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Abstract—Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for
pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly
expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as intractable. Recently,
algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: For example, such methods form
the basis for almost all the top-performing stereo methods. However, the trade-offs among different energy minimization algorithms are
still not well understood. In this paper, we describe a set of energy minimization benchmarks and use them to compare the solution
quality and runtime of several common energy minimization algorithms. We investigate three promising recent methods—graph cuts,
LBP, and tree-reweighted message passing—in addition to the well-known older iterated conditional mode (ICM) algorithm. Our
benchmark problems are drawn from published energy functions used for stereo, image stitching, interactive segmentation, and
denoising. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization
methods. The benchmarks, code, images, and results are available at http://vision.middlebury.edu/MRF/.

Index Terms—Performance evaluation, Markov random fields, global optimization, graph cuts, belief propagation.

1 INTRODUCTION

MANY problems in early vision involve assigning each
pixel a label, where the labels represent some local
quantity such as disparity. Such pixel-labeling problems are
naturally represented in terms of energy minimization,
where the energy function has two terms: one term
penalizes solutions that are inconsistent with the observed
data, whereas the other term enforces spatial coherence
(piecewise smoothness). One of the reasons why this
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framework is so popular is that it can be justified in terms
of maximum a posteriori estimation of a Markov random
field (MRF) [5], [19]. Despite the elegance and power of the
energy minimization approach, its early adoption was
slowed by computational considerations. The algorithms
that were originally used, such as iterated conditional
modes (ICM) [5] or simulated annealing [4], proved to be
either ineffective or extremely inefficient.

Over the last few years, energy minimization approaches
have had a renaissance, primarily due to powerful new
optimization algorithms such as graph cuts [11], [31] and
loopy belief propagation (LBP) [50]. The results, especially
in stereo, have been dramatic; according to the widely used
Middlebury stereo benchmarks [42], almost all the top-
performing stereo methods rely on graph cuts or LBP.
Moreover, these methods give substantially more accurate
results than were previously possible. Simultaneously, the
range of applications of pixel-labeling problems has also
expanded dramatically, moving from early applications
such as image restoration [5], texture modeling [20], image
labeling [13], and stereo matching [4], [11] to applications
such as interactive photo segmentation [8], [39] and the
automatic placement of seams in digital photomontages [1].

Relatively little attention has been paid, however, to the
relative performance of various optimization algorithms.
Among the few exceptions are [9], which compared the
efficiency of several different max-flow algorithms for graph
cuts,and [45], which compared graph cuts with LBP for stereo.
Tappenand Freeman [45] alsonoted a particularly impressive
demonstration of the effectiveness of modern energy mini-
mization methods: For the stereo problems in the Middlebury
benchmarks, both graph cuts and LBP produced results
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whose energy is lower than the energy of the ground-truth
solution, indicating the need for better models and energy
functions. We will return to this issue at the end of this paper.

Although it is generally accepted that algorithms such as
graph cuts are a huge improvement over older techniques
such as simulated annealing, less is known about the
efficiency versus accuracy trade-off among more recently
developed algorithms. In this paper, we propose a number of
benchmark problems for energy minimization and use these
benchmarks to evaluate and compare a number of different
energy minimization algorithms for pixel-labeling problems.
Since much of the work in energy minimization has been
motivated by pixel-labeling problems over 2D grids, we have
restricted our attention to problems with this simple topol-
ogy. The extension to more general topologies such as 3D is
straightforward but is not part of this work.

Concurrently with our work, Kolmogorov and Rother [28]
compared tree-reweighted message passing (TRW), LBP, and
graph cuts for a highly connected graph corresponding to the
stereo model with occlusions [30] and found that graph cuts
clearly outperform the other two methods. This differs from
our results in this paper for 4-connected grids, which have
much smaller connectivity.

This paper is organized as follows: In Section 2, we give a
precise description of the energy functions that we consider
and present a simple but general software interface to
describe such energy functions and to call an arbitrary energy
minimization algorithm. In Section 3, we describe the
different energy minimization algorithms that we have
implemented, and in Section 4, we present our set of
benchmarks. In Section 5, we provide our experimental
comparison of the different energy minimization methods,
and in Section 6, we discuss our results. We conclude in
Section 7.

2 PROBLEM FORMULATION AND EXPERIMENTAL
INFRASTRUCTURE

2.1 Energy Model

We define a pixel-labeling problem as assigning to every
pixel p a label, which we write as [,. The collection of all
pixel-label assignments is denoted by [, the number of
pixels is n, and the number of labels is m. The energy
function £, which can also be viewed as the log likelihood
of the posterior distribution of an MRF [19], [35], is
composed of a data energy £; and a smoothness energy I

E = Ey+ \E,. (1)

The data energy is simply the sum of a set of per-pixel data
costs d, (1)

E;= de(lp)~ (2)

In the MRF framework, the data energy comes from the
(negative) log likelihood of the measurement noise.

We assume that pixels form a 2D grid, so that each p can
also be written in terms of its coordinates p = (i, j). We use the
standard 4-connected neighborhood system, so that the
smoothness energy is the sum of spatially varying horizontal
and vertical nearest neighbor smoothness costs, V,,(l,,1,),
whereifp = (i,7)and ¢ = (s,t),then|i — s| + |j — t| = 1. If we
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let A/ denote the set of all such neighboring pixel pairs, the
smoothness energy is

E, = Z fol(lp>lfl)' (3)

{p.gyeN

Note that in (3), the notation {p, ¢} stands for an unordered
set, that is, the sum is over unordered pairs of neighboring
pixels.

In the MRF framework, the smoothness energy comes
from the negative log likelihood of the prior. In this paper,
we consider a general form of the smoothness costs, where
different pairings of adjacent labels can lead to different
costs. This is important in a number of applications, for
example, image stitching and texture quilting [1], [15], [34].

A more restricted form of the smoothness energy is

E, = Z wpq’V(”P*qu’ (4)

{p.ayeN

where the smoothness terms are the product of spatially
varying per-pairing weights w,, and a nondecreasing
function of the label difference V(Al) = V(|l, —,|). Such
energy functions typically arise in stereo matching [11] and
image denoising. Although we could represent V' using an
m-valued lookup table, for simplicity, we instead parameter-
ize V using a simple clipped monomial form

V(Al) = min(|Al|", Vi) (5)

with k € {1,2}. If we set Vj,.x = 1.0, we get the Potts model,
V(Al) =1 —6(Al), which penalizes any pair of different
labels uniformly (6 is the unit impulse function).

Although they are not our primary focus, a number of
important special cases have fast exact algorithms. If there
are only two labels, the natural Potts model smoothness cost
(which is called Ising model in this case) can be solved
exactly with graph cuts [22]. This was first applied to
images in [21]. If the labels have a linear ordering (for
example, consecutive integers) and the smoothness cost is
an arbitrary convex function, the work in [24] gives a graph-
cut construction for an exact solution. An algorithm due to
[23] yields an exact solution for linear smoothness V(Al) =
Al and convex data costs. However, the NP-hardness result
proved in [11] applies if there are more than two labels, as
long as the class of smoothness costs includes the Potts
model. This, unfortunately, implies that the vast majority of
MRF-based energy functions are intractable.

The class of energy functions we consider is quite broad,
and not all energy minimization methods can handle the
entire class. For example, acceleration techniques based on
distance transforms [16] can significantly speed up
message-passing algorithms such as LBP or TRW, yet
these methods are only applicable for certain smoothness
costs V. Other algorithms such as graph cuts only have
good theoretical guarantees for certain choices of V (see
Section 3 for a discussion of this issue). In this paper, we
assume that any algorithm can run on any benchmark
problem; this can generally be ensured by reverting to a
weaker or slower version of the algorithm if necessary for a
particular benchmark.

2.2 Software Interface for Energy Minimization

Now that we have defined the class of energy functions that
we minimize, we need to compare different energy
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// Bbstract definition of an energy function E
EnergyFunction +*E = new EnergyFunction(data, smooth);

// Energy minimization of E via ICM

solver = (MRF «) new ICM(n¥, n¥Y, nLabels, E);

// To minimize E via graph cuts instead, use this:

/! solver = (MRF +) new Expansion(nX, nY¥, nLabels, E);

/4 Run one iteration, store the time taken in t
solver->optimize (1, &t);

// Print out the resulting energy and runtime
print_stats (solver—>totalEnergy(}), t);

Fig. 1. Sample code calling our energy minimization API.

minimization methods on the same energy function FE.
Conceptually, it is easy to switch from one energy
minimization method to another, but in practice, most
applications are tied to a particular choice of E. As a result,
almost no one in vision has ever answered questions like
“how would your results look if you used LBP instead of
graph cuts to minimize your £?” (The closest to this was
[45], which compared LBP and graph cuts for stereo.) In
order to create a set of benchmarks, it was necessary to
design a standard software interface (API) that allows a
user to specify an energy function E and to easily call a
variety of energy minimization methods to minimize E.

The software API is available on the project Web page at
http:/ /vision.middlebury.edu/MRF/, as are implementa-
tions of all of the energy minimization methods discussed in
this paper and all of our benchmarks. The API allows the user
to define any energy function described above. The data cost
energy can be specified implicitly as a function d,() or
explicitly as an array. The smoothness cost likewise can be
specified either by defining the parameters k and V;,.x or by
providing an explicit function or array. Excerpts from an
example program that uses our API to call two different
energy minimization algorithms on the same energy function
are shown in Fig. 1.

Note that the interface also has the notion of an iteration,
but it is up to each energy minimization method to interpret
this notion. Most algorithms have some natural intermedi-
ate point where they have a current answer. By supporting
this, our API allows us to plot the curve of energy versus
time. This is particularly important because a number of
powerful methods (such as TRW and graph cuts) make very
small changes in the last few iterations.

It is, of course, more efficient to “hard-wire” a vision
algorithm to make use of a particular energy minimization
technique than to use our general-purpose APL. However, the
gains in efficiency appear to be quite modest, assuming that
the same representation is used for the energy function. The
major difference is that the API relies on virtual functions,
which result in a slowdown of approximately 10 percent in
the speed of function calls [14]. In practice, only a modest
amount of time is spent in function calls, so the overhead of
using the APl is much smaller than this.

2.3 Evaluation Methodology

To evaluate the quality of a given solution, we need the final
energy £ along with the computation time required, as a
function of the number of iterations. For every benchmark,
we produce a plot that keeps track of the energy versus
computation time for every algorithm tested.
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We implemented the algorithms in C or C++ and ran the
benchmarks on a modern Pentium 4. All of the experiments
were run on the same machine (3.4 GHz and 2 Gbyte RAM).

Note that although the natural way to compare energy
minimization algorithms is in terms of their energy and
speed, itis not always the case that the lowest energy solution
is the best one for a vision problem. We return to this issue in
Section 6.

3 ENERGY MINIMIZATION ALGORITHMS

In this section, we describe the optimization algorithms that
we have implemented and included in our interface. Most
of the energy minimization algorithms were implemented
by their original inventors; the exceptions are ICM and LBP
(for LBP, we received help from several experts).

3.1 lterated Conditional Modes (ICM)

Iterated conditional modes [5] uses a deterministic “greedy”
strategy to find a local minimum. It starts with an estimate of
the labeling, and then, for each pixel, it chooses the label
giving the largest decrease of the energy function. This
process is repeated until convergence, which is guaranteed to
occur, and, in practice, is very rapid.

Unfortunately, the results are extremely sensitive to the
initial estimate, especially in high-dimensional spaces with
nonconvex energies (such as those that arise in vision) due
to the huge number of local minima. In our experiments, we
initialize ICM in a winner-take-all manner, by assigning
each pixel the label with the lowest data cost. This results in
significantly better performance.

3.2 Graph Cuts

The two most popular graph-cut algorithms, called the swap-
move algorithm and the expansion-move algorithm, were
introduced in [11]. Both algorithms work by repeatedly
computing the global minimum of a binary labeling problem
in their inner loops. This process converges rapidly and
results in a strong local minimum, in the sense that no
“permitted move” will produce a labeling with lower energy.

For a pair of labels ¢, 8, a swap move takes some subset of
the pixels currently given the label a and assigns them the
label 5 and vice versa. The swap-move algorithm finds a local
minimum such that there is no swap move, for any pair of
labels «, (3, that will produce a lower energy labeling.
Analogously, we define an expansion move for a label a to
increase the set of pixels that are given this label. The
expansion-move algorithm finds a local minimum such that
no expansion move, for any label «, yields a labeling with
lower energy.

The criteria for a local minimum with respect to expansion
and swap moves are so strong that there are many fewer
minima in high-dimensional spaces compared to standard
moves. In the terminology in [3], these algorithms are “very
large neighborhood search techniques.”

In the original work of Boykov et al. [11], the expansion-
move algorithm was shown to be applicable to any energy
where V), is a metric, and the swap-move algorithm, to any
energy where V), is a semimetric (that is, a metric except that
the triangle inequality may not hold). The work in [31]
subsequently relaxed these conditions and showed that the
expansion-move algorithm can be used if for all labels «, 3,
and ~

V;’(I(ava) + %q(ﬂa 7) < ‘/;717(0"7) + V}"I(ﬂv @), (6)
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and the swap-move algorithm can be used if for all labels «
and

Vag(a, @) + Vi (B, 8) < Vig(av, B) + Vg (B, ). (7)

If the energy does not obey these constraints, graph-cut
algorithms can still be applied by “truncating” the violating
terms [41]. In this case, however, we are no longer guaranteed
to find the optimal labeling with respect to expansion or swap
moves. In practice, this technique seems to work well only
when relatively few terms need to be truncated. For the
energy functions used in our benchmarks, only the expan-
sion-move algorithm sometimes requires truncation. We
discuss this in more detail at the end of Section 5. The main
computational cost of graph cuts lies in computing the
minimum cut, which is done via max flow. Our implementa-
tion of graph cuts uses the max-flow algorithm in [9], as
implemented by the authors. This algorithm is specifically
designed for the graphs that arise in vision applications and is
shown in [9] to perform particularly well for such graphs.
Another potential speedup comes from the fact that many
different max-flow computations are run, but for some graph-
cut algorithms (in particular, expansion moves), the graph
itself does not change very much between iterations. The
technique in [25], which often allows results from previous
max flows to be reused, could provide an additional speedup
but is not part of our current implementation.

3.3 Max-Product Loopy Belief Propagation (LBP)
To evaluate the performance of LBP, we implemented the
max-product LBP version, which is designed to find the
lowest energy solution. The other main variant of LBP, the
sum-product algorithm, does not directly search for a
minimum-energy solution but instead computes the margin-
al probability distribution of each node in the graph. The
belief-propagation (BP) algorithm was originally designed
for graphs without cycles [38], in which case it produces the
exact result for our energy. However, there is nothing in the
formulation of BP that prevents it from being tried on graphs
with loops. Indeed, BP has been successfully applied to loopy
graphs in quite different problem domains such as early
vision [17] and error-correcting codes [18]. Detailed descrip-
tions of the LBP algorithm can be found in [16] and [17].

In general, LPB is not guaranteed to converge and may
go into an infinite loop switching between two labelings.
However, if LBP converges and there are no ties in the min-
marginals for nodes, it has a strong local minimum property
that is somewhat analogous to that of graph cuts [47], [49].

Felzenszwalb and Huttenlocher [16] present a number of
ways to speed up the basic LBP algorithm. In particular, we
use the distance transform method described in [16] (when
applicable, that is, when the label set is ordered), which
significantly reduces the runtime of the algorithm.

We implemented two different variants of LBP: BP-M, an
updated version of the max-product LBP implementation of
[45], and BP-S, an LBP implementation derived from the
TRW-S implementation described in Section 3.4. The most
significant difference between the two implementations is in
the schedules for passing messages on grids. In the BP-M
implementation, messages are passed along rows and then
along columns. When a row or column is processed, the
algorithm starts at the first node and passes messages in one
direction—similar to the forward-backward algorithm for
Hidden Markov Models. Once the algorithm reaches the end
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of a row or column, messages are passed backward along the
same row or column. In the BP-S implementation, the nodes
are processed in scan-line order, with a forward and back-
ward pass. In the forward pass, each node sends messages to
its right and bottom neighbors. In the backward pass,
messages are sent to the left and upper neighbors. Another
difference between our LBP implementations is how the
labeling is computed. In BP-M, each pixel chooses indepen-
dently the label with the highest belief, whereas in BP-S, the
labeling is computed from messages, as described in
Section 3.4. Based on some experiments, we do not believe
that the performance of BP-S would be improved by adopting
the label computing technique of BP-M. Note that for BP-S, we
used integers for messages to provide additional efficiency.

The performance of the two versions differs by a
surprisingly large margin. In Section 5, we show experi-
mental results of both implementations. On our last bench-
mark, we also include the BP implementation in [16] in the
comparison.

3.4 Tree-Reweighted Message Passing (TRW)
Tree-reweighted message passing [48] is a message-passing
algorithm similar, on the surface, to LBP. Let MI‘HQ be the
message that pixel p sends to its neighbor ¢ at iteration ¢;
this is a vector of size m (the number of labels). The message
update rule is

M2 (L)

> Mz,

seN(p) (8)

- f;;;(lpH%q(lpJq)).

Mz—w(lq) = min <Cpq dp(lp) +

P

The coefficients c,, are determined in the following way:
First, a set of trees from the neighborhood graph (a 2D grid
in our case) is chosen so that each edge is in at least one tree.
A probability distribution p over the set of trees is then
chosen. Finally, ¢, is set to p,,/p,, that is, the probability
that a tree chosen randomly under p contains edge (p, )
given that it contains p. Note that if c,, were set to 1, the
update rule would be identical to that of the standard LBP.

An interesting feature of the TRW algorithm is that it
computes a lower bound on the energy. We use this lower
bound in our experimental results (in Section 5 below) to
assess the quality of the solutions. The best solutions are
typically within 1 percent of the maximum lower bound.

The original TRW algorithm does not necessarily converge
and does not, in fact, guarantee that the lower bound always
increases with time. In this paper, we use an improved
version of TRW due to [26], which is called sequential TRW,
or TRW-S. In this version, the lower bound estimate is
guaranteed not to decrease, which results in certain conver-
gence properties. In TRW-S, we first select an arbitrary pixel
ordering function S(p). The messages are updated in order of
increasing S(p), and at the next iteration, are updated in the
reverse order. Trees are constrained to be chains that are
monotonic with respect to S(p). Note that the algorithm can
beimplemented using half as much memory as some versions
of BP since it needs to store one message per edge.

Given messages M, we compute labeling ! as described
in [26]: We go through pixels in the order S(p) and choose
label [, that minimizes
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(d

Fig. 2. Images used for our benchmarks. (a) Stereo matching: Tsukuba, Venus, and Teddy left images and true disparities. (b) Photomontage 1:
Panorama. (c) Photomontage 2: Family group shot. (d) Binary image segmentation: Flower, Sponge, and Person. (e) Denoising and inpainting:

Penguin and House.

dy(ly) + Z

S(q)<S(p)

Voq(lp, 1) + Z My ().

S(g)>S(p)

Note that this rule is a heuristic, and there is no guarantee
that the energy might not actually increase with time—it is
only guaranteed that the lower bound does not decrease. In
practice, the energy sometimes starts to oscillate. To deal
with this issue, one could keep track of the lowest energy to
date and return that state when the algorithm is terminated.

4 BENCHMARK PROBLEMS

For our benchmark problems, we have created a representa-
tive set of low-level energy minimization problems drawn

from a range of different applications. As with the optimiza-
tion methods, most of the energy functions and data were
contributed by the original authors of the problems. The
input images for each benchmark are shown in Fig. 2.

4.1 Stereo Matching

For stereo matching, we follow in the footsteps of Boykov
et al. [10] and Tappen and Freeman [45] and use a simple
energy function for stereo, applied to images from the widely
used Middlebury stereo data set [42] (see Fig. 2a). The labels
are the disparities, and the data costs are the absolute color
differences between corresponding pixels for each disparity.
We use the cost variant by Birchfield and Tomasi [6] for
increased robustness to image sampling.
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We use different smoothness costs for the different
image pairs to make the optimization problems more
varied. For “Tsukuba” with m = 16 labels, we use a truncated
linear cost (k = 1, Vipax = 2) with A = 20. For “Venus” with
m =20 labels, we use a truncated quadratic cost (k=
2, Vinax = 7) with A = 50. Since this smoothness term is not a
metric, applying the expansion-move algorithm requires
truncation. For “Teddy” with m = 60 labels, we use the Potts
model (k=1,Vp. =1) with A =10. The default local
smoothness weight is w,, = 1 at all pixels. For “Tsukuba”
and “Teddy,” we increase the weight at locations where the
intensity gradient V,,, in the left image is small: We use w,,, =
2 if |V,,| <8 for “Tsukuba” and w,, = 3 if |V, < 10 for
“Teddy.”

4.2 Photomontage

The Photomontage system [1] seamlessly stitches together
multiple photographs for a variety of photo merging applica-
tions. We include benchmarks for two such applications:
panoramic stitching and group photo merging (see Figs. 2b
and 2c¢). The input is a set of aligned images S}, 5>, ..., Sy, of
equal dimension; the labels are the image indices, that is,
1,2,...,m;thefinal outputimage is formed by copying colors
from the input images according to the computed labeling.
If two neighbors p and ¢ are assigned the same input image,
they should appear natural in the composite, and so,
Vig(i, i) = 0. If 1, # 1, we say that a seam exists between p
and g; then, V},, measures how visually noticeable the seam is
in the composite. The data term d, (i) is zero if pixel p is in the
field of view of image i and oo otherwise.

The first benchmark, “Panorama,” stitches together the
panorama in Fig. 2b [1, Fig. 8]. The smoothness energy,
derived from [34], is

Voa(los lg) = 151, (p) = 1, ()| + 153, (0) = Si, ()] (9)

This energy function is suitable for the expansion-move
algorithm without truncation.

The second benchmark, “Family,” stitches together the
five group photographs shown in Fig. 2¢ [1, Fig. 1]. The best
depiction of each person is to be included in a composite.
Photomontage itself is interactive, but to make the bench-
mark repeatable, the user strokes are saved into a data file.
For any pixel p underneath a drawn stroke, d,(l,) = 0 if [,
equals the user-indicated source image and oo otherwise. For
pixels p not underneath any strokes, d,(l,) = 0 for all labels.
The smoothness terms are modified from the first benchmark
to encourage seams along strong edges. More precisely, we
divide the right-hand side of (9) by [V, S | + [V,,5, |, where
Vpl is the gradient between pixels p and ¢ in image I.
The expansion-move algorithm is applicable to this energy
only after truncating certain terms, but it continues to work
well in practice.

4.3 Binary Image Segmentation

Binary MRFs are also widely used in medical image
segmentation [8], stereo matching using minimal surfaces
[12], [43], and video segmentation using stereo disparity cues
[27]. As previously mentioned, for the natural Ising model
smoothness cost, the global minimum can be computed
rapidly via graph cuts [21]; this result has been generalized to
other smoothness costs in [31]. Nevertheless, such energy
functions still form an interesting benchmark, since there may
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well be other heuristic algorithms that perform faster while
achieving nearly the same level of performance.

Our benchmark consists of three segmentation problems,
inspired by the interactive segmentation algorithm in [8] and
its more recent extensions [39]. As with our Photomontage
stitching example, this application requires user interaction;
we handle this issue as above, by saving the user interactions
to a file and using them to derive the data costs. Fig. 2d shows
the three input images and the user strokes.

The data cost is the log likelihood of a pixel belonging to
either the foreground or background and is modeled as two
separate Gaussian mixture models, asin [39]. The smoothness
term is a standard Potts model that is contrast sensitive

wpg = exp(—PS(p) = S(a)|*) + Ao, (10)

where A = 50, Ay = 10, and S(p) and S(q) are the RGB colors
of two neighboring pixels p and ¢. The quantity § is set
to (2(||S(p) — S(q)|I))"", where the expectation denotes
an average over the image, as motivated in [39]. The purpose
of )y is to remove small and isolated areas that have high
contrast.

4.4 Image Denoising and Inpainting

For the denoising and inpainting benchmark, we use the
“Penguin” image, which appears in [16, Fig. 8], and the
“House” image, a standard test image in the denoising
literature. We added random noise to each pixel and also
obscured a portion of each image (see Fig. 2e). The labels are
intensities (m = 256), and the data cost d, for each pixel is the
squared difference between the label and the observed
intensity, except in the obscured portions, where d,(l,) =0
for all intensities. For the “Penguin” image, we use a
truncated quadratic smoothness cost (k = 2, Vj,ax = 200) with
A =25. For the “House” image, we use a nontruncated
quadratic cost (k = 2, Viyax = 00) with A = 5. Inboth cases, the
expansion-move algorithm requires truncation. Unlike all of
the other benchmarks, the “House” example is a convex
minimization problem amenable to quadratic solvers, since
both data and smoothness costs are quadratics. The implica-
tions of this are discussed in Section 5.

5 EXPERIMENTAL RESULTS

The experimental results from running the different optimi-
zation algorithms on these benchmarks are given in Figs. 3
(stereo), 4 (Photomontage), 5 (binary image segmentation),
and 6 (denoising and inpainting). The six methods we
compare are ICM, BP-M (max-product LBP), BP-S (LBP
implementation derived from TRW-S), Swap (graph cuts
using swap moves), Expansion (graph cuts using expansion
moves), and TRW-S. The z-axis of the plots in Figs. 3,4, 5, and
6 shows runtimes in seconds on a log scale. The y-axis shows
the energy of the different methods over time. As mentioned,
instead of showing absolute energy values, we make use of
TRW's ability to compute a lower bound on the energy of the
optimal solution and normalize the energy by dividing it by
the best lower bound computed by TRW-S. The lower bound
increases monotonically [26], and the computed lower-bound
values are included in the plots.

On all benchmarks, the best methods achieve results that
are extremely close to the global minimum, with less than
1 percent error in all cases, and often less than 0.1 percent. For
example, on “Tsukuba,” TRW-S gets to within 0.02 percent of
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Fig. 3. Results on the stereo matching benchmarks. (a) “Tsukuba” energy with truncated linear smoothness cost V. (b) “Venus” energy with
truncated quadratic smoothness cost V. (c) “Teddy” energy with the Potts model for V. All plots show the runtime on the z-axis using a log scale. The
y-axis shows the energy relative to the maximum lower bound achieved by the TRW-S algorithm. Each row contains multiple plots of the same
curves, with increasing zoom from left to right. The zoomed plots may not contain the poorer performing algorithms. The plots in Figs. 4, 5, and 6 are

generated in the same manner.

the optimum, whereas on “Panorama,” Expansion is within
0.9 percent. These statistics may actually slightly understate
the performance of the methods since they are based on the
TRW-S lower bound rather than the global minimum, which
is unknown.

The individual plots show some interesting features. On
the stereo benchmarks (Fig. 3), Expansion finds near-optimal
solutions quickly and is the overall winner for “Teddy.”
Although slower, TRW-S does extremely well, eventually
beating all other methods on “Tsukuba” and “Venus.” Swap
is slower and performs slightly worse than Expansion in all
cases. The “Venus” results are particularly interesting:
Expansion does much worse here than on the other stereo
images, presumably due to the quadratic smoothness term,
and Swap does even worse. There is also a large gap between
the performance of the two LBP implementations, and BP-M
does quite well (second only to TRW-S).

The Photomontage benchmarks (Fig. 4), with their label-
dependent smoothness costs, seem to present the largest
challenge for the energy minimization methods, many of
which come nowhere near the best solution. The exception is

Expansion, which finds solutions with less than 1 percent
error on both benchmarks in a few iterations. TRW-S
oscillates wildly but eventually beats Expansion on “Family”
though not on “Panorama.” As noted earlier, if TRW-S was
used in an application with limited time, it would be
necessary to keep track of the current best solution.

On the binary image segmentation benchmarks (Fig. 5),
graph cuts are guaranteed to compute the global minimum,
as is TRW-S (but not the original TRW [48]). Both LBP
implementations come extremely close (under 0.1 percent
error in all cases) but never actually attain the global
minimum.

Our study has focused on classical nonconvex energy
minimization problems that arise from early vision problems
such as stereo. The much simpler problem of convex energy
minimization is also worth studying. In our final benchmark,
denoising and inpainting (Fig. 6), we experiment both with a
nonconvex (truncated quadratic) V for the “Penguin” data set
and a convex (quadratic) V for the “House” data set. Since in
the latter case, both data and smoothness energies are
quadratic, this is a Gaussian MRF for which a real-valued
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Fig. 4. Results on the Photomontage benchmarks. V' measures how noticeable a seam is in the final composite and depends both on labels and

intensities. (a) “Panorama.” (b) “Family.”

solution can be found in closed form. On this problem,
hierarchically preconditioned conjugate gradient descent
[44], labeled HBF in Fig. 6b, outperforms all other algorithms
by alarge margin, requiring only five iterations and a fraction
of a second. However, since the resulting floating-point
solutionis rounded to integers, the resulting energy is slightly
higher than the integer solution found by TRW-S. BP requires
a dozen or more iterations and takes over 10 seconds to
converge, whereas the graph-cut variants domuch worse and
are even slower, perhaps due to the nonmetric smoothness
terms and also since there are no constant-valued regions to
propagate over large distances. On these benchmarks, we also
include results for the popular LBP implementation in [16],
which is labeled BP-P in the plots. On “Penguin,” it performs
comparable to our two BP implementations, whereas on
“House,” it converges faster and to a slightly lower energy.
However, there is also a small increase in energy later on.
Since BP-P does notimplement our APIand requires constant
Wy, we did not run it on our other benchmarks.

Comparing the results of the quadratic energy (Fig. 6b)
with those of the nonquadratic energy (Fig. 6a), we see that
the results are fairly consistent, except that we now have a
much faster algorithm (HBF) that does even better. It would
be interesting to investigate whether a continuation method
[7] used in conjunction with conjugate gradient might
perform well on nonquadratic but (piecewise) smoothly
varying MRFs. Itis also possible that techniques that combine
graph cuts with expectation-maximization, such as [36],
would be effective on such problems, since they provide high-
quality stereo results on images without regions of constant
disparity.

Images showing the resulting labelings for all methods on
all benchmarks are provided on the project Web page at
http:/ /vision.middlebury.edu/MRF/, where they can be
compared interactively. In terms of visual quality of the
resulting labelings, the ICM results look noticeably worse, but

the others are difficult to distinguish on most of our
benchmarks. The major exception is the Photomontage
benchmarks, for which we include the resulting labeling
images in this paper. On “Panorama,” shown in Fig. 7, ICM,
BP-S, and Swap all make some major errors, leaving slices of
people floating in the air. BP-M does only slightly better,
whereas both Expansion and TRW-S do quite well, with
TRW-S producing the fewest noticeable seams. Similarly, on
“Family,” shown in Fig. 8, ICM and BP-S make major errors,
Swap and BP-M do slightly better but still produce noticeable
errors, whereas again Expansion and TRW-S both work very
well, with nearly identical results.

A final issue deserving investigation is the impact of
truncation when using the expansion-move algorithm.
Truncation is required when the so-called regularity condi-
tion (6) on the smoothness term V' is not met. This is the case
for the “Family” Photomontage benchmark, which uses a
contrast-sensitive smoothness term, and the “Venus” stereo
and “Penguin” and “House” denoising benchmarks, which
use (truncated and nontruncated) quadratic smoothness
costs. However, we found that the total number of terms that
need to be truncated is very low—typically a fraction of
1 percent. The precise numbers for our benchmarks are
0.002 percent for “Venus,” 0.009 percent for “Family,”
0.03 percent for “Penguin,” and 0.5 percent for “House.”
Thus, it is unlikely that truncation strongly affects the
performance of the expansion-move algorithm in our bench-
marks. Furthermore, the QBPO algorithm described in [29]
can often solve problems that violate the regularity condition.

6 DISCUSSION

The strongest impression that one gets from our data is of
how much better modern energy minimization methods are
than ICM and how close they come to computing the global
minimum. We do not believe that this is purely due to flaws
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Fig. 5. Results on the binary image segmentation benchmarks. Here, the global minimum can be computed rapidly by graph cuts or TRW-S and is

used to normalize the energies. (a) “Flower.” (b) “Sponge.” (c) “Person.”

in ICM but simply reflects the fact that the methods used
until the late 1990s performed poorly. (As additional
evidence, Boykov et al. [11] compared the energy produced
by graph cuts with simulated annealing and obtained a
similarly large improvement.) We believe that our study
demonstrates that the state of the art in energy minimiza-
tion has advanced significantly in the last few years.
There is also a dramatic difference in performance among
the different energy minimization methods on our bench-
marks, and on some of the benchmarks, there are clear
winners. On the Photomontage benchmark, Expansion per-
forms best, which provides some justification for the fact that
this algorithm is used by various image stitching applications
[1], [2]. On the stereo benchmark, the two best methods seem
to be TRW-S and Expansion. There are also some obvious
paired comparisons; for instance, there never seems to be any
reason to use Swap instead of Expansion. In terms of runtime,
Expansion is clearly the winner among the competitive
methods (that is, all except ICM), but it should be noted that
not all methods have been optimized for speed equally.
There is clearly a need for more research on message-
passing methods such as TRW-S and LBP. Although LBP is a
well-regarded and widely used method, both of our LBP
implementations perform surprisingly poorly on many of our

benchmarks. TRW-S, which has not been widely used in
vision, gives consistently strong results. In addition, the lower
bound on the energy provided by TRW-S proved extremely
useful in our study. For a user of energy minimization
methods, this lower bound can serve as a confidence
measure, providing assurance that the solution obtained
has near-optimal energy. Another area that needs investiga-
tion is the use of graph-cut algorithms for wider classes of
energy functions than the limited ones they were originally
designed for. It is interesting that the benchmarks that are
most challenging for the expansion and swap-move algo-
rithms (such as “Venus” and the denoising examples) usea V'
that is not a metric. As mentioned above, however, only the
expansion-move algorithm requires truncation (and only on a
small percentage of terms), so truncation does not appear to
be the mainissue. Itis worth investigating whether some very
recent algorithms based on graph cuts, such the range-move
algorithm in [46] or the primal-dual method in [32], would
give better results on these benchmarks.

Another important issue centers around the use of energy
to compare energy minimization algorithms. The goal in
computer vision, of course, is not to compute the lowest
energy solution to a problem but rather the mostaccurate one.
Although computing the global minimum was shown to be
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Fig. 7. The resulting images for the “Panorama” Photomontage benchmark.
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Expansion

Fig. 8. The resulting images for the “Family” Photomontage benchmark.

NP-hard [11], it is sometimes possible for special cases. For
example, the energy minimization problem can be recast as
an integer program, which can be solved as a linear program;
if the linear program’s solutions happen to be integers, they
are the global minimum. This is the basis for the approach
taken by Meltzer et al. [37], who demonstrated that the global
minimum could be computed for several common energy
functions on the Middlebury images. The global minimum
has only a slightly lower energy than that produced by graph
cuts or LBP. In addition, Meltzer et al. [37] point out that the
global minimum is no more accurate than the results
achieved with graph cuts or LBP. More precisely, according
to Meltzer et al. [37], at best, graph cuts produces an energy
that is 0.018 percent over the global minimum, whereas at
worst, the energy is 3.6 percent larger; at best, LBP gives an
energy that is 3.4 percent higher, and at worst, 30 percent.

In light of these results, it is clear that for the models we
have considered, better minimization techniques are unlikely
to produce significantly more accurate labelings. For the
Middlebury stereo benchmarks, this is particularly clear: the
best methods produce energies that are extremely close to the
global minimum; the global minimum, when known, is no
more accurate; and, in fact, the ground truth has substantially
higher energy. To illustrate this point, we compare the
ground-truth energies with those computed by the mini-
mization techniques in Table 1. Note that since our MRF
model does not account for occlusions, for fairness, only the
energies of the nonoccluded regions (shown in the right
columns in the table) should be considered. Even so, all of the
competitive methods easily beat the energy corresponding to
the ground truth, indicating the limitations of the simple MRF
stereo model used.

However, it is still important to compare energy
minimization algorithms using the energy they produce as
a benchmark. Creating more accurate models will not lead
to better results if good labelings under these models cannot
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be found. It is also difficult to gauge the power of a model
without the ability to produce low-energy labelings.

7 CONCLUSION

In this paper, we introduced a set of energy minimization
benchmarks drawn from published energy functions used for
stereo, image stitching, interactive segmentation, and denois-
ing. We used these benchmarks to compare the solution
quality and runtime of several common energy minimization
algorithms. We are making our minimization code available
to other researchers by providing a general-purpose software
interface that allows easy switching between optimization
methods. We also provide the code for all of the benchmarks.

Although we have investigated quite a few benchmarks
and algorithms, we expect that additional ones will be
added to the project page over time. (See, for example, three

TABLE 1
Energy of Ground Truth versus Minimization
Techniques on the Stereo Benchmarks

Tsukuba Venus Teddy

all nonoce all nonoce all nonoce
Ground Truth | 219% 125% 144% 113% 170% 145%
IcM 683% 861% 405% 495% 233% 301%
Expansion 100% 100% 103% 103% 100% 100%
Swap 100% 100% 129% 136% 100% 100%
TRW-S 100% 100% 100% 100% 100% 100%
BP-S 112% 115% 110% 114% 106% 110%
BP-M 111% 113% 102% 103% 104% 106%

Energies are given relative to the minimum, rounded to the nearest
percent. They are computed both everywhere (“all”), and in nonoccluded
areas only (“nonocc”). The latter numbers provide a better assessment
of ground-truth energies since our MRF model does not account for
occlusions. Still, even when only considering nonoccluded areas, most
minimization techniques achieve energies that are significantly lower
than the energy of the ground truth.
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relevant papers presented in the 2007 IEEE CS Conference
on Computer Vision and Pattern Recognition (CVPR), [33],
[40], [46].) In terms of benchmarks, it would also be
interesting to investigate different grid topologies (such as
the 8-connected topology for 2D or 26-connected topology
for 3D), as well as nonlocal topologies such as those used
with multiple depth maps [28].

There are many algorithms that could be naturally
incorporated into our study. Two algorithms that appear
particularly interesting are the TRW-based method in [37],
which could potentially achieve the global minimum on
some of our benchmarks, and the graph-cut algorithm in
[32], which generalize the expansion-move algorithm so
that (like TRW) it also computes a lower bound on the
energy. The area of multiresolution techniques also bears
substantial promise, as shown in [2].
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