We used a Welch windowing

function (Press et al. 1992) to smooth the deviation between the

initial and final amplitudes in the time-series.

4 D E S C R I P T I O N O F T H E C O D E S

We will now discuss the codes used in the comparison. Even within

the restricted field of astrophysical fluids, there are many different

algorithms for computing flows. There are then different implemen-

tations of the same algorithm. We will therefore start with a discus-

sion of the general principles of various types of codes presented in

this paper, and then go on to detail particulars of each code used.

This is not meant to be a general review of all the types of codes

used to conduct numerical experiments in astrophysics. For more

detailed information, the reader should refer to any of the plethora

of books on the subject (e.g. Laney 1998; Toro 1999; LeVeque

2002).

The parameters of each code are given in Table 1, including ref-

erences in which the algorithms are described in detail. Table 2

shows which codes were run for the low-resolution defined tests.

In Tables 3 and 4, we show the schemes that were run at higher

resolution.

4.1 Grid-based codes

As the name implies, grid-based codes cover the computational vol-

ume with a set of grid points at which the various flow variables
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Table 2. Codes that were run for the lower resolution

runs of the setups defined in Section 3. The grid size

for the Eulerian codes was n r × nφ = (128, 384) for

the cylindrical grid codes and nx × ny = (320, 320)

for FLASH-AP and PENCIL. The number of particles was

250 000 in SPHTREE and 300 000 in PARASPH.

Jupiter Jupiter Neptune Neptune

Codes inviscid viscous inviscid viscous

NIRVANA-GDA × × × ×
NIRVANA-GD × × × ×
NIRVANA-PC × × × ×
RH2D × × × ×
GLOBAL × × × ×
FARGO × × × ×
GENESIS × × × ×
TRAMP-VANLEER × ×
PENCIL × ×
AMRA × × × ×
FLASH-AG × × × ×
FLASH-AP × × × ×
TRAMP-PPM × ×
RODEO × × × ×
JUPITER × × × ×
SPHTREE × ×
PARASPH × × × ×

Table 3. Codes that were run at resolution n r ×
nφ = (256, 768) and equivalent resolutions for the

Cartesian grid and SPH schemes.

Jupiter Jupiter Neptune Neptune

Codes inviscid viscous inviscid viscous

NIRVANA-GD ×
NIRVANA-PC × × ×
AMRA × ×
FLASH-AP × × × ×
PARASPH ×

Table 4. Codes that were run at resolution n r ×
nφ = (512, 1536).

Jupiter Jupiter Neptune Neptune

Codes inviscid viscous inviscid viscous

NIRVANA-GD ×
RH2D ×
FARGO × × × ×

(velocity, density, etc.) are computed. The mesh geometry (conven-

tionally orthogonal, although this is not absolutely required) can be

chosen to reflect the underlying symmetry of the problem. This of-

ten leads to a reduction in the number of grid cells required for

a particular problem, and a corresponding cut in computational

time. The codes used in our problem use a reference frame cen-

tred in the CM or primary as indicated in Column 8 of Table 1.

All the simulations centred on the primary include the indirect

terms in the potential. For astrophysical (compressible flow at high

Reynolds number) flows, two different approaches to solve the fluid

equations are generally used. However, before we describe these,

some general points should be noted.

The most important of these is the Courant–Friedrichs–Lewy

(CFL) condition. Simply stated, information must not travel more

than one grid cell per time-step (see e.g. Press et al. 1992, for a

mathematical derivation). In a hydrodynamics code, this translates

into a restriction on the time-step, based on velocity and sound speed

(some authors, e.g. Edgar & Clarke 2004, have also added an accel-

eration condition when appropriate). Violation of the CFL condition

leads to unphysical effects, as causality is violated. When we refer

to the ‘Courant number’ in the descriptions below, we are describing

an extra safety factor, beyond the formal CFL condition itself. Note,

however, that the CFL condition only applies to time-explicit codes.

Implicit solvers are not restricted by it, but no results based on such

a code were submitted to us.

Next is the extension to multidimensions. Most algorithms for

solving the equations of hydrodynamics have been developed for

one-dimensional flow. The conventional method for using a one-

dimensional algorithm in multiple dimensions is Strang splitting

(Strang 1968): solve the 1D equations along each row of cells (the

x1 direction), then solve along each column (the x2 direction), us-

ing the updated values from the x1 sweep. Formally, the x1 step

should be split in two as 1

2
x1 → x2 → 1

2
x1, but most codes do a

full step in each direction and alternate which is done first (this is

sometimes called ‘Godunov splitting’). The Strang approach makes

orthogonal coordinates highly desirable. To minimize the truncation

errors this approach produces, the grid cells must be kept locally

square.

Most codes presented here use a rotating polar grid. For these,

there is an extra subtlety: the treatment of the Coriolis force. As

is conventional in fluid dynamics, the simple and obvious way to

include this (as an extra force) leads to incorrect angular momentum

transport. Instead, the angular momentum approach of Kley (1998)

must be used. On reflection, this is unsurprising: the Coriolis force

simply enforces the conservation of angular momentum in a rotating

frame.

Although not relevant to the comparison problem itself, many of

the codes here can make use of refined meshes. High resolution is al-

ways desirable, but computationally expensive. To concentrate grid

cells where they are needed, patches of the grid may be calculated at

higher resolution, and the results communicated back to the coarser

parent grid. Patches can themselves be patched, giving the poten-

tial for extremely high resolution. If the patches are determined at

the start of a calculation, such a code is said to be of the ‘nested

grid’ type. However, some codes can dynamically add and remove

patches. This is known as adaptive mesh refinement (AMR). For

this comparison, we have chosen not to use refined meshes. This is

in the interests of simplicity, since there are a variety of algorithms

for performing the refinement, and we are already comparing a large

number of codes. However, we would encourage other workers in

the field to compare refinement methods.

4.1.1 Upwind methods

The upwind codes used in this comparison work by discretizing

the appropriate version of the Navier–Stokes equations, and solv-

ing that. These codes use the technique of operator splitting, and

some operators are discretized in a finite difference manner, while

others are solved with a finite volume method. For this reason, codes

similar to those we shall now discuss are sometimes referred to as ‘fi-

nite difference/volume’ schemes, or even just ‘finite difference’. We
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eschew this epithet, since almost any grid code could be described

as ‘finite difference’ at some level.

In a typical operator split scheme, each time-step is split into two

phases. During the source step, the velocity is updated using the

source terms in the Navier–Stokes equations (pressure gradients,

gravity, etc.). In the transport step, these velocities are then used to

advect (the v · ∇v terms) the other quantities. This is usually done

conservatively using the integral form of the equations (integrated

over a volume – hence the name). During the advection step, second-

order ‘upwinding’ is used (interpolation based on velocities), to

ensure that shocks remain sharp. Some sort of artificial viscosity is

generally required to stop post-shock oscillations making the code

unstable.

These codes usually use a staggered mesh, to improve the order

of their differencing. Scalar variables (such as density) are stored at

zone centres, while vector quantities are stored at the faces (e.g. v1

is stored at the centre of the x1 face).

Codes like these are often described as being ‘ZEUS-like’ – a

reference to the ZEUS code of Stone & Norman (1992). Although

that paper provides an excellent description of the methods used,

the epithet ‘ZEUS-like’ does not generally mean ‘derived from ZEUS’.

Rather, they are based on the same or similar algorithms, and ZEUS

happens to be the best known implementation of these.

(i) The NIRVANA code. In this comparison, three sets of results

were submitted which made use of the NIRVANA code of Ziegler &

Yorke (1997). All of the following codes are based on the original

version of NIRVANA, which was not publicly released. Each of the

codes was enhanced from the original code base by different groups

over a number of years. Hence, variations between the NIRVANA codes

highlight how even the same basic algorithm can vary. Different

Courant numbers were also used – NIRVANA-GD used 2/3, while

NIRVANA-GDA and NIRVANA-PC used 1/2.

(ii) The RH2D code. The RH2D code is a two-dimensional mixed

explicit/implicit second-order upwind algorithm on a staggered grid.

The advection algorithm is based on the monotonic transport scheme

by van Leer (1977). The RH2D code can treat radiation transport in

the flux-limited diffusion approximation, and includes the full ten-

sor viscosity with dissipation. In contrast to some other codes, the

velocity variables that are evolved in RH2D are radial v and angular

velocity �. Both radiation and viscosity can be solved implicitly

to avoid possible time-step limitations. We refer the reader to Kley

(1989) for a full description of the code. For the purpose of the

present calculations, the radiation module was replaced by a locally

isothermal equation of state (EoS). The viscosity was solved explic-

itly. The formulation of the equations, in particular the treatment of

the physical and artificial viscosity in the stress tensor components,

has been described with respect to the embedded planet problem in

detail by Kley (1999).

(iii) The GLOBAL code. The GLOBAL code (Hawley & Stone 1995)

is derived from ZEUS (Stone & Norman 1992). The Courant number

was 0.5, and an artificial viscosity coefficient of 1.0 was required to

stabilize wave propagation in the disc.

(iv) The FARGO code. FARGO is a simple 2D polar mesh code

dedicated to disc planet interactions.3 It is based upon a standard,

ZEUS-like hydrodynamic solver, but owes its name to the FARGO

algorithm upon which the azimuthal advection is based (Masset

2000a,b). This algorithm avoids the restrictive time-step typically

imposed by the rapidly rotating inner regions of the disc, by per-

3
FARGO is available at http://www.maths.qmul.ac.uk/∼masset/fargo/

mitting each annulus of cells to rotate at its local Keplerian velocity

and stitching the results together again at the end of the time-step.

The use of the FARGO algorithm typically lifts the time-step by an

order of magnitude, and therefore speeds up the calculation accord-

ingly. The mesh centre lies at the primary, so indirect terms coming

from the planets and the disc are included in the potential calcu-

lation. The Courant number was 0.5, and a second-order artificial

viscosity of C 2 = 2 (cf. equations 33 and 34 of Stone & Norman) was

used.

The standard boundary conditions prescribed in the test prob-

lem were used. In addition, the dependence of the results on the

damping condition was tested using a slightly different boundary

where a transmitted wave boundary condition was used. The pitch

angle of the wake at the inner and outer boundary was valuated

using the WKB (Wentzel–Kramers–Brillouin) approximation. The

content of the border ring was then copied into the ghost ring, prop-

erly azimuthally shifted by the amount dictated by the pitch angle.

This technique is very efficient at removing any reflected wave and

yields similar results to the standard boundary condition defined in

Section 3.2.

(v) The GENESIS code. GENESIS is a 2D code which solves the fluid

equations using a upwind method with a time explicit, operator-

splitting procedure. The FARGO algorithm (see description above)

is applied to avoid the time-step limitation at the inner edge of the

disc. Because of this, the code does not alternate radial and azimuthal

integrations. Artificial viscosity is handled by using a bulk viscosity

in the viscous stress tensor (Kley 1999).

(vi) The TRAMP-VANLEER code. This is a 3D version of RH2D

(see above) with the same second-order van Leer scheme (simi-

lar to that used in the ZEUS and NIRVANA codes). Klahr, Henning

& Kley (1999) provide a description. The fact that the code is in-

trinsically 3D explains why it performs two times slower than the

pure 2D version RH2D.4 We use a moderate value of 1.1 for the von

Neumann–Richtmyer type viscosity. The implementation works in

the corotating frame where the CM is the centre of the coordinate

system. Hence, no extra acceleration terms are necessary.

4.1.2 High-order finite-difference methods

(i) The PENCIL code. PENCIL is a non-conservative finite-difference

code that uses sixth-order centred spatial derivatives and a third-

order Runge–Kutta time-stepping scheme, being primarily designed

to deal with compressible turbulent magnetohydrodynamical flows.5

Being high order, PENCIL needs viscosity and diffusivity terms in

order to stabilize the numerical scheme. For this reason, we could

not perform inviscid runs.

The code is intrinsically 3D and Cartesian, structured in a

cache-efficient way. The domain is tiled in the y and z direction

for parallelization, with the original 3D quantities being split into

1D arrays – pencils – in the x direction, hence the name of the code.

The equations are solved along these pencils in the x direction, which

leads to the convenient side-effect that auxiliary and derived vari-

ables use very little memory as they are only ever defined on one

pencil. By calculating an entire time-step in the x direction along

the box, PENCIL can achieve a speed-up of ∼60 per cent on typical

Linux architectures.

This is the first time PENCIL has been applied to the embedded

planet problem.

4 The remaining factor of 2 comes from the roughly two times smaller

Courant number in TRAMP-VANLEER.
5

PENCIL is available at http://www.nordita.dk/software/pencil-code/
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4.1.3 Shock-capturing methods

The other scheme for grid-based astrophysical fluid flows in com-

mon use is that proposed by Godunov (1959). Such schemes make

use of the fact that there is an analytic solution to the 1D shock

tube problem: the so-called Riemann problem. Godunov’s original

scheme treated each cell as piecewise constant (i.e. variables such

as density were assumed to be constant throughout the cell), giving

a sharp shock at each interface. Colella & Woodward (1984) im-

proved Godunov’s method by using parabolic interpolation, giving

the ‘piecewise parabolic method’ (PPM) which is the most com-

mon implementation in use today. Implementations of PPM can

be in Eulerian or Lagrangian form. For the purposes of the inter-

polation, all values are stored at the cell centres (cf. the staggered

grids mentioned above). Shock-capturing codes include the pressure

gradient in the basic solver. Since solving the full Riemann prob-

lem is computationally expensive, many codes use an approximate

solver. Furthermore, to deal with strictly isothermal flows, a special

isothermal Riemann solver must be written, since the conventional

one involves γ − 1 denominators.

Shock-capturing schemes do not usually require any artificial vis-

cosity to ensure stability (sometimes authors will include a small

artificial viscosity to prevent post-shock oscillations, but these os-

cillations do not usually threaten the stability of the code). Although

this is welcome, it should be noted that most implementations con-

tain other ‘artificial’ parts (such as slope limiters used in the inter-

polations), and any user of a code must bear these in mind.

(i) The AMRA code. AMRA is an AMR code developed by Plewa

& Müller (2001). For the disc–planet interaction problem, we used

the HERAKLES solver which is an implementation of the PPM algo-

rithm. HERAKLES was derived from PROMETHEUS (Fryxell, Müller &

Arnett 1989) and provides all the functionality of its predecessor.

The original Riemann solver for complex equations of state was

replaced by a much simpler non-iterative (but still exact) version

suited for isothermal flows (Balsara 1994). All problems were com-

puted with Courant number of 0.8. The planet was placed in the

corner of a grid cell, to make the grid layout around it as symmetric

as possible.

(ii) The FLASH code. The FLASH code (Fryxell et al. 2000) is an

AMR code implementing the PPM algorithm in its Direct Eulerian

form.6 The Riemann solver was ported from the AMRA code. Two

sets of results used FLASH, and we shall refer to these as FLASH-AG

and FLASH-AP.

The FLASH-AG code was based on release 2.3 of FLASH. We patched

the code to work as accurately as possible in polar coordinates,

particularly enforcing the conservative transport of angular momen-

tum. The Courant number was 0.8 in the simulations presented here.

Instead of running in polar coordinates, the FLASH-AP version of

the code used the original Cartesian formulation of FLASH. The grid

cells were sized to give the same radial resolution, although since

the grid went to r = 0, the grid size had to be larger than in the

cylindrical schemes to achieve the same resolution. The code was

run at resolution nx × ny = (320, 320) and nx × ny = (640, 640). The

boundaries were open and there was free gas flow inside 0.4a. The

damping condition described in Section 3.2 was applied on the outer

boundary ring but not in the inner disc. The Cartesian grid was fixed

in space, and the planet and star were free to move over it (integrated

using a simple Runge–Kutta method). A Courant number of 0.7 was

used in the simulations.

6
FLASH is available at http://www.flash.uchicago.edu/

(iii) The RODEO code. This code uses the approximate Riemann

solver suggested by Roe (1981), and extended by Eulderink &

Mellema (1995) to general non-inertial, curvilinear coordinate sys-

tems. The limiter function used is ‘superbee’, and unlike PPM-type

approaches, limits the characteristic variables, rather than the prim-

itive variables. The code uses an AMR scheme similar to PARAMESH

(used in the FLASH code). The source terms are handled through the

so-called stationary extrapolation method (Eulderink & Mellema

1995), which ensures that physically stationary solutions remain

stationary. The equation of state was strictly isothermal. A full de-

scription can be found in Paardekooper & Mellema (2006).

(iv) The JUPITER code. The JUPITER code is a nested grid Godunov

code, that can be used in Cartesian, cylindrical or spherical geometry,

in either 1D, 2D or 3D. The JUPITER code uses a ‘two shock’ Riemann

solver, which assumes that the two waves leaving the interface are

shockwaves (Toro 1999) (the code can also use a ‘two rarefaction’

solver, or a full iterative one). The rest of the Riemann solver (the

sampling of the Riemann fan) is exact. Assuming that the two waves

are shockwaves is not so bad as it might first appear. First, some

initial Riemann states do give rise to two shockwaves. Secondly,

the differences from the full Riemann solution are relatively small,

so long as the contrast across the interface is not extreme. In extra

tests (not included here), the differences between a ‘two shock’,

‘two rarefaction’ and full Riemann solver were found to be slight

for our comparison problem. The predictor step (which provides the

left and right states of the Riemann problem at the zone interface)

is a linear piecewise characteristic method using the monotonized

centred slope limiter, and which uses a slope splitting technique

(Pember et al. 1995). The full viscous stress tensor is conservatively

implemented in the three geometries. No artificial viscosity was

required, and the Courant number was 0.7.

(v) The TRAMP-PPM code. TRAMP-PPM is a Lagrangian remap7

PPM (Woodward & Colella 1984) code. It is based on the routines

provided in the VH-1 package, modified for accretion disc simula-

tions (Blondin & Lufkin 1993). The modifications involve adding

the conservation of angular momentum and equations to treat the

evolution of internal energy. Here, always the full Riemann problem

is solved iteratively and we approximate the isothermal case with

γ = 1 + 10−10. In the current isothermal simulations, the PPM code

does not use any artificial viscosity. This implementation works

in the corotating frame where the star is the centre of the coordi-

nate system, and hence explicitly incorporates the extra acceleration

terms due to the offset from the CM.

4.2 Particle-based codes

Rather than trying to solve the equations of hydrodynamics on a

grid, a second group of codes decompose a fluid into small packets

of mass (particles), and then follow their evolution. The method in

most common use today is that of SPH, developed independently by

Lucy (1977) and Gingold & Monaghan (1977). We shall describe

the basic characteristics of SPH now. For a more detailed treatment,

the reader should consult Benz (1990), Monaghan (1992), and ref-

erences therein and thereto.

In SPH, each particle’s properties are spread (or smoothed) over a

small volume of space contained within a smoothing length, h. For

example, smoothing out the particle’s mass gives its contribution

to the density at each point in space. The smoothing function (or

7 Cell boundaries are allowed to move during the advection step, and the

results are then interpolated back on to the fixed grid.
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kernel), W(r, h), is not constant, but increases towards the particle’s

position (assumed to be r = 0). In the limit h → 0, W becomes a

δ-function, and perfect fluid behaviour is obtained (with an infinite

number of particles). A Gaussian would be a possible choice for W,

but compact kernels (where W = 0 for r greater than some r max) are

preferred for computational simplicity. Particles within the range of

the compact kernel are called the neighbours. When appropriate to

the problem, modern SPH codes will allow each particle to have its

own smoothing length, chosen to keep the number of neighbours

constant (typically a few tens). The smoothing length is also used to

limit the time-step in a way similar to the CFL condition mentioned

above.

The major advantage of SPH is that its particle nature makes it

fully Lagrangian: there are no advective terms in the equations of

motion. This makes the codes more straightforward to write and un-

derstand. Since high densities imply that more particles are present,8

SPH naturally concentrates resolution in high-density regions. Good

use can be made of this in collapse simulations (e.g. Delgado-

Donate, Clarke & Bate 2003).

However, there are disadvantages too. Foremost is the matter of

viscosity. SPH requires an artificial viscosity to prevent interparti-

cle penetration, and this tends to make SPH codes quite dissipative.

Resolution can also be a problem in certain calculations. For ex-

ample, in the disc calculations presented here, most of the particles

are going to be in the outer portions of the disc, and not doing very

much. Also, the details of the gap are of most interest, and SPH will

have fewer particles there.

4.2.1 The SPHTREE code

This code owes its name to the tree used to locate particle neigh-

bours. The calculations presented here used 250 000 particles for the

disc, with the star and planet being point masses. SPH particles that

move to within an accretion radius of either the star or the planet are

accreted (Bate, Bonnell & Price 1995) but in the case of the planet,

once the initial ramp up is complete, we do not allow its mass to

increase. We use the standard SPH viscosity (e.g. Monaghan 1992),

with α = 0.1 and β = 0.2, but also can include the Balsara switch

(Balsara 1995) to reduce the shear component of the artificial viscos-

ity (see also Lodato & Rice 2004). A huge saving in computational

time is obtained by using individual particle time-steps (Bate et al.

1995) with the time-steps for each particle limited by the Courant

condition, a force condition (Monaghan 1992) and a Runge–Kutta

integrator accuracy condition.

4.2.2 The PARASPH code

PARASPH is a parallelized (using MPI) smooth particle hydrodynam-

ics code. It follows the approach of Flebbe et al. (1994), solving the

Navier–Stokes equation including the entire viscous stress tensor. In

contrast to the usual approach of an artificial viscosity of Monaghan

& Gingold (1983), we use an artificial bulk viscosity. This allows

for an accurate treatment of the physical shear viscosity and for

easy comparison to the grid code results, since a constant kine-

matic viscosity coefficient can be modelled. Additionally, we use

the XSPH device to prevent particles from mutual penetration (see

e.g. Monaghan 1989). Variable smoothing lengths keep the num-

8 Although it is possible to let particle masses vary in SPH, it is not entirely

trivial to do so.

ber of neighbours at 75. The time integration is performed using a

fourth-order Runge–Kutta–Cash–Karp integrator for both the parti-

cles and the planet. The code is described in more detail in Schäfer

et al. (2004).

We do not implement exactly the boundary conditions described

in Section 3.2. Instead, we add virtual particles to the simulation.

They are assigned all physical relevant quantities, such as density,

velocity and so on, but are kept in Keplerian orbit about the star.

By their interactions, the virtual particles prevent the SPH particles

from escaping. For the calculations presented here, we used 300 000

SPH particles and 50 000 boundary particles.

5 R E S U LT S

In this section, we present the results for each of the runs. The

simulations are run for up to 500 orbital periods using the codes

described in Section 4. We compare the contours of surface density,

vortensity and averaged density profiles obtained in the numerical

calculations at several times. The time evolution of the grid mass and

gravitational torque acting on the planet are shown divided in several

contributions. The Fourier transform of the torques is calculated to

investigate the influence of vortices and disc eccentricity on the

torque acting on the planet. Several basic properties of the disc–

planet system are discussed based on the agreement between the

codes. In Section 5.5, we study how the difference between the

codes changes as the numerical resolution increases.

The comparative surface density and vortensity maps are shown

for each scheme in the order they appear in Section 4. Note that

TRAMP-PPM and TRAMP-VANLEER were only run for the inviscid se-

tups, while SPHTREE and PENCIL were run for the viscous cases (see

Table 2). Fig. 1 shows the legend used in the surface density profiles,

mass and torque evolution plots in this section. Different types of

algorithms are plotted with different line styles.

5.1 Inviscid Jupiter

First, we consider the case of a Jupiter embedded in an inviscid

disc. The planet fixed at a given radius opens a deep gap in the disc

as predicted by standard theory (Lin & Papaloizou 1986a; Ward &

Figure 1. Common legend for the comparative plots in Section 5. Upwind

codes are represented by solid lines, shock-capturing codes by dotted lines

and SPH codes by dashed lines.
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Hahn 2000). The contrast between the initial density and the deepest

regions in the gap is about two orders of magnitude after 100 orbits.

The planet forms strong trailing spiral arms due to the differential

Keplerian rotation close to the Lindblad resonances. Low-density

regions start to develop behind the shocks where the fluid elements

encounter the shock at high-pitch angle and change their trajectory.

These regions travel in horseshoe orbits in the corotation region

clearing the gap as described in Korycansky & Papaloizou (1996)

and creating locked fluid areas at the Lagrangian points inside the

gap.

Fig. 2 shows the density contours at 100 orbits for all the codes.

The dashed line represents the theoretical position of the shock wave

predicted by Ogilvie & Lubow (2002). In the Jupiter simulations, the

planet mass is too high for this theoretical estimation, but it allows

us to compare the spiral arms pitch angle between the models. The

planetary wakes have a high pitch angle compared with the theoret-

ical calculation next to the planet. There is a secondary shock in the

Eulerian codes which starts near the L5 point and has approximately

the same opening angle as the theoretical prediction. The secondary

shock seems to be related with the density excess inside the gap

behind the planet. In the outer part of the disc, the pitch angle of

the primary and secondary shocks is very similar. The existence of

secondary shocks and the tightness of the spirals depend primarily

on the equation of state used (Kley 1999).

There are two density enhancements in all grid-based models

located close to the L4 and L5 points at azimuthal distance �φ =
±π/3 from the planet. In the SPH and FLASH-AP codes, the gap

is almost completely clean. Theoretically, the calculation should

produce a nearly symmetric density distribution inside the gap at

both sides of the planet’s location for the case of a planet in a fixed

orbit, which is observed in our results.

Shock-capturing codes that use cylindrical coordinates such as

FLASH-AG, AMRA and TRAMP-PPM have filamentary structure visible

in the disc and the gap possibly due to the high-order scheme of

the codes. The filaments can be produced by instabilities generated

locally on the corrugated spiral shock. Their angle does not match

the angle of the spiral shocks, so they cannot be generated around

the planet. In tests performed with the FLASH-AG code, the filaments

appear in high-resolution calculations with larger amplitude but the

same structure. The shock-capturing codes using a different algo-

rithm than PPM such as JUPITER and RODEO do not present filaments

although they seem to have more structure in the disc than the up-

wind methods’ results.

Fig. 3 shows the vortensity contours calculated in the corotating

frame for the different models. There are bumps rotating along the

edges of the gap opened by the planet in the grid codes in cylindrical

coordinates which survive until the end of the simulations. The

resolution does not permit us to determine whether these density

lumps have locally rotating flow around the core of the vortex. The

vortices are larger in the upwind schemes. After 100 periods, most

codes show a single bump rotating along the outer edge, although

NIRVANA-GD, AMRA, FLASH-AG and TRAMP-PPM have two bumps which

eventually merge by 200 periods. The knots are dominant in the

AMRA, RODEO and TRAMP-PPM simulations and generate their own

spiral shocks which extend into the disc. Most of the codes show one

or several smaller density excesses at the inner edge. The vortices

in the outer disc interact with the planetary shock and generate

quasi-periodic oscillations in the spiral arms. The oscillations could

also be produced by instabilities near the planet that interact with

the blobs moving along the edge of the gap and are propagated

along the shocks. Reflected waves appear in the NIRVANA-GDA, RH2D,

GLOBAL and GENESIS codes (see Fig. 3), despite the use of wave

killing boundaries.

In the PARASPH code, the gap edges are less steep than in the case

of the grid-based calculations possibly due to the artificial viscosity.

The planetary wake is weak and almost not visible in the inner disc.

The azimuthally averaged density profiles and their residuals nor-

malized by the disc mass after 100 orbits are plotted in Fig. 4. Note

that the relevant portion of the domain is that between 0.5 and 2.1a,

since wave killing conditions are implemented next to the inner and

outer boundaries. The depth and width of the gap is in good agree-

ment for the grid-based models, with a slightly wider gap for the

AMRA code. FLASH-AP has a more depleted inner disc due to the open

inner boundary condition implemented in Cartesian coordinates.

The Cartesian geometry is also more diffusive in this problem and

has a lower resolution close to the primary compared with the polar

coordinates codes. On the other hand, the shape of the outer disc

in FLASH-AP’s profiles is similar to the cylindrical codes profiles. A

wider gap is seen in the PARASPH simulation. The oscillations seen

in the outer disc are also consistent in all the codes with a local max-

imum in the FLASH-AP profile at 2a. The density peaks close to the

edges of the gap – especially in the inner disc – have a larger spread

which is associated with the size of the vortices. Shock-capturing

codes have smaller vortices in the outer edge than the upwind meth-

ods. The maximum at the planet location is higher on average for

the shock-capturing codes. The PARASPH code has smoother profiles

farther away from the planet position due to the fact that the plane-

tary wakes are smeared out. The residuals of the averaged profiles

divided by the disc mass with respect to the mean value are shown in

the bottom panel in Fig. 4. Since the total disc mass is different after

100 orbits for the various models, the density profiles normalized

by the disc mass have in general a better agreement. However, the

PARASPH and FLASH-AP codes have most of the mass loss in the inner

disc and this method may artificially increase their residuals in the

outer disc.

We plot the density slices opposite to the planet after 100 orbits

in Fig. 5. The width and depth of the gap agree well for the different

codes but with a larger dispersion than in the averaged profile. The

amplitude of the peaks at the edges of the gap differ since there are

vortices which have different sizes and positions with respect to the

planet at a given time. On the other hand, the size and the position

of the wave crests agree within a few per cent.

In Fig. 6, the azimuthal cuts of the surface density maps at the

planet radius are displayed. There is a sharp density spike at the

planet position. The shape and position of the density bumps at L4

and L5 is slightly asymmetric. The peak at the trailing Lagrangian

point L5 is larger than at the leading L4 point for all Eulerian codes,

with more conspicuous peaks and larger asymmetry in the shock-

capturing schemes. In the FLASH-AP results, there are asymmetric

bumps at the Lagrangian points in the beginning of the simulation,

but they have disappeared at 100 periods. In the PARASPH calculation,

the gap is almost completely cleared and no bumps at the Lagrangian

points are observed. PARASPH has also a smaller peak at the planet

location.

The disc mass-loss rate evolution is plotted in Fig. 7 for the

Eulerian codes. The total disc mass is not conserved due to the

wave damping condition described in Section 3.2. There is a larger

mass-loss rate in the FLASH-AP code owing to the mass accretion in

the inner disc but it reaches an equilibrium value consistent with the

cylindrical codes at late times. Some codes gain mass at the begin-

ning of the simulation and start losing mass after about 10 orbits. The

total mass after 200 orbits is reduced by about 8 per cent in the AMRA
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Figure 2. Density contours in logarithmic scale after 100 orbits for the inviscid Jupiter simulations with overplotted theoretical prediction of the planetary wake

position. The codes are presented in the same order as in Section 4. The upwind methods’ results are displayed in the first panels followed by the shock-capturing

codes and lastly the particle-based codes. The density scale ranges between −1.7 < log(�/�0) < 1.
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Figure 3. Vortensity contours in logarithmic scale after 100 orbits for the inviscid Jupiter models. The vortensity range is −0.5 < log(ζ ) < 2.
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Figure 4. The upper panel shows the normalized surface density profiles

averaged azimuthally over 2π after 100 orbits for the inviscid Jupiter runs.

In the lower panel, the differences between each model and the mean value

are shown in logarithmic scale as log(�/M disc) − 〈log(�/M disc)〉, where

the angle brackets represent the mean. The surface density has been divided

by the disc mass at 100 periods to remove the dependence on the mass loss

due to the boundary conditions.

Figure 5. Surface density profiles opposite to the planet position after

100 orbits for the inviscid Jupiter runs.

and FLASH-AG codes which use shock-capturing algorithms. Other

codes such as NIRVANA-GDA, NIRVANA-GD and RH2D show a smaller

mass loss of about 3 per cent. The outer disc mass decreases slowly

and in some codes like JUPITER it remains almost constant during 200

orbits. During the first few orbits, when the gap is not completely

cleared, there is material flowing from the outer to the inner disc

perhaps due to the artificial viscosity. The inner disc mass shows

a strong decrease, especially in the shock-capturing codes. Despite

the spread in mass loss for different codes, the surface density does

not show strong variations between the codes.

The waves excited by the planet deposit angular momentum in

the disc when they are dissipated. There is an initial smooth phase

where the torque increases in absolute value during the first few

orbits while the planet is growing. Afterwards, the torques start to

display strong oscillations at the time when the vortices are created.

Vortices grow due to the steep gradients at the gap edges and through

Figure 6. Surface density azimuthal slice at the planet radius after 100

orbits for the inviscid Jupiter calculations. The trailing Lagrangian point L5

is located at azimuth ∼ −1/3 and the leading Lagrangian point L4 is at ∼1/3

in the normalized azimuthal units.

Figure 7. Evolution of the disc mass-loss rate over 200 orbital periods for

the inviscid Jupiter simulations.

interaction with the planetary wakes. We do not have enough time

resolution in the density snapshots to follow the vortex formation

and evolution. The mean value decreases slightly in most codes

until the point when the gap is completely cleared and stays roughly

constant up to the end of the simulation. The effect of the large

torque oscillations on the planet migration needs to be studied with

a free moving planet.

The torque from within the Roche lobe shows significant dif-

ferences between the codes. The density has a local maximum at

the planet location which depends on the interpolation order of the

code, although the total mass inside the Roche lobe is similar. The

planet is not located in a cell’s corner in all codes and this causes

asymmetries in the mass distribution around the planet. In addition,

the region close to the planet is not well resolved at our resolution.

In the following discussion, we compare the torques excluding the

contribution from the Roche lobe.

Fig. 8 shows the profiles of the derivative of the total torque

excluding the Hill sphere with respect to the radius. The time

dependence of the vortices position with respect to the planet

produces a rapidly changing torque. Therefore, the different

codes have different specific torque profiles at a given time. The

variation appears close to the gap edges where most of the angular

momentum is deposited. The differences are larger at the outer edge

position where the vortices are bigger than at the inner edge. Farther
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Figure 8. Profiles of total specific gravitational torque as a function of radius

after 100 orbits for the inviscid Jupiter simulations.

Figure 9. Torques time-series for the inviscid Jupiter simulations smoothed over 10 periods and the corresponding normalized PDSs in logarithmic scale. The

upper panels show the torque contribution from the inner disc, the middle panels show the torque from the outer disc and in the bottom panels the total torque

is plotted. In all plots, the contribution from inside the Hill sphere is ignored to avoid numerical noise.

away from the planet position the torques are remarkably similar

for all the codes.

The time evolution of the gravitational torque acting on the planet

is shown in Fig. 9 divided in inner, outer disc and total contributions.

A running time average over 10 orbital periods has been applied

to the data to avoid large oscillations. The torque contribution from

the disc material inside the planet’s orbit gives a positive torque

on the planet which tends to drive the planet outwards in all models,

while the torque from the material outside the planet’s orbit pushes

the planet towards the star. The outer disc contribution is dominant

and gives a total negative torque which takes away angular momen-

tum from the planet and would cause inwards migration in case the

planet were released. The torque order of magnitude and sign agrees

for all the codes after 200 orbits except for TRAMP-PPM which has a

value close to zero. The averaged values at the end of the simulation

are given in Table 5.
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Table 5. Averaged gravitational torques between 175–200

periods in units where a = 1, P = 2π and M ∗ = 1 − μ for

the Jupiter inviscid simulations at the end of the simulations.

The time is given in orbital periods of the planet.

Code Torque

NIRVANA-GDA −1.452 354 × 10−5

NIRVANA-PC −1.512 417 × 10−5

RH2D −1.930 871 × 10−5

GLOBAL −1.550 768 × 10−5

GENESIS −1.565 123 × 10−5

TRAMP-VANLEER −1.818 716 × 10−5

AMRA −3.769 203 × 10−5

FLASH-AG −7.014 221 × 10−5

FLASH-AP −2.187 462 × 10−5

RODEO −1.880 762 × 10−5

JUPITER −2.721 250 × 10−5

TRAMP-PPM 5.611 237 × 10−6

The power density spectra (PDSs) of the corresponding gravita-

tional torque components are shown on the right-hand side plots

in Fig. 9. The panels show the low-frequency part of the power

spectrum in logarithmic scale. The semiperiodic oscillations asso-

ciated with vortices rotating along the gap edges are present in the

PDSs for models where blobs appear in the density maps next to

the gap. Several peaks appear in the outer disc PDS with frequency

corresponding to roughly 0.4 times the planet’s orbital frequency

with several harmonics. This frequency is the difference between

the planet’s orbital frequency and the angular velocity of the high-

density regions moving next to the gap. Assuming that the density

lumps orbit the central star with Keplerian speed, the position of the

blob estimated from the PDS frequency is about 1.4a, in agreement

with the centre of the blobs observed in the density maps. The har-

monics possibly appear because the potential of an extended density

blob is not sinusoidal and creates amplified multiple frequencies. In

some codes, there are several vortices next to the outer edge which

perturb the planet with the same frequency but different phase. In

the inner disc contribution PDS, there are several codes with peaks

at about 0.7 times the planet’s orbital frequency and its harmonics.

The estimated blob position is about 0.7a, which again agrees with

the centre of the vortices observed next to the inner edge of the gap

in the density maps.

The PDSs of the torque from the material inside the Roche lobe

show high-frequency quasi-periodic variations at about 20 times

the planet orbital frequency. These high-frequency oscillations may

be caused by the circumplanetary disc which makes several orbits

around the planet within the planet orbital period although the re-

gion is poorly resolved at our resolution. There is a local maximum

in density inside the Roche lobe and the material gives a leading

contribution to the total torque acting on the planet.

5.2 Viscous Jupiter

The density contours for Jupiter in a disc with Navier–Stokes viscos-

ity ν = 10−5 are shown after 100 orbits for all the codes in Fig. 10.

The planet opens a narrower gap in the disc in this case. The flow is

much smoother than in the inviscid calculation and the blobs moving

along the gap are not observed. The density enhancements seen at

the Lagrangian points inside the gap in the inviscid calculations are

not present. The spiral arms generated by the planet are stationary.

The filamentary structure that appeared in the inviscid Jupiter runs

in the shock-capturing codes is reduced in amplitude. The reduction

is stronger in FLASH-AG and FLASH-AP results than in AMRA which

uses a different dissipation algorithm.

In Fig. 11, we plot the vortensity for the viscous Jupiter case.

The maps are smooth compared with the inviscid simulations and

vortices are not visible in the logarithmic scale. Reflected waves

are visible in the NIRVANA-GDA, RH2D, GLOBAL and GENESIS results

despite the use of the wave killing zones.

In Fig. 12, we show the azimuthally averaged density profiles and

normalized residuals after 100 orbits. The depth and width of the

gap agree well for the grid codes with a shallower gap in the FLASH-

AP code. The gap is wider and deeper in the PARASPH simulation. The

SPHTREE code has a small peak at the planet radius and the inner disc

is depleted due to mass loss. A slightly asymmetric gap structure is

observed in most codes with a deeper dent outside the planet’s orbit.

The oscillations in the outer disc have disappeared in the grid codes

or have been reduced considerably by the viscosity. The differences

of the averaged profiles with respect to the mean value are shown

in Fig. 12.

We plot the surface density profiles at φ = π after 100 orbits in

Fig. 13. The peaks at the edges of the gap agree well since there

are no vortices in the viscous runs and the spiral arms are weaker.

Due to the viscosity, the gap is narrower and shallower than in the

inviscid case. The shape of the spiral arms agrees within a few per

cent for the grid-based codes. The SPH codes agree in the general

shape of the density profile but have weaker spiral waves. SPHTREE

has a density peak in the middle of the gap opposite from the planet.

In Fig. 14, we plot the azimuthal cuts of the surface density maps

at the centre of the gap. A sharp density spike is seen at the planet

position in all codes. The density bumps at the equilibrium points

inside the gap have disappeared. Most of the grid codes show a

constant density of about 15 per cent of the initial value. PARASPH has

a lower density than the grid codes, while SPHTREE shows a density

about twice as large as the grid codes. The presence of oscillations in

the SPHTREE azimuthal profile may be explained because the number

of particles is too small to resolve the gap. The effective resolution

after projection in the radial range [0.4a, 2.5a] is smaller than in the

grid simulations since the radial domain extends until 10a and at the

end of the simulation a significant fraction of the particles has been

accreted.

We plot the evolution of the disc mass-loss rate in Fig. 15. There

is less mass loss than in the inviscid Jupiter case due to the weaker

waves and the agreement in the loss rate is generally very good.

FLASH-AP has a larger mass decrease due to the open inner bound-

ary. PENCIL has a very small mass loss possibly due to the freezing

zones in the boundaries. The total mass loss after 200 orbits shows

better agreement than in the inviscid case. Upwind methods show

a reduction of about 5 per cent of the initial mass, while RODEO,

AMRA and FLASH-AG codes lose close to 8 per cent of their mass.

During the first few orbits, there is again gas flow from the outer

to the inner disc when the gap is not cleared. The outer disc mass

decreases slightly for some codes while others present an increase

of roughly 1 per cent. There is a substantial decrease in the inner

disc mass with an agreement of approximately 10 per cent between

the different models.

The amplitude of the torque oscillations is smaller compared with

the inviscid runs. There is again an initial stage where the torque

increases in absolute value while the planet mass is increasing. The

torques start to oscillate at about 10 orbits and later possibly due to

the formation of small vortices or eccentricity of the disc. In most

codes, the oscillations decrease and become very small by the end

of the simulation.
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Figure 10. Density contours after 100 orbits for the viscous Jupiter simulations. The dashed line is the estimated theoretical position of the planetary shocks.

The density range is again −1.7 < log(�/�0) < 1.
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Figure 11. Vortensity maps for the viscous Jupiter case after 100 orbits. The logarithmic scale is −0.5 < log(ζ ) < 2.
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Figure 12. The upper panel shows the surface density profiles averaged

azimuthally over the whole azimuthal range after 100 orbits for the viscous

Jupiter case. In the lower panel, the difference between each model and the

mean value is shown as defined in Fig. 4.

Figure 13. Surface density profiles opposite to the planet position after 100

orbits for the viscous Jupiter runs.

In Fig. 16, the profiles of the specific total torque excluding the

Hill sphere are shown. The profiles show a much better agreement

than in the inviscid Jupiter simulations. In the viscous case, vortices

are not observed in the density maps after 100 orbits and the torque

radial profiles are not time dependent. There is a dominant contribu-

tion from the corotating region in the grid-based schemes from the

exchange of angular momentum with gas flowing in horseshoe or-

bits, although the material inside the Roche lobe is not considered.

The outer disc gives a negative torque contribution on the planet

driving inwards migration and the inner disc produces a positive

torque that pushes the planet outwards. The profiles of the polar

coordinates codes agree within a few per cent.

The time average of the torque acting on the planet and their

PDSs are shown in Fig. 17. The outer disc torque contribution is

again dominant and gives a negative total torque. PENCIL has larger

torques in absolute value and it has a possible artificial numerical

effect at about 80 orbits. The total averaged torques at the end of the

Figure 14. Surface density azimuthal cut at the planet position after 100

orbits for the viscous Jupiter runs.

Figure 15. Evolution of the disc mass-loss rate over 200 orbital periods for

the viscous Jupiter case.

Figure 16. Profiles of total specific torque acting on the planet after 100

orbits for the viscous Jupiter case.

simulation are shown in Table 6. The PDSs of the different torque

contribution are shown in the right-hand side panels in Fig. 17. The

plots show the low-frequency part of the PDSs in logarithmic scale.

There is a peak at 0.3 times the planet’s orbital frequency and several

multiples in the outer disc PDS. In some models, there is also a small

peak at the same frequency in the PDS form the inner disc. This

quasi-periodic oscillations may be produced by vortices appearing

during the first orbits of the simulation and eventually removed by
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Figure 17. Running time averaged torques for the viscous Jupiter simulations and the corresponding PDSs of the raw data. The plots are shown in the same

order as in Fig. 9. All the figures exclude the Roche lobe contribution.

Table 6. Averaged torques between 175–200 periods in units

where a = 1, P = 2πand M ∗ = 1 − μ for the Jupiter viscous

simulations.

Code Torque

NIRVANA-GDA −7.279 010 × 10−5

NIRVANA-PC −8.591 188 × 10−5

RH2D −7.895 477 × 10−5

GLOBAL −5.424 962 × 10−5

GENESIS −7.980 679 × 10−5

PENCIL −1.265 820 × 10−4

AMRA −7.269 365 × 10−5

FLASH-AG −9.288 739 × 10−5

FLASH-AP −6.681 127 × 10−5

RODEO −1.061 018 × 10−4

JUPITER −8.067 247 × 10−5

the viscosity. Other possible explanations are asymmetry in the edge

of the gap or slight eccentricity of the disc.

The torque from the gas inside the Hill sphere presents again

a power spectrum with high-frequency peaks at several times the

Keplerian frequency at the planet radius. The smoothing length is

close to half of the Hill radius and the resolution in the Roche lobe is

low to study the possible presence of a circumplanetary disc rotating

at high angular frequency.

5.3 Inviscid Neptune

The dip opened by Neptune after 100 orbital periods is much shal-

lower than for the Jupiter case. The surface density maps are plotted

in Fig. 18 for a Neptune mass planet embedded in an inviscid disc.

The spiral arms created by the planet are significantly weaker than

in the Jupiter calculations and are in better agreement with the the-

oretical prediction of the shock positions shown by the dashed line.

In the SPH simulations the shocks are extremely weak. There are

no overdense regions around the Lagrangian points inside the gap

in any of the calculations since the gap is not deep enough. Along

the edge of the gap there are several blobs in the AMRA, RODEO and

TRAMP-PPM results, which are smaller than in the inviscid Jupiter

calculations. The FLASH, AMRA and JUPITER codes show ripples in

the disc and the gap with lower amplitude than in the inviscid Jupiter

simulations.
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Figure 18. Surface density contours after 100 orbits for the inviscid Neptune simulations. The theoretical estimation of the spiral wakes is represented by the

dashed line. The density scale ranges between −0.4 < log(�/�0) < 0.3.
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The comparative vortensity maps in the corotating frame are

shown in Fig. 19. Vortices moving along the gap are observed in

the grid codes, although they are smaller than in the Jupiter case.

The azimuthally averaged density profiles after 100 orbits are

plotted in Fig. 20. The depth and width of the gap are again in fairly

good agreement for the Eulerian codes. FLASH-AG’s gap is shallower

than the other grid-based codes. PARASPH has a wider and deeper gap

than the grid models and a depleted inner disc. The gap profile of

the Eulerian codes is slightly asymmetric with the deepest part just

outside of the planet radius. In the lower panel in Fig. 20, we show

the residuals of the averaged profiles divided by the disc mass with

respect to the mean value.

In Fig. 21, we plot the surface density at φ = π. The shape and

amplitude of the waves in the disc agree well for the different codes

outside the wave damping boundaries. There is a larger dispersion

at the inner gap edge and in the middle of the gap for the shock-

capturing schemes. The gap is slightly asymmetric for the majority

of the codes.

In Fig. 22, the azimuthal slices of surface density at the planet

position are shown. A large density peak is observed again at the

planet position for all the grid codes. The FLASH-AG, RODEO and

JUPITER density in the centre of the gap after 100 orbits is close to the

initial density with depressions next to the planet. The rest of grid

codes show a density decrease of about 10–20 per cent. PARASPH

has the lowest density inside the gap with a decrease of about

60 per cent from the initial value.

Fig. 23 shows the grid mass-loss rate as a function of time for

the grid-based codes. All models show total mass loss due to the

wave killing condition. The FLASH-AP code has mass loss in the

inner disc due to the absence of a solid inner boundary in Carte-

sian coordinates but converges to a value of a few times 10−5 after

200 orbits. There is mass increase in the inner disc for some schemes

in the beginning of the simulation. This suggests that there is gas

flow trough the gap from the outer to the inner disc since in the

Neptune simulations the gap is shallower and the planet generates

weaker shocks. The artificial viscosity may cause the flow from

the outer to the inner disc. Another possible explanation is that the

damping wave condition near the inner boundary adds artificially

angular momentum to the disc.

We plot the profiles of the derivative of the torque with respect

to the radius in Fig. 24. The agreement between the codes is good

compared with the inviscid Jupiter case, especially for the cylindrical

grid hydrodynamical codes. The vortices do not perturb the planet

strongly and the specific torque radial profiles are stationary. The

outer disc generates again a negative torque acting on the planet

and the inner disc gives a positive torque. At several Hill radii away

from the planet location, the torques become negligible.

In Fig. 25, the time average of the gravitational torques acting on

the planet and their associated PDSs are plotted. The total torque

after 200 periods agree within a factor of 2 (see Table 7). Upwind

results show good agreement, while the shock-capturing results have

larger oscillations. The oscillations observed in the raw data and

PDSs may be produced by short-lived vortices appearing during the

first orbits which are not visible at later time in the density snapshots.

5.4 Viscous Neptune

In Fig. 26, the comparative surface density contours after 100 orbits

for the viscous Neptune case are plotted. The theoretical estimation

of the spiral shocks positions by Ogilvie & Lubow (2002) is shown

by the dashed line. The flow is smoother than in the inviscid Neptune

simulations. The density lumps moving along the edge of the gap

have disappeared and the planetary wakes are stable. The filamen-

tary structures in the shock-capturing simulations have a reduced

amplitude compared with the inviscid case.

The vortensity maps are shown in Fig. 27. The density blobs lying

next to the gap’s edge are not observed in the viscous simulations in

logarithmic scale. Several codes show wave reflection at the outer

boundary despite the wave damping condition.

The smoothed density profiles are shown in Fig. 28 for the viscous

Neptune calculations. The gap profile is again in good agreement

for the polar grid hydrodynamics codes. The gap is shallower for

FLASH-AG than for the other Eulerian codes. FLASH-AP has a wider

and deeper gap with a flat shape. PARASPH has a very deep gap and

SPHTREE has a strong asymmetry with the deeper depression outside

the planet position. The residuals of the averaged profiles divided

by the disc mass are shown in the bottom panel in Fig. 4

The surface density opposite to the planet after 100 orbits is shown

in Fig. 29. FLASH-AG has a shallow gap whereas FLASH-AP has a

deeper and broader gap. The waves observed in the inner and outer

disc agree within a few per cent for the Eulerian schemes. PARASPH

has a very open gap and SPHTREE has a noisy profile with a deep

cavity outside the planet’s radius.

The surface density azimuthal slices after 100 orbits are plotted

in Fig. 30. A density spike appears again at the planet location in the

grid codes. The grid codes show a density decrease of approximately

10–20 per cent of the initial density in the centre of the gap, while

PARASPH has a decrease of about 60 per cent as in the inviscid Neptune

case.

The disc mass-loss rate is shown in Fig. 31. All the models apart

from FLASH-AP show total mass loss after 200 periods with final

values consistent within a factor of about 3. RODEO has a sharp

jump in mass-loss rate at about 155 periods. FLASH-AP results have

a considerable increase of mass in the outer boundary.

The dT/dr profiles after 100 orbits are shown in Fig. 32. The

profiles show a good agreement between the grid-based codes.

We plot the time-averaged torques acting on the planet on the left-

hand side of Fig. 33. The torque contribution from the inner disc

is positive, while the outer disc contribution is negative. The outer

disc dominates the total torque and would cause an inwards orbital

shift for a free-moving planet. In Table 8, we show the averaged

torques at 200 orbital periods. The torques PDSs are shown on the

right-hand side of Fig. 33. The spectrum is rather flat for all codes

which agrees with the absence of vortices or eccentricity in the disc.

5.5 High-resolution simulations

We studied the convergence of the results running the test problem

at two and four times the original linear resolution with some of the

codes. NIRVANA-PC and NIRVANA-GD Jupiter simulations were run at

resolution n r × nφ = (256, 768). Several tests at n r × nφ = (512,

1536) were done with RH2D, NIRVANA-GD and FARGO codes for Jupiter

and Neptune planet masses. PARASPH was run using 853 280 particles

and 146 720 boundary particles for the Jupiter viscous case.

In the grid-based schemes, the flow is observed to be smoother

and more stable in time than in the low-resolution runs. Vortices

are still visible in the Jupiter inviscid simulations in the NIRVANA-

PC and FARGO simulations. The vortices are more extended than in

the lower resolution calculations and interact with the primary and

secondary shocks. There is more mass piling up inside the Roche

lobe after 200 orbits in the higher resolution cases in agreement with

the results of D’Angelo, Bate & Lubow (2005). Nevertheless, the

averaged density profiles are very similar to the results presented

in the previous sections. The gravitational torques are similar in the
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Figure 19. Vortensity contours in logarithmic scale after 100 orbits for the inviscid Neptune calculations. The vortensity range is −0.1 < log(ζ ) < 1.
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Figure 20. Surface density profiles averaged azimuthally over 2π after 100

orbits for the inviscid Neptune runs are shown in the upper panel. The resid-

uals in the lower panel are defined as in Fig. 4.

Figure 21. Surface density profiles opposite to the planet position after 100

orbits for the inviscid Neptune runs.

grid-based codes and in good agreement with the low-resolution

results.

The PARASPH results with ∼850 000 particles have stronger shocks

and the density profiles are in good agreement with the grid-based

results. This suggests that SPH schemes need higher resolution to

model accurately the corotation region and planetary wakes.

6 D I S C U S S I O N

In this paper, we have studied a planet in a fixed orbit embedded in a

disc using 17 different SPH and Eulerian methods. The codes used in

the comparison have been thoroughly tested in problems with known

analytical solutions. The goal of this project was to investigate the

reliability of current astrophysical hydrodynamic codes in the disc–

planet problem, and to provide a reference for future calculations.

Performing this comparison also aided in the debugging of the codes.

The results show good agreement on the general picture, al-

though there are some differences in the details. The density maps

and averaged profiles are consistent for the grid-based methods.

The variation in the disc mass is of the order of 10 per cent after

Figure 22. Surface density azimuthal slice at the planet location after 100

orbits for the inviscid Neptune calculations.

Figure 23. Disc mass-loss rate evolution for the inviscid Neptune

simulations.

Figure 24. Specific torque profiles after 100 orbits for the inviscid Neptune

simulations.

100 orbital periods, but this does not seem to produce big differ-

ences in the surface density distributions. The different boundary

conditions tested in FARGO do not affect the results since the goal

in both boundary implementations was to avoid the reflection of

waves. A preliminary study of convergence using finer grids shows

that there is agreement at two and four times the original linear

resolution.

Vortices are visible in the inviscid runs for both planet masses μ=
10−3 and 10−4 in the grid codes, which induce a strong perturbation

to the tidal torque. The vortices in the upwind simulations have a

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 370, 529–558



552 M. de Val-Borro et al.

Figure 25. Time-averaged torques and their PDSs for the inviscid Neptune simulations. The plots are shown in the same order as in Fig. 9 and exclude the

material inside the Roche lobe.

Table 7. Averaged torques at the end of the simulations in

units where a = 1, P = 2π and M ∗ = 1 − μ for the Neptune

inviscid simulations.

Code Torque

NIRVANA-GDA −5.601 425 × 10−5

NIRVANA-PC −5.802 065 × 10−5

RH2D −6.329 492 × 10−5

GLOBAL −6.539 345 × 10−5

GENESIS −5.645 140 × 10−5

TRAMP-VANLEER −5.078 578 × 10−5

AMRA −8.154 881 × 10−5

FLASH-AG −6.523 340 × 10−5

FLASH-AP 1.055 228 × 10−5

RODEO −1.234 136 × 10−4

JUPITER −2.834 292 × 10−5

TRAMP-PPM −5.742 200 × 10−5

larger amplitude and are more extended than in the shock-capturing

results. The total torque acting on the planet excluding the material

inside the Roche lobe agrees in order of magnitude for Jupiter mod-

els. The torque results for Neptune have greater dispersion, possibly

due to incomplete clearing of the gap, but agree nevertheless in the

final value within a factor of 2.

It has been observed that shock-capturing codes show a large

amount of filamentary small-scale structure unseen in model results

obtained with other codes. This is especially true for both Direct–

Eulerian implementations, AMRA and FLASH. In addition, AMRA re-

sults show enhanced small-scale structure when compared to FLASH.

Extensive comparison tests of the two implementations have shown

that much of the observed differences are due to use of more selec-

tive dissipation algorithm in AMRA. [The so-called flattening algo-

rithm in AMRA is based on equations (A.7)–(A.10) from Colella &

Woodward (1984), while FLASH uses equation (A.2).] After adopt-

ing the simplified version of the flattening algorithm in AMRA, the

results closely matched those obtained with the FLASH code. Adding

a small amount of artificial viscosity with coefficient of 0.1, as rec-

ommended by Colella & Woodward (1984), resulted in a further

reduction of filamentary structures and substantial reduction of the

strength of vortices located at the gap edges.

The upwind codes have a smooth disc structure and do not

show filaments in the inviscid simulations. This may be due to the

fact that shock-capturing codes have small intrinsic viscosity in
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Figure 26. Surface density maps after 100 orbits for the viscous Neptune simulations. The dashed line is the estimated theoretical position of the spiral arms.

The density range is −0.4 < log(�/�0) < 0.3.
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Figure 27. Vortensity contours after 100 orbits for the viscous Neptune simulations. The vortensity range is −0.1 < log(ζ ) < 1.
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Figure 28. The upper panel shows the surface density profiles averaged

azimuthally over 2π after 100 orbits for the viscous Neptune runs. The

residuals in the lower panel are defined as in Fig. 4.

Figure 29. Surface density profiles opposite to the planet position after 100

orbits for the viscous Neptune case.

our problem in cylindrical coordinates, where flow is dominated

by advection in only one dimension. Bryden et al. (1999) have

shown that van Leer-based codes in polar coordinates may have low

intrinsic viscosity comparable with shock-capturing methods. It has

been checked that none of the above changes is needed in AMRA if

the grid resolution is increased twice. In this case, the solution is

much smoother and the vortices at the gap edges decay faster.

The Cartesian implementations produce results that are compara-

ble to the other codes, but there are differences in the gap structure

due to the open inner boundary. The depleted density distribution in

the inner disc in FLASH-AP produces different torques but the torque

contribution from the outer disc is consistent with the cylindrical

grid codes.

SPH codes predict the shape of the gap correctly but do not resolve

well low-density regions where the number of particles is small. In

addition, the spiral wakes are weaker, possibly due to SPH being

more dissipative. The Balsara switch included in the SPHTREE code

is used to reduce the shear component of artificial viscosity but it

may also smooth out the shocks. An advantage of SPH codes is

that the geometry of the problem is well adapted to a Lagrangian

Figure 30. Surface density azimuthal slice at the planet location after 100

orbits for viscous Neptune calculations.

Figure 31. Disc mass-loss rate evolution for the viscous Neptune simula-

tions.

Figure 32. Specific torque profiles after 100 orbits for the viscous Neptune

simulations.

scheme and the algorithm implementation is simpler than for

Eulerian codes. The planet can be treated as a regular particle which

accretes material. Furthermore, it is possible to follow the trajec-

tory of individual fluid elements and study the accretion flows. SPH

codes are computationally more expensive than Eulerian codes at

the same resolution. Our high-resolution tests indicate that higher

resolution is needed in the SPH simulations to obtain results com-

parable to the Eulerian grid codes.

Possible future work includes the comparison of high-resolution

runs using multilevel meshes to investigate the gas flow close to

the planet, the study of the orbital shift of a free-moving planet and
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Figure 33. Time-averaged torques and corresponding PDSs for the viscous Neptune case. The plots are shown in the same order as in Fig. 9 and exclude the

material inside the Roche lobe.

Table 8. Averaged torques in the window 175–200 periods

in units where a = 1, P = 2π and M ∗ = 1 − μ for the

Neptune viscous simulations.

Code Torque

NIRVANA-GDA −3.375 560 × 10−5

NIRVANA-PC −2.467 831 × 10−5

RH2D −3.257 739 × 10−5

GLOBAL −3.742 940 × 10−5

GENESIS −2.700 463 × 10−5

PENCIL −7.303 624 × 10−5

AMRA −2.634 983 × 10−5

FLASH-AG −2.933 768 × 10−5

FLASH-AP −6.022 857 × 10−5

RODEO −2.697 915 × 10−5

JUPITER −3.809 917 × 10−5

three-dimensional simulations (see e.g. Kley, D’Angelo & Henning

2001; D’Angelo et al. 2003). The convergence of the results with

resolution needs to be studied in detail.

In closing, we would like to reiterate that computational work

might be regarded as an experiment, rather than a simulation. We

have shown that different codes can give slightly different results

for the same physical problem. Reproducibility of experimental re-

sults is fundamental to the scientific process, and this standard must

be applied to those performed with computers. Before a computa-

tional result can be regarded as reliable, it must be confirmed by an

independent test with a different code.
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A P P E N D I X A : A DV I C E F O R OT H E R S

Putting together this comparison has been something of a ‘learn-

ing experience’ for all concerned. Although not strictly scientific,

we would like to share our experiences with others who may be

contemplating similar comparisons.

As with many things, advance planning is the most important.

So far as is possible, decide in advance which quantities should

be monitored, and how often this should be done. What should be

checked every time-step (or so), and what is only required at much

less frequent intervals? Storage requirements are relevant to this: for

example, writing out the total mass in the simulation is a lot cheaper

(in terms of both space and time) than outputting the entire density

field. Changing the output quantities at a later date will often involve

rerunning computations, which will delay matters.
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Careful attention should also be paid to the format of the sub-

mitted files. Each code generally has its own output format. Those

coordinating the comparison do not have time to pick through each

of these – automated processing must be the goal. Make sure that

the format is carefully specified (since if there are two mutually in-

compatible ways of doing something, it is certain that results with

both ways will be submitted). As an aside, for grid-based results,

it is probably more sensible to write out the indices of each cell,

rather than the coordinates themselves: integers are exact. Supply

the tables to convert indices to coordinates separately.

Pay similar attention to the problem specification itself.

Some flexibility will inevitably be needed, but try to keep this to

a minimum. Again, the authors’ experience is that anything left

vague will be done in different ways by different groups.

Communication is also hugely important. In addition to setting up

a mailing list, the authors were able to hold several short meetings,

using funds provided by the EU. These were crucial to moving the

project forward. Better still would have been to have held a longer

workshop (perhaps a week) where everyone could gather, discuss

and run their codes together.

We hope that future groups will find our experiences useful in

planning their own code comparisons.
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