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Abstract. One of the most exciting advances in early vision has been
the development of efficient energy minimization algorithms. Many early
vision tasks require labeling each pixel with some quantity such as depth
or texture. While many such problems can be elegantly expressed in
the language of Markov Random Fields (MRF’s), the resulting energy
minimization problems were widely viewed as intractable. Recently, al-
gorithms such as graph cuts and loopy belief propagation (LBP) have
proven to be very powerful: for example, such methods form the basis
for almost all the top-performing stereo methods. Unfortunately, most
papers define their own energy function, which is minimized with a spe-
cific algorithm of their choice. As a result, the tradeoffs among different
energy minimization algorithms are not well understood. In this paper
we describe a set of energy minimization benchmarks, which we use
to compare the solution quality and running time of several common
energy minimization algorithms. We investigate three promising recent
methods—graph cuts, LBP, and tree-reweighted message passing—as
well as the well-known older iterated conditional modes (ICM) algo-
rithm. Our benchmark problems are drawn from published energy func-
tions used for stereo, image stitching and interactive segmentation. We
also provide a general-purpose software interface that allows vision re-
searchers to easily switch between optimization methods with minimal
overhead. We expect that the availability of our benchmarks and inter-
face will make it significantly easier for vision researchers to adopt the
best method for their specific problems. Benchmarks, code, results and
images are available at http://vision.middlebury.edu/MRF.
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1 Introduction

Many problems in early vision involve assigning each pixel a label, where the la-
bels represent some local quantity such as disparity. Such pixel labeling problems
are naturally represented in terms of energy minimization, where the energy func-
tion has two terms: one term penalizes solutions that are inconsistent with the
observed data, while the other term enforces spatial coherence. One of the rea-
sons this framework is so popular is that it can be justified in terms of maximum
a posteriori estimation of a Markov Random Field [1, 2]. Despite the elegance and
power of the energy minimization approach, its early adoption was slowed by com-
putational considerations. The algorithms that were originally used, such as ICM
[1] or simulated annealing [3], proved to be extremely inefficient.

In the last few years, energy minimization approaches have had a renaissance,
primarily due to powerful new optimization algorithms such as graph cuts [4, 5]
and loopy belief propagation (LBP) [6]. The results, especially in stereo, have
been dramatic; according to the widely-used Middlebury stereo benchmarks [7],
almost all the top-performing stereo methods rely on graph cuts or LBP. More-
over, these methods give substantially more accurate results than were previously
possible. Simultaneously, the range of applications of pixel labeling problems
has also expanded dramatically, moving from early applications such as image
restoration [1], texture modeling [8], image labeling [9], and stereo matching
[3, 4], to applications such as interactive photo segmentation [10, 11] and the
automatic placement of seams in digital photomontages [12].

Relatively little attention has been paid, however, to the relative performance
of various optimization algorithms. Among the few exceptions are [14], which
compared the efficiency of several different max flow algorithms for graph cuts,
and [13], which compared graph cuts with LBP. [13] also noted a particulary
impressive demonstration of the effectiveness of modern energy minimization
methods: for the stereo problems in the Middlebury benchmarks, both graph
cuts and LBP produced results whose energy is lower than the ground truth
solution. We will return to this issue at the end of this paper.

While it is generally accepted that algorithms such as graph cuts are a huge
improvement over older techniques such as simulated annealing, less is known
about the efficiency vs. accuracy tradeoff among more recently developed al-
gorithms. Concurrently with our work, [15] compared tree-reweighted message
passing, LBP and graph cuts for highly connected graphs.

In this paper, we evaluate a number of different energy minimization algo-
rithms for pixel labeling problems. We propose a number of benchmark problems
for energy minimization and use these benchmarks to compare several different
energy minimization methods. Since much of the work in energy minimization
has been motivated by pixel labeling problems over 2D grids, we have restricted
our attention to problems with this simple topology. (The extension of our work
to more general topologies, such as 3D, is straightforward.)

This paper is organized as follows. In section 2 we give a precise description
of the energy functions that we consider, and present a simple but general soft-
ware interface to describe such energy functions and to call an arbitrary energy
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minimization algorithm. In section 3 we describe the different energy minimiza-
tion algorithms that we have implemented, and in section 4 we present our set of
benchmarks. In section 5 we provide our experimental comparison of the different
energy minimization methods, and we conclude in section 6.

2 Problem Formulation and Experimental Infrastructure

We define a pixel labeling problem as assigning to every pixel p a label, which
we write as lp. The collection of all pixel-label assignments is denoted by l, the
number of pixels is n, and the number of labels is m. The energy function E,
which can also be viewed as the log likelihood of the posterior distribution of a
Markov Random Field [2, 16], is composed of a data energy Ed and smoothness
energy Es, E = Ed+λEs. The data energy is simply the sum of a set of per-pixel
data costs dp(l), Ed =

∑

p dp(lp). In the MRF framework, the data energy comes
from the (negative) log likelihood of the measurement noise.

We assume that pixels form a 2D grid, so that each p can also be written
in terms of its coordinates p = (i, j). We use the standard 4-connected neigh-
borhood system, so that the smoothness energy is the sum of spatially varying
horizontal and vertical nearest-neighbor smoothness costs, Vpq(lp, lq), where if
p = (i, j) and q = (s, t) then |i − s| + |j − t| = 1. If we let N denote the set of
all such neighboring pixel pairs, the smoothness energy is

Es =
∑

{p,q}∈N

Vpq(lp, lq). (1)

Note that in equation 1, the notation {p, q} stands for an unordered set, that is
the sum is over unordered pairs of neighboring pixels.

In the MRF framework, the smoothness energy comes from the negative log
likelihood of the prior. In this paper, we consider a general form of the smooth-
ness costs, where different pairings of adjacent labels can lead to different costs.
This is important in a number of applications, ranging from stereo matching
(§8.2 of [4]) to image stitching and texture quilting [12, 17, 18].

A more restricted form of the smoothness energy is Es =
∑

{p,q}∈N wpq ·

V (|lp − lq|), where the smoothness terms are the product of spatially varying
per-pairing weights wpq and a non-decreasing function of the label difference
V (∆l) = V (|lp − lq|). While we could represent V using an m-valued look-up
table, for simplicity, we instead parameterize V using a simple clipped monomial
form V (∆l) = min(|∆l|k, Vmax), with k ∈ {1, 2}. If we set Vmax = 1.0, we get
the Potts model, V (∆l) = 1− δ(∆l), which penalizes any pair of different labels
uniformly (δ is the unit impulse function).

While they are not our primary focus, a number of important special cases
have fast exact algorithms. If there are only two labels, the natural Potts model
smoothness cost can be solved exactly with graph cuts (this was first applied to
images by [19]). If the labels are the integers starting with 0 and the smoothness
cost is an arbitrary convex function, [20] gives a graph cut construction. An
algorithm due to [21] can be used with V (∆l) = ∆l (L1 smoothness) and convex
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data costs. However, the NP-hardness result proved in [4] applies if there are
more than two labels, as long as the class of smoothness costs includes the
Potts model. This, unfortunately, implies that the vast majority of MRF-based
energy functions are intractable.

The class of energy functions we are considering is quite broad, and not all
energy minimization methods can handle the entire class. For example, accel-
eration techniques based on distance transforms [22] can significantly speed up
message-passing algorithms such as LBP or TRW, yet these methods are only
applicable for certain smoothness costs V . Other algorithms, such as graph cuts,
only have good theoretical guarantees for certain choices of V (see section 3 for
a discussion of this issue). We will assume that any algorithm can run on any
benchmark problem; this can generally be ensured by reverting to a weaker or
slower of the algorithm if necessary for a particular benchmark.

2.1 Software Interface for Energy Minimization

Now that we have defined the class of energy functions that we minimize, we need
to compare different energy minimization methods on the same energy function
E. Conceptually, it is easy to switch from one energy minimization method to
another, but in practice, most applications are tied to a particular choice of E.
As a result, almost no one in vision has ever answered questions like “how would
your results look if you used LBP instead of graph cuts to minimize your E?”
(The closest to this was [13], who compared LBP and graph cuts for stereo.)
In order to create a set of benchmarks, it was necessary to design a standard
software interface (API) that allows a user to specify an energy function E and
to easily call a variety of energy minimization methods to minimize E.

The software API is available at http://vision.middlebury.edu/MRF, as
are all of our benchmarks and implementations of most of the energy minimiza-
tion methods discussed in this paper. The API allows the user to define any
energy function described above. The data cost energy can be specified implic-
itly, as a function dp() or explicitly as an array. The smoothness cost likewise
can be specified either by defining the parameters k and Vmax, or by providing
an explicit function or array. Excerpts from an example program that uses our
API to call two different energy minimization algorithms on the same energy
function are given below.

// Abstract definition of an energy function E

EnergyFunction *E = (EnergyFunction *) new EnergyFunction(data,smooth);

// Energy minimization of E via ICM

solver = (MRF *) new ICM(width,height,num_labels,E);

// To use graph cuts to minimize E instead, substitute the line below

// solver = (MRF *) new Expansion(width,height,num_labels,E);

// Run one iteration, store the amount of time it takes in t

solver->optimize(1,&t);

// Print out the resulting energy and running time

print_stats( solver->totalEnergy(), t);
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Note that the interface also has the notion of an iteration, but it is up to each
energy minimization method to interpret this notion. Most algorithms have some
natural intermediate point where they have a current answer. By supporting this,
our API allows us to plot the curve of energy versus time. This is particularly
important because a number of powerful methods (such as TRW and graph cuts)
make very small changes in the last few iterations.

2.2 Evaluation Methodology

To evaluate the quality of a given solution, we need the final energy E along
with the computation time required, as a function of the number of iterations.
For every benchmark, we produce a plot that keeps track of the energy vs.
computation time for every algorithm tested. We implemented the algorithms
in C or C++, and ran the benchmarks on a modern Pentium 4. Most of the
experiments used the same machine (3.4 GHz, 2GB RAM), while a few used a
fairly similar computer.

Of course, not all authors spent the same amount of effort tuning their im-
plementation for our benchmarks. Note that while the natural way to compare
energy minimization algorithms is in terms of their energy and speed, it is not al-
ways the case that the lowest energy solution is the best one for a vision problem.
(We return to this issue at the end of section 6.)

3 Energy Minimization Algorithms

In this section, we describe the optimization algorithms that we have imple-
mented and included in our interface. Most of the energy minimization algo-
rithms were implemented by their original inventors; the exceptions are ICM
and LBP, which we implemented ourselves (for LBP, we received help from sev-
eral experts).

Iterated conditional modes (ICM) — Iterated conditional modes [1] uses
a deterministic “greedy” strategy to find a local minimum. It starts with an
estimate of the labeling, and then for each pixel it chooses the label giving the
largest decrease of the energy function. This process is repeated until conver-
gence, which is guaranteed to occur, and in practice is very rapid.

Unfortunately, the results are extremely sensitive to the initial estimate, es-
pecially in high-dimensional spaces with non-convex energies (such as arise in
vision) due to the huge number of local minima. In our experiments, we initial-
ized ICM in a winner-take-all manner, by assigning each pixel the label with the
lowest data cost. This resulted in significantly better performance.

Graph cuts — The two most popular graph cuts algorithms, called the swap

move algorithm and the expansion move algorithm, were introduced in [4]. These
algorithms rapidly compute a strong local minimum, in the sense that no “per-
mitted move” will produce a labeling with lower energy.

For a pair of labels α, β, a swap move takes some subset of the pixels currently
given the label α and assigns them the label β, and vice-versa. The swap move
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algorithm finds a local minimum such that there is no swap move, for any pair of
labels α,β, that will produce a lower energy labeling. Analogously, we define an
expansion move for a label α to increase the set of pixels that are given this label.
The expansion move algorithm finds a local minimum such that no expansion
move, for any label α, yields a labeling with lower energy.

The criteria for a local minimum with respect to expansion moves (swap
moves) are so strong that there are many fewer minima in high dimensional
spaces compared to standard moves. In the original work of [4] the swap move
algorithm was shown to be applicable to any energy where Vpq is a semi-metric,
and the expansion move algorithm to any energy where Vpq is a metric. The
results of [5] imply that the expansion move algorithm can be used if for all
labels α,β,and γ, Vpq(α, α) + Vpq(β, γ) ≤ Vpq(α, γ) + Vpq(β, α). The swap move
algorithm can be used if for all labels α,β Vpq(α, α) + Vpq(β, β) ≤ Vpq(α, β) +
Vpq(β, α). (This constraint comes from the notion of regular, i.e. submodular,
binary energy functions, which are closely related to graph cuts.)

If the energy does not obey these constraints, graph cut algorithms can still
be applied by “truncating” the violating terms [24]. In this case, however, we
are no longer guaranteed to find the optimal labeling with respect to swap (or
expansion) moves. In paractice, the performance of this version seems to work
well when only relatively few terms need to be truncated.

Max-product loopy belief propagation (LBP) — To evaluate the perfor-
mance of LBP, we implemented the max-product LBP version, which is de-
signed to find the lowest energy solution. The other main variant of LBP, the
sum-product algorithm, does not directly search for a minimum energy solu-
tion, but instead computes the marginal probability distribution of each node in
the graph. The belief propagation algorithm was originally designed for graphs
without cycles [25], in which case it produces the exact result for our energy.
However, there is nothing in the formulation of BP that prevents it from being
tried on graphs with loops.

In general, LPB is not guaranteed to converge, and may go into an infi-
nite loop switching between two labelings. Felzenszwalb and Huttenlocher [22]
present a number of ways to speed up the basic algorithm. In particular, our LBP
implementation uses the distance transform method described in [22], which sig-
nificantly reduces the running time of the algorithm.

Tree-reweighted message passing (TRW) — Tree-reweighted message pass-
ing [30] is a message-passing algorithm similar, on the surface, to LBP. Let M t

p→q

be the message that pixel p sends to its neighbor q at iteration t; this is a vector
of size m (the number of labels). The message update rule is:

M t
p→q(lq) = min

lp

⎛

⎝cpq{dp(lp) +
∑

s∈N (p)

M t−1
s→p(lp)} − M t−1

q→p(lp) + Vpq(lp, lq)

⎞

⎠ .

The coefficients cpq are determined in the following way. First, a set of trees
from the neighborhood graph (a 2D grid in our case) is chosen so that each
edge is in at least one tree. A probability distribution ρ over the set of trees is
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then chosen. Finally, cpq is set to ρpq/ρp, i.e. the probability that a tree chosen
randomly under ρ contains edge (p, q) given that it contains p. Note that if cpq

were set to 1, the update rule would be identical to that of standard LBP.
An interesting feature of the TRW algorithm is that it computes a lower

bound on the energy. The original TRW algorithm does not necessarily converge,
and does not, in fact, guarantee that the lower bound always increases with
time. In this paper we use an improved version of TRW due to [23], which is
called sequential TRW, or TRW-S. In this version, the lower bound estimate is
guaranteed not to decrease, which results in certain convergence properties. In
TRW-S we first select an arbitrary pixel ordering function S(p). The messages
are updated in order of increasing S(p) and at the next iteration in the reverse
order. Trees are constrained to be chains that are monotonic with respect to
S(p). Note that the algorithm can be implemented using half as much memory
as standard BP [23].

4 Benchmark Problems

For our benchmark problems, we have created a representative set of low-level
energy minimization problems drawn from a range of different applications. As
with the optimization methods, we were fortunate enough to persuade the orig-
inal authors of the problems to contribute their energy functions and data.

Stereo matching — For stereo matching, we followed in the footsteps of [13]
and used a simple energy function for stereo, applied to images from the widely-
used Middlebury stereo data set [7]. We used different energy functions for differ-
ent images, to make the optimization problems more varied. For the “Tsukuba”
image we used the truncated L1 distance Vmax = 2, k = 1, with λ = 20 and
m = 16 labels. For “Venus” we used the truncated L2 distance Vmax = 2, k = 7,
with λ = 50 and m = 20 labels. For “Teddy” we used the Potts model Vmax =
1, k = 1, with λ = 10 and m = 60 labels. The default smoothness weight was
wpq = 1 at all pixels. For “Tsukuba” and “Teddy” we increased the weight at
locations where the intensity gradient gpq in the left image is small: we used
wpq = 2 if |gpq| ≤ 8 for “Tsukuba,” and wpq = 3 if |gpq| ≤ 10 for “Teddy.”

Photomontage — The Photomontage system [12] seamlessly stitches together
multiple photographs for a variety of photo merging applications. We formed
benchmarks for two such applications, panoramic stitching and group photo
merging. The input is a set of aligned images S1, S2, . . . , Sm of equal dimension;
the labels are the image indexes, i.e. 1, 2, ..., m; the final output image is formed
by copying colors from the input images according to the computed labeling. If
two neighbors p and q are assigned the same input image, they should appear
natural in the composite and so Vpq(i, i) = 0. If lp �= lq, we say that a seam exists
between p and q; then Vpq measures how visually noticeable the seam is in the
composite. The data term dp(i) is 0 if pixel p is in the field of view of image i,
and ∞ otherwise.

The first benchmark stitches together the panorama in Fig. 8 of [12]. (See the
project web page for all images.) The smoothness energy, derived from [18], is
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Vpq = |Slp(p) − Slq(p)| + |Slp(q) − Slq(q)|. This energy function is suitable for
the expansion algorithm without truncation.

The second benchmark stitches together the five group photographs shown in
Fig. 1 of [12]. The best depiction of each person is to be included in a composite.
Photomontage itself is interactive, but to make the benchmark repeatable the
user strokes are saved into a data file. For any pixel p underneath a drawn stroke,
dp(lp) = 0 if lp equals the user-indicated source image, and ∞ otherwise. The
smoothness terms are modified from the first benchmark to encourage seams
along strong edges. The expansion algorithm is applicable to this energy only
after truncating certain terms, but it continues to work well in practice.

Binary image segmentation — Binary MRF’s are also widely used in medi-
cal image segmentation [10], stereo matching using minimal surfaces [27, 28], and
video segmentation using stereo disparity cues [29] As previously mentioned, for
the natural Ising model smoothness costs, the global minimum can be computed
rapidly via a graph cuts [19]; this result has been generalized to other smoothness
costs by [5].) Nevertheless, such energy functions still form an interesting bench-
mark, since there may well be other heuristic algorithms that perform faster
while achieving nearly the same level of performance.

Our benchmark consists of a segmentation problem, inspired by the interactive
segmentation algorithm of [10] or its more recent extensions [11]. As with our
Photomontage stitching example, this application requires user interaction; we
handle this issue as above, by saving the user interactions to a file and using
them to derive the data costs.

The data cost is the log likelihood of a pixel belonging to either foreground or
background and is modeled as two separate Gaussian mixture models as in [11].
The smoothness term is a standard Potts model which is contrast sensitive:
Vpq = || exp(−β‖xi − xj‖2)|| + λ2, where λ = 50 and λ2 = 10. The quantity β
is set to (2〈‖xi − xj‖2〉)−1 where the expectation denotes an average over the
image, as motivated in [11]. The impact of λ2 is to remove small and isolated
areas that have high contrast.

Image restoration and inpainting — We experimented with the “penguin”
image, which appears in figure 7 in [22]. We added random noise to each pixel,
and also obscured a portion of the image. The labels are intensities, and the data
cost for each pixel is the squared difference between the label and the observed
distance. However, pixels in the obscured portion have a data cost of 0 for any
intensity. The smoothness energy was the truncated L2 distance with uniform
wpq’s (we used Vmax = 200, k = 2, wpq = 25).

5 Experimental Results

The experimental results from running the different optimization algorithms on
these benchmarks are given in figure 1 (stereo), figure 2 (Photomontage), and
figure 3 (binary image segmentation). The images themselves are provided on
the project web page. The x-axis of these plots shows running times, measured
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Fig. 1. Results on stereo matching benchmarks. Each plot shows energies vs. run time
in seconds. Energies are given relative to the largest lower bound provided by the TRW-
S method. The plots on the right are zoomed versions of the plots on the left. Note
that some of the horizontal (time) axes use a log scale to better visualize the results.
ICM is omitted in the right plots, due to its poor performance. Depth map images are
available at http://vision.middlebury.edu/MRF.
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Fig. 2. Results on the Photomontage benchmarks, “Panorama” is at top and “Family”
is below. Each plot shows energies vs. run time in seconds, using a log scale for time.
The plots on the right are zoomed versions of the plots on the left. ICM is omitted in
the right plots, due to poor performance. The associated color images can be found on
the project web page.

in seconds. Note that some figures use a log scale for running time, which is
necessary since some algorithms perform very poorly. For the y-axis, we made
use of TRW’s ability to compute a lower bound on the energy of the optimal
solution. We normalized the energy by dividing it by the best known lower bound
given by any run of TRW-S. Due to space limitations we had to omit the plots
for the image restoration benchmark; they can be found on the project web page.

For all of these examples, the best methods achieved results that are extremely
close to the global minimum, with less than 1 percent error. For example, on
“Tsukuba”, expansion moves and TRW-S got to within 0.27% of the optimum,
while on “Panorama” expansion moves was within 0.78%. These statistics may
actually understate the performance of the methods; since the global minimum is
unknown, we use the TRW-S lower bound, which (of course) can underestimate
the optimal energy.

The individual plots show some interesting features. In figure 1, TRW-S does
extremely well, but in the “Teddy” energy it eventually oscillates. However,
during the oscillation it achieves the best energy of any algorithm on any of our
stereo benchmarks, within 0.018% of the global minimum. The same oscillation
is seen in figure 2, though this time without as good performance. On the binary
image segmentation problems, shown in figure 3, graph cuts are guaranteed to
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Fig. 3. Results on binary image segmentation benchmarks. Graph cuts are guaranteed
to compute the global minimum, as is TRW-S. (In fact, this minimum is found by the
first iteration of the swap move algorithm, which is equivalent to a single max flow
computation.) Note that LBP comes extremely close (under 0.04% error), but never
actually attains it.

Fig. 4. Results on “Panorama” benchmark. LBP output is shown at left, TRW-S in
the middle, and expansion moves at right. Larger versions of these images are available
on the project web page.

compute the global minimum, as is TRW-S (but not the original TRW [30]).
LBP comes extremely close (under 0.04% error), but never actually attains it.

For reasons of space, we have omitted most of the actual images from this
paper (they are available at http://vision.middlebury.edu/MRF). In terms
of visual quality, the ICM results looked noticeably worse, but the others were
difficult to distinguish on most of our benchmarks. The exception was the Pho-
tomontage benchmarks. On “Panorama”, shown in figure 4, LBP makes some
major errors, leaving slices of several people floating in the air. TRW-S does
quite well, though the some of its seams are more noticeable than those pro-
duced by expansion moves (which gives the visually best results). On “Family”
(not shown), LBP also makes major errors, while TRW-S and expansion moves
both work well.

6 Discussion

The strongest impression that one gets from our data is of how much better
modern energy minimization methods are than ICM, and how close they come
to computing the global minimum. We do not believe that this is purely due
to flaws in ICM, but simply reflects the fact that the methods used until the
late 1990’s performed poorly. (As additional evidence, [4] compared the energy
produced by graph cuts with simulated annealing, and obtained a similarly large
improvement.) We believe that our study demonstrates that the state of the art
in energy minimization has advanced significantly in the last few years.
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There is also a dramatic difference in performance among the different energy
minimization methods on our benchmarks, and on some of the benchmarks there
are clear winners. On the Photomontage benchmark, expansion moves perform
best, which provides some justification for the fact that this algorithm is used
by various image stitching applications [12, 26]. On the stereo benchmark, the
two best methods seem to be TRW-S and expansion moves. There are also some
obvious paired comparisons; for instance, there never seems to be any reason to
use swap moves instead of expansion moves. In terms of runtime, the expansion
move algorithm is clearly the winner among the competitive methods (i.e., all
except ICM), but as noted not all methods have been optimized for speed equally.

There is clearly a need for more research on message-passing methods such as
TRW-S and LBP. While LBP is a well-regarded and widely used method, on our
benchmarks it performed surprisingly poorly (the only method it consistently
outperformed was ICM). This may be due to a quirk in our benchmarks, or it
may reflect issues with the way we scheduled message updates (despite the help
we were given by several experts on LBP). TRW-S, which has not been widely
used in vision, gave consistently strong results. In addition, the lower bound
on the energy provided by TRW-S proved extremely useful in our study. For a
user of energy minimization methods, this lower bound can serve as a confidence
measure, providing assurance that the solution obtained has near-optimal energy.
Another area that needs investigation is the use of graph cut algorithms for wider
classes of energy functions than the limited ones they were originally designed for.
The benchmarks that were most challenging for the expansion move algorithm
(such as “Venus”) use a V that is not a metric.

Another important issue centers around the use of energy to compare energy
minimization algorithms. The goal in computer vision, of course, is not to com-
pute the lowest energy solution to a problem, but rather the most accurate one.
While computing the global minimum was shown to be NP-hard [4], it is some-
times possible for special cases. For example, the energy minimization problem
can be recast as an integer program, which can be solved as a linear program;
if the linear program’s solutions happen to be integers, they are the global min-
imum. This is the basis for the approach was taken by [31], who demonstrated
that they could compute the global minimum for several common energy func-
tions on the Middlebury images. The global minimum has only slightly lower
energy than that produced by graph cuts or LBP. In addition, [31] points out
that the globally minimum is no more accurate than the results achieved with
graph cuts or LBP. More precisely, according to [31] at best graph cuts produces
an energy that is 0.018% over the global minimum, while at worst the energy is
3.6% larger; at best LBP gives an energy that is 3.4% higher, and at worst 30%.

In light of these results, it is clear that for the models we have considered,
better minimization techniques are unlikely to produce significantly more accu-
rate labelings. For the Middlebury stereo benchmarks this is particularly clear:
the best methods produce energies that are extremely close to the global mini-
mum; the global minimum, when known, is no more accurate than the ground
truth; and, in fact, the ground truth has substantially higher energy. However, it



28 R. Szeliski et al.

is still important to compare energy minimization algorithms using the energy
they produce as a benchmark. Creating more accurate models will not lead to
better results if good labelings under these models cannot be found. It is also
difficult to gauge the power of a model without the ability to produce low energy
labelings.

7 Conclusions and Future Work

There are many natural extensions to our work that we are currently pursuing,
including energy minimization algorithms, classes of energy functions, and se-
lection of benchmarks. While most of the energy minimization algorithms we
have implemented are fairly mature, there is probably room for improvement
in our implementation of LBP, especially in terms of the schedule of message
updates. We also plan to implement several other modern algorithms, as well
as additional benchmarks. We are particularly interested in [31], whose method
could potentially achieve the global minimum on some of our benchmarks, and
[32], who generalize the expansion move algorithm so that (like TRW) it also
computes a lower bound on the energy.

We also plan to increase the class of energy functions we consider. We hope
to investigate different grid topologies (such as the 8-connected topology for
2D, or 26-connected for 3D), as well as non-local topologies such as those used
with multiple depth maps [15]. Finally, we will expand our set of benchmarks
to include both more images and more applications, and continue to update our
project web page to include the latest results in this rapidly evolving area.
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