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Abstract An elementary visual unit – the viseme is concerned in the paper in the context

of preparing the feature vector as a main visual input component of Audio-Visual Speech

Recognition systems. The aim of the presented research is a review of various approaches

to the problem, the implementation of algorithms proposed in the literature and a compar-

ative research on their effectiveness. In the course of the study an optimal feature vector

construction and an appropriate selection of the classifier were sought. The experimental

research was conducted on the basis of a spoken corpus in which speech was represented

both acoustically and visually. The extracted features represented three types: geometrical,

textural and mixed ones. The features were processed employing the classification algo-

rithms based on Hidden Markov Models and Sequential Minimal Optimization. Tests were

carried out employing the processed video material recorded with English native speakers

who read specially prepared list of commands. The obtained results are discussed in the

paper.

Keywords viseme · Parameterization of mouth region · Support Vector Machine · Hidden

Markov Model · Pattern recognition · Audiovisual speech recognition

1 Introduction

The methods of algorithmic viseme recognition have been developed and discussed in the

literature for a relatively long time. Despite the progress in the area, however, they still do

not produce fully satisfactory results in the recognition of speech elements on the basis of lip

picture (viseme) analysis. The problem of automatic viseme recognition is closely related to
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research on automatic speech recognition which was initiated in mid 20th century, e.g. in the

proposal of an audio-visual speech recognition system (AVSR) by Petajan et al. [27]. The

processing of an additional set of visual data may enable the extraction of information lead-

ing to the recognition enhancement of linguistic units. The analysis of visual signals may

concentrate on units such as phonemes and visemes, isolated words, sequences of words

and continuous/spontaneous speech. The viseme is a visual counterpart of the phoneme [7].

The signature of a viseme is a particular picture frame, i.e. a static image of the speaker’s

face. There also exists another, less popular definition, according to which visemes may be

understood as articulatory gestures, lip movement, lip position, jaw movement, teeth expo-

sition, etc. [2]. Certain phonemes may have the same visual representation [3, 20, 25]. What

follows is that it is not a one-to-one relation. A given facial image may, thus, be identical for

different realizations of the same phoneme depending on its phonetic environment. There-

fore, preliminary classification (division) is necessary. Relying entirely on the visual input

may lead to the erroneous classification of an utterance, e.g. “elephant juice” may be recog-

nized as “I love you” [41]. It has also been shown that the deprivation of the visual input has

a detrimental effect on human perception and leads to lower (by 4 dB) tolerance of noise in

the acoustic environment [13].

In the present study an approach is proposed which is based on the analysis of visemes.

Phones were first classified into the corresponding phonemes and then the phonemes were

assigned to appropriate classes of visemes. A selection of commands in English (recorded

as a linguistic corpus) was recorded audio-visually by a group of native speakers of English.

The material prepared in Gdansk University of Technology has also been made available to

research community in the form of a multimodal database accessible at the address: http://

www.modality-corpus.org/.

Section 2 which follows this introduction presents theoretical methods of viseme clas-

sification. It contains also a description of the phoneme-to-viseme map used for the

research. Section 3 describes the algorithms employed to the automatic detection of ROI

of the mouth followed by feature extraction and classification methods presentation. The

experimental setup configuration and data preparation are discussed in Sections 4 and 5,

whereas in Section 6 obtained results were arranged in a comparative manner. The last section

refers to conclusions and directions for further research.

2 Viseme classification methods

According to the basic definition, the viseme is the smallest recognizable unit correlated

with a particular realization of a given phoneme. This definition, however, does not deter-

mine the ways in which visemes can be classified into groups. The precise number of all

possible visemes, which may depend on the assumed classification criteria, is not provided.

The number of visemes may oscillate between a dozen and a few thousands. The most

popular classifications confine the set of visemes to approximately 10–20 groups.

There are two major criteria of classifying visemes [2]:

– according to the facial image, the shape and arrangement of the lips, teeth exposition

during the articulation of particular linguistic units, and

– according to the phonemes with an identical visual representation.

The second definition is especially popular since it facilitates the preparation of training

and testing data.

http://www.modality-corpus.org/
http://www.modality-corpus.org/
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Drawing on precisely described phonemic models substantially reduces the amount of

work. By analogy, some of the results of an earlier research on acoustic speech recognition

can be utilized. However, there exist no reliable and unambiguous tests confirming that this

is a better method. Undoubtedly, the advantage of this approach is analogy and viseme-

phoneme correlation.

The second method facilitates the construction of the viseme <−> phoneme map. The

map will be of the many-to-one type representation since thanks to this approach a few

phonemes can have the same visual realization. The way in which this representation is

constructed can be based on certain simplifications in the assumed classification method.

The most popular methods are:

– linguistic – the classes of visemes are defined on the basis of an intuitive linguistic

classification of groups of phonemes according to their expected visual realization,

– data driven – the classes of visemes are defined on the basis of data acquired through

parameter extraction and clustering [40].

The data-driven method has a number of advantages over the purely theoretical linguistic

approach. Speech processing systems are based on statistical models which are arrived at

on the basis of data and not on the assumed results and structures. The linguistic method, on

the other hand, facilitates a precise description of visemes included in a given linguistic unit.

It may, however, turn out to be more imprecise as it relies on an intuitive approach. Con-

sidering the fact that as yet no generally accepted classification model has been proposed

and the linguistic approach has not evolved into a standard mature model, the research on

this issue may produce interesting results. The principle for carrying out the transcription of

commands is illustrated Fig. 1.

In this work a model based on the most popular way of classifying visemes, i.e. MPEG-4

[36], has been assumed. It is the most important component determining the Face Animation

Parameters marked out during face animation. The classification is based on the linguistic

analysis of articulatory similarities of phonemes occurring in the commands used in the

audio-visual material included in the database. The analysis takes into account the following

articulatory features and assumptions:

– the exclusion of diphthongs since they are dynamic vowels and their imaging will

include the component features if the starting point and the glide;

Fig. 1 Flowchart illustrating the principle of command transcription
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Fig. 2 Theoretical image of W1

group of visemes

Fig. 3 Theoretical image of W2

group of visemes

Fig. 4 Theoretical image of W3

group of visemes

Fig. 5 Theoretical image of W4

group of visemes
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Fig. 6 Theoretical image of W5

group of visemes

Fig. 7 Theoretical image of W6

group of visemes

Fig. 8 Theoretical image of W7

group of visemes

Fig. 9 Theoretical image of W8

group of visemes
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Fig. 10 Theoretical image of

W9 group of visemes

Fig. 11 Theoretical image of

W10 group of visemes

Fig. 12 Theoretical image of

W11 group of visemes

Fig. 13 Theoretical image of

W12 group of visemes
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– consonants assume the articulatory lip settings of the following vowels, i.e. /k/ in the

words keep will have the features of the /i:/ vowel and /k/ in the word cool will have the

features of the /u:/ vowel;

– ‘dark’ /l/ which is a velarized variant of the lateral consonant /l/ and occurs word-finally

or before another consonant has the articulatory features which are identical with /k, g/

consonants;

– unobstructed consonants /h, j, w/ will have a ‘vocalic’ imaging, hence their inclusion in

the vocalic table.

Our model contains 12 classes of visemes into which the relevant phonemes have been

classified. In Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 the theoretical shapes of the lips

are presented which illustrate particular phonemes.

The phoneme-to-viseme mapping is shown in Table 1. It includes 6 classes of consonan-

tal visemes and 5 classes of vocalic visemes. The silence viseme is an important element of

the classification and has also been taken into account. The set of the most similar phonemes

ascribed to particular classes is also included In Table 1. The resulting classification and the

corresponding map are representative of the linguistic approach.

Fernandez-Lopez et al proposed viseme groups for the Spanish vocabulary using the

phonemes with a similar appearance [8]. In our paper we have build the visemes groups

based on a similar approach. The difference is however, that our research describes several

types of parameters and it gathers the scores for diversified sets containing them.

In the literature there also appear proposals of other maps: linguistic, linguistic-data

driven and data-driven. The sizes of particular classes also differ. An example of a map

which includes a different number of viseme classes is found in Neti et al. classification

used by IBM for constructing the ViaVoice viseme database employing three neighboring

visemes and the MPEG-4 map [26].

The selection of an appropriate model is a difficult task, given the lack of comparative

tests. There are few studies analyzing the results obtained for a particular model in the

same testing environment and based on the same collection of data. However, such analyzes

appear more often now which means that the need for developing viseme-based systems is

becoming recognized as the right direction in AVSR research. The theoretical images for

particular viseme groups are presented in Figs. 2–13. They were generated using the Verbots

Tools Conversive Character Studio Visemes [32] available through an open-source license

GNU.

3 Algorithms for detecting the location and shape of the lips in the image

The first task which enables further viseme analysis is the detection of the speakers’ lip area.

The extraction of information concerning the shape of the lips is carried out in a few steps.

The first step is the detection of the Region of Interest (ROI). The correct localization of

the speaker’s lips is of great importance for the effectiveness of algorithms which detect the

key points in the face area [9, 15, 18].

The algorithms which detect the lip area are based on recognizing certain patterns which

are standardized and widely used. They use the dependencies between the eyes, eyebrows,

nose and lips. The detection of the face area and the application of an algorithm searching

for similarities and dependencies in mutual localization of particular elements enables an

effective recognition of ROI and the subsequent feature extraction [39]. This is a critical
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element since the precise localization of lips in the facial image conditions the effectiveness

of the following stages of analysis.

The systems which are developed usually make it possible to additionally localize and

describe the lip contours [1]. Additionally, taking into account the shape of the lips enables

a precise description of analyzed picture frames.

At the moment the most effective and most frequently used methods are based on Active

Appearance Models. AAM is a domain of statistical models describing the appearance and

shape of certain characteristic objects. The result of an algorithm application is to a gen-

erated universal description of particular objects. These models allow establish the set of

characteristic points describing the features of an object. This approach was used in the

experiments carried out and described in further parts of the paper. The schema of the

implemented algorithm based on procedures known from the cited literature is presented in

Fig. 14.

Fig. 14 Video data preprocessing algorithm schema
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Thanks to the AAM a model can be created which transfers not only the information

about the shape of an object but also about the distribution of pixel brightness in a frame, the

color of particular component elements and their texture. Due to a wide range of analyzed

parameters, this approach should be classified as the group of hybrid algorithms which are

successfully and effectively used in many areas of research.

Generally, the shape of an object is defined by a set of points which are located in char-

acteristic places of the object, placed at its edges or inside it. On the basis the points of the

shape the representation of the shape of an object is determined. The Active Shape Model

(ASM) [5] algorithms and its immediate successor, the Active Appearance Model [4, 30],

are examples of this approach. Both algorithms use the same definition of the shape of an

object but differ in their representation of the appearance of the object. In the ASM method

for every point of the shape it is the appearance of an object in the proximity of the point,

usually represented by a vector including the color, texture and the gradient of the image.

The AAM method, on the other hand, includes all pixels of an object within its contour.

Statistical models based on the ROI analysis and the detection of outer and inner lip

contours are the main ways of detecting and circumscribing them with key points (Point of

Interest, POI). These points are used in the calculation of vector parameters differentiating

particular lip setting in the articulation of phonemes [6].

Research on human perception clearly shows that lip-reading information is used in

speech processing [12, 42]. Speech perception utilizes such elements as the visibility of

upper/lower teeth and the degree of tongue visibility. It is vital then that the algorithms

simulate such behavior. The information extracted from the visual input should therefore

include such data.

The extraction of possibly biggest number of precise elements (the key points cir-

cumscribed on the analyzed object which create the model) is an important aspect of

constructing automatic lip detection and marking systems. The first stage is marking the

outer lip contours. Most algorithms are based on the analysis of brightness changes in the

transition between the areas adjacent to the lips and the lips themselves. Then, the image is

subject to a similar analysis carried out for the inner contours. Parameter extraction from the

area inside the lips is more difficult and simultaneously more important for viseme recog-

nition. Particular classes of visemes differ in terms of teeth and tongue visibility and the

degree of their exposition in the picture frame [15].

Statistical models are built which include transition and similarity matrices for the speak-

ers’ lip shapes. The key problem is the selection of a model catering for the transitions

between the dark and bright valleys during the analysis. The area inside the lips changes

dynamically which makes it difficult to work out a universal hierarchy of the model. The

algorithms deal with the problem by using statistical Bayes classifiers and Fisher linear

distribution function [22, 34, 35].

In order to arrive at the model a training set must be prepared which includes a diversified

selection of different lip images: closed, half-open, with visible/invisible teeth (in different

variants) and visible/invisible tongue. Then, ideal initial threshold values are calculated. For

the data obtained during the algorithm application the maximal membership probabilities

of a given component are calculated for every pixel in the previously established area of

interest [15]. These points are subject to clustering using K-means method. On the basis of

the results a decision can be made whether a given pixel belongs to the set of contour points

or not.

The models include information concerning the shape and the structure of a given facial

image as well as additional information about their modification or possible changes of their

shape. Usually, the models block the possibility of an incorrect realization of a particular
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shape. Thus, it is possible to preserve the standard original face for real shapes and avoid the

danger of unnatural mutations and deformations. For every picture provided as input for the

algorithm in the detection phase comparisons are made between the shape and the database.

At the moment when the highest probability value of feature vector matching of the cur-

rently analyzed frame with those included in the database is achieved, the classification

decision is made [14].

An sample result of the algorithm application is presented in Fig. 15.

3.1 Preparation of visual feature parameter vector

The lips represented by key points determined with AAM algorithms cannot be directly used

to represent the actual features extracted from the speaker’s lips. Methods for calculating the

parameter vector must be worked out in order to sub-divide particular lip arrangements. The

initial analytical problem is also the fact that the parameter vector must be made independent

of an individual speaker [27].

The localization of lip contours also entails other problems since it does not take into

account the tongue and the teeth position in the picture frame. It is not uncommon that

classifiers do not provide precise information regarding the position of particular elements

in the lip area itself. The algorithms based on the principle of typical tonal distribution

recognition in greyscale encounter problems as the contrast changes in picture frames [15].

Such complications call for devising a method of describing lips with parameters which

will most robustly differentiate particular lip settings. Possible ways of representing those

features will be discussed in further sections.

The detected lip contours can be represented by means of a rectangle which circum-

scribes them. Due to a potentially large number of pixels belonging to this area, the

parameter vector may be too costly, both in terms of data storage and computation. The

Fig. 15 A sample result of AAM

algorithms application for the lip
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Fig. 16 Sample distances inside

the ROI lip area

number of pixels (which often contains values for a few components) may reach as many

as several hundreds of thousands. In order to reduce the dimensionality, and as a result the

cost, Discrete Cosine Transformation (DCT) is used [29]. It is a typical transformation used

for picture compression. Thanks to this transformation the multidimensionality of a vector

can be substantially reduced by preserving only a selected range of coefficients and ignor-

ing those less important. The feature vector prepared in this way can constitute the input for

machine learning algorithms or the implemented classifier. Such reduction in computational

complexity opens the way for using solutions based on contour detection in real time.

An important aspect which requires attention are the distance dependencies between the

Points of Interest (POI) which in an obvious way differentiate particular groups of visemes

[28]. A sample illustration is shown in Fig. 16. Lips may be closed, spread, rounded or open

and the visibility of the teeth may vary. Such diversity makes it possible to measure the dis-

tances between particular points located on the lips. The selection of the most representative

distances is analyzed in further sections of the present paper. From the linguistic point of

view the distances between the lip corners and between the highest point on the upper lip

and the lowest point on the lower lip are important [27].

An appropriate description of this difference enables the selection of the complete set of

parameters which are used in the recognition process.

In Figs. 17 and 18 three most important parameters used in many implementations during

parameter extraction from the lip area are shown [1, 22, 28, 40]. They are geometrical

parameters: the outer horizontal aperture, the outer vertical aperture and the angle of lip

opening. Often the surface area inside the lip contour is also added. It should be emphasized

that the parameters w and h must be normalized in order to make them independent of the

individual features of a particular speaker and the location of the camera [13]. For such

normalization the distance between the nose and the chin is often used. Another important

parameter may also turn out to be the w/h ratio. An analogical analysis may be conducted

Fig. 17 Lip high and width

marking
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Fig. 18 Sample angle between

the upper lip and the longest line

segment on the horizontal axis

for the inner lip contour. In this way a relatively small set of parameters which will enable

the training of the model may be obtained.

Other parameters may include the distances between the established center of gravity for

the area inside the outer lip contour and the key points based on this contour. Such distances

provide a lot of information about the lip opening and lip protrusion. The distances may

then be added to the parameter vector [44].

It may also be interesting from the point of view of viseme description to consider the sur-

face area of the teeth visible in a frame, which displays greater brightness than the adjacent

elements in the oral cavity [16].

Another approach may involve encircling the area of detected lips in an ellipse. In order

to place the area in an ellipse the points on the lip contour are used. The block circumscribed

in this way is insensitive to location changes, e.g. rotation or a change in the size (visibility)

of the upper and lower lip. The process of filtration and circumscription of lips on the

ellipse can be represented in the following stages, as described in [19]. A sample result of

implementing the above algorithm is presented in Fig. 19 which shows a visualization of an

Fig. 19 Sample result of

algorithm application

circumscribing an ellipse on the

lip contour
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Fig. 20 Data flow while using the HTK package

ellipse circumscribed on the lips. The ellipse is marked together with the points on which it

is circumscribed.

4 Testing environment

For the video recordings and data processing the Python programming language was used.

It was also used for copying and data processing, frame extraction together with ffmpeg

library and for calculating the geometrical and textual parameters.

Another module used during the research were appropriate codecs for carrying out the

necessary operations. Thus, the library package FFmpeg (version 3.1.1 [36]) was down-

loaded and installed. Yet another library used in the analysis was the OpenCV package [37]

downloaded and installed in version 2.4.12. This version has the most stable integration

with the Python language. This library enables picture processing in real time as well as its

effective scaling, trimming, filtering and calculating the parameters for particular frames.

The library was used in histogram calculations and Discrete Cosine Transform (DCT) trans-

form in the lip area. Am additional library was the Numpy package used for the processing

of big sets of matrix data which shortened the time of analysis and improved the precision

of calculations. The last library used in the analysis was the Math package which includes

a vast set of mathematical operations.

Conducting the viseme recognition effectiveness tests requires the methods of machine

learning. Two classifiers were used: the first one was based on Hidden Markov Models and

the other on Support Vector Machine. Such approach makes it possible to check which of

the classifiers is most effective and to compare the obtained results.

Fig. 21 Data flow while using the WEKA package
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Table 2 Parameters of video

files used in the recordings Type Picture

Duration ∼ 6 min

Size ∼ 3.5 GB

Codec H264 – MPEG-4 AVC (part 10) (avc1)

Resolution 1088 × 1922

Picture resolution 1080 × 1920

Frames per sec. 100

Decoded format Planar 4:4:4 YUV

The first classifier was the implementation of Hidden Markov Models in the HTK

package (now version 3.4.1). Its schematic application is shown in Fig. 20.

Another classifier used for the analysis was the Waikato Environment for Knowledge

Analysis package (WEKA) which implements a couple of algorithms of machine learning,

large database processing and solves complex probability problems [38]. The package was

written in JAVA. It was devised at the University of Waikato. The package of libraries is

available on Open Source basis. In Fig. 21 the data flow in WEKA package is shown.

5 Data preparation and research procedure

It is explained in this section how the list of viseme groups was recorded and then broken

down into the corresponding phonemes. Subsequently, the applied feature extraction tech-

niques are summarized. The final task was to prepare a file containing all the parameters

for each frame of the image used in the comparative analysis, employing two packages: the

HTK package (HMM, Hidden Markov Models) and the WEKA package (SMO, Support

Vector Machine), as is shown in the subsequent Section 6.

Fig. 22 Frames of recordings illustrating the realization of the /p/ viseme for different speakers a)

Speaker21, b) Speaker22, c) Speaker23, d) Speaker26. Source: http://www.modality-corpus.org/

http://www.modality-corpus.org/
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5.1 Material

The recordings included in a multimodal database for research on speech recognition and

synthesis were used [36]. Four recordings of commands read by four different native speak-

ers of English were selected for the present research on viseme recognition. The subjects

were asked to adhere to their native Southern British English accent. The database included

230 carefully selected words of a potentially high degree of interaction with computer sys-

tems. The recordings together with the list of commands were used for further work on the

extraction and parametrization of viseme frames; they were coded using H.264 MPEG-4

AVC codec. The complete set of picture parameters is shown in Table 2.

Figure 22 illustrates sample frames of the video recording showing the speakers produc-

ing the selected group of visemes. Speakers with a similar lip size were selected in order

to compare them and minimize the error rate during the analysis. Each speaker had his

own characteristic speaking expression, different speaking tempo and physiological con-

ditionings. The visual data were also accompanied by complementary synchronous audio

recordings. They were not necessary from the point of view of visual recordings; how-

ever, they facilitated the transcription of temporal dependencies between the beginning of

the command and its end, which in turn enabled the extraction and analysis of particular

visemes in the following stages of analysis.

The classification of visemes proposed in this study is based on articulatory similarities

between certain phonemes. Particular groups and their features were presented in Table 3.

It shows the articulatory label of a given group and an exemplary section of the labial ROI

corresponding to this group. Each picture frame also illustrates the graphical prototypes

of a particular group of visemes discussed in the theoretical part of the paper. A thorough

analysis of Table 3 will enable the reader to grasp the differences between particular groups

of visemes and facilitate the interpretation of the obtained results.

In order to carry out the extraction of static frames two scripts were prepared on the

basis of the FFMPEG library. The aim of the first script was to change particular periods

of time delimiting the duration of the uttered command into periods of time characteristic

of a given phoneme. The application of the script were files which were formatted in a way

which enabled the start of the other script responsible for uploading the video recording, the

reading of the label files for particular phonemes and the phoneme <−> viseme mapping

file. The script operation is based on establishing the duration of particular speech sam-

ples in a given command, uploading the temporal dependencies between the phonemes and

finally eliciting the function which enables the extraction of the relevant static frames from

the recordings.

The final result of the analyses was the obtainment of 440 frames. The number of the ana-

lyzed visemes amounts to eleven; thus each group contains 40 unique frames representing

the visemes. Viseme-based recognition documented in 2016 by Heidenreich and Spratling

brought 37.2 percent accuracy [11]. The parameters were calculated in result of feature

extraction from the 3D-DCT representation. The examination and main conclusion were

that the use of an extended training data set may not improve the score. The approach had a

bad accuracy for some of viseme groups. At this stage the recorded frames were uploaded

as input for the ROI detection algorithms of the speakers’ face and the detection of the lip

contour. The automatic detection of ROI in the context of viseme recognition was based on

the Active Appearance Model. All picture frames at this stage were JPEG compressed with

the highest quality coefficient 100%. The parameters of a sample frame are shown in Table 4.

The use of Intel RealSense scripts (based on the AAM method) enabled the obtainment

of a file containing the location of points circumscribing the rectangle of the face and 20
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Table 4 Parameters of video

files used in the recordings Codec JPEG image

Resolution 1080 × 1920

Horizontal pixel density 96dpi

Vertical piel density 96dpi

Number of bits per colour 24

Size ∼ 120 kB

points on the lip contour. The files were then ascribed to every picture representing a partic-

ular viseme. In order to optimize the efficiency of algorithms at this stage the graphic files

representing the visemes were reduced by 50%. The resulting .dat file includes the location

coordinates of particular points in the picture.

The file format contains the ROI and the resulting coordinates of the points. The first

four digits (in bold type) describe the rectangle of the face: the distance from the left, the

distance from the top, the width and the height. The following 40 digits are the pairs of x/y

coordinates on the lip contour. The initial 12 points (underlined) are the coordinates of the

outer lip, beginning from the left lip corner in the clockwise direction. The next 8 points (in

italics, also beginning from the left lip corner) are the coordinates of the inner lip.

To visualize the results a script was used which drew the established points on partic-

ular frames. It was also possible to correct the location of certain points which had been

determined incorrectly.

5.2 Feature extraction

The designation of coordinates of points on the lips contour mentioned in the previous

subsection allowed in a subsequent step to calculate the geometric parameters. In turn, the

designation of lips ROI allowed the calculation of the textural parameters. The calculation

of the parameters for the data obtained in the earlier stages began by gathering them in one

file. For this purpose, a script was developed whose aim was to identify and copy of the

calculated points which defined the position of the speakers’ lips along with the name of

the frame to one created file. The feature calculation process implemented in the script is

illustrated in Fig. 23. To calculate the textural parameters, frames were used in their original

resolution instead of the reduced and compressed ones used for detecting the lip contour.

The first type of extracted parameters are geometric parameters. In order to calculate

them the points describing the contour of the lips were used and the script which allowed

the calculation of geometrical parameters, which can be divided into three types due to their

origin: the distance, the angle and the surface. The principle of of the script operation is

illustrated schematically in Fig. 24.

For each frame, 39 distance parameters were calculated. These parameters consist of the

following:

– parameters representing the distance between the successive points on the outer periph-

ery of the contour delineated on the speaker’s lips relative to their sum, i.e. the

circumference. 12 parameters were calculated for the outer contour,

– the same parameters calculated for the inner contour. 8 parameters were calculated for

the internal contour,

– the distances of the straight lines connecting vertically the outer and inner contour

points on the mouth in relation to the longest straight line in the horizontal plane. They
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Fig. 23 Ilustration of feature calculation process

depict the maximum opening of the mouth in successive sections along the mouth, from

left to right. The maximum opening found – 1 parameter. The opening for outer lips –

5 parameters. For inner lips – 3 parameters,

– the distances representing height versus maximum width, calculated for the exposure

of the upper and lower lip while uttering a given viseme. They show the degree of lip

exposure. 5 parameters were determined for the upper lip and 5 for the lower lip.

Moreover, 20 angle parameters were prepared. This type of parameters consists of the

following values:

– 12 parameters calculated for the outer contour of the lips representing the values of the

angles between successive points delineated on the lips in degrees. Two straight lines
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Fig. 24 Geometrical parameters calculation algorithm schema

were defined, drawn through successive points, which helped to calculate the angle

values.

– 8 parameter values defined in a similar manner for the angles of the inner contour.

8 surface parameters were defined as well. These parameters represent the information

about the visemes transferred in the areas of each frame image. These include the following

calculated surface areas:

– the first parameter is the ratio of the area limited by the inner contour of the lips to the

total area of the mouth, calculated for the outer contour,

– another element of the parameter vector is the ratio of the upper lip and lower lip area

to the total area of the mouth,

– the next value defined is the ratio of the area limited by the inner lip contour to the

surface of the upper lip

– similarly to the previous parameter, the following one is the ratio of the inner area to

the lower lip area,

– another parameter is the ratio of the upper lip area to the lower lip,

– the next parameter is the ratio of the surface of the inner contour of the lips to the total

surface of the lips,
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– the last two parameters are the total area of the upper lip and the area inside the mouth

to the surface of the lower lip and the sum of the lower lip and the area inside the mouth

to the surface of the upper lip.

Textural parameters are the second type of parameters. They are based on the determi-

nation of histograms for ROI (English for Region of Interest) and of the DCT transform for

subsequent frames of images. Textural parameters consist of the following types:

– 32 parameters representing the mouth histogram in shades of grayscale. An example of

an area for the calculation of parameters is presented in Fig. 26a.

– 32 parameters that represent the mouth histogram within the HSV colour scale. The

examples of ROI are presented in Fig. 26b.

– 32 parameters for the mouth image histogram in grayscale after applying the equaliza-

tion. A sample image was shown in Fig. 26c.

– 32 parameters for the mouth image histogram in grayscale after processing via the

Contrast Adaptive Histogram Equalization (CLAHE) [33]. ROI indexing a frame after

filtering is illustrated in Fig. 26d.

– 32 parameters that represent the most significant values of DCT for the mouth area read

in accordance with the Zig-Zag curve. A sample graph for the transform is presented in

Fig. 26e.

The block diagram of the algorithm used for calculating textural parameters is presented

in Fig. 25. Hassanat proposed and built an identification system based on the visualizing

of the mouth. His research results show that the speaker authentication based on mouth

movements can gain the security in the biometric systems [10]. The parameters prepared

during the work presented in our paper can be also used in this kind of systems.

Sample results of contour detection and labial ROI can be observed in Fig. 26.

When optimizing the parameters obtained, a decision was made to trim the ROI of the

mouth in the horizontal plane by about 10%. The objective here was to reduce the influence

of pixels located in the corners of the analysed area. Then the coordinates of the rectangle

depicting the relevant fragment of the mouth area were normalized to the constant adopted

resolution of 64×64 pixels. The textural parameters were calculated for such reduced frame

fragments.

160 textural parameters were defined. The histograms were carefully chosen in order

to receive various values in the histograms obtained. They convey information about the

number of pixels in the successive ranges of brightness. This enables to determine, inter

alia, the exposure of the teeth, the tongue and the lips in an image frame.

The final task was to prepare a file containing all the parameters (a total of 227) for

each frame of the image. The file pattern contains a label, the name of the parameters, the

parameters of a given category, and the parameter values. It is presented in Table 5.

A different approach to the lipreading system operating on a word-level was proposed

by Stafylakis et al. [31]. They prepare a deep learning neural network using approximately

2M parameters for each clip. The improved approach called VGG-M method allows for

reaching a better score (6.8 percent higher) in word recognition compared to the previous

state-of-the-art results. One of the conclusions was that the viseme-level systems allow an

improvement of recognition of the start and the end part of the word, so the accuracy in the

shortest words can be increased [31].
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Fig. 25 Texture parameters calculation algorithm schema
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Fig. 26 Visualization of ROI frame analysis for the following images a) original, b) in HSV, c) after

equalization, d) after filtering with CLAHE algorithm, e) DCT parameters

6 Experimental research

The calculated vector parameters for frames depicting a given viseme were divided into the

training and the testing sets in line with the designed test scenarios. The pattern of action is

shown in Fig. 27. The data was uploaded to a classifier by means of scripts. For this purpose,

two classifiers were used:

– HTK package (HMM – Hidden Markov Models);

– WEKA package (SMO – Support Vector Machine extended by Sequential Minimal

Optimization).

All tests were performed using a cross-validation mechanism. The mouth parameters

were analysed in line with the aim of the study to determine the possibility of distinguish-

ing individual speech elements – the visemes. A block diagram illustrating the choice of

parameters is presented in Fig. 28. It assumes a check of detection efficiency for two classi-

fiers, depending on the type of the parameters used. It was assumed that three test scenarios

will be analyzed, making it possible to test the recognition effectiveness of a viseme class

depending on the parameters. The data was properly prepared according to the structure of

the files accepted as input for a given recognition system. For WEKA these are files with

the extension .arff, while for HTK the files have the extension .params.

The parameters used in the HTK tool were prepared using the VoiceBox plug in

MATLAB. The three scenarios tested were as follows:

– Scenario I: single parameter types (initial assessment of parameters carried out only for

the SMO classifier);

– Scenario II: only the distance or textural parameters (for SMO and HMM);

– Scenario III: the use of the most effective set of parameters.

The analysis was carried out on the impact of the parameter type on the classification

effectiveness of a given viseme class. The results will be discussed and conclusions from

Table 5 A sample of a file line containing features

Label Dist- Ang- Area- Hist- Hist- Hist- Hist- DCT

Params Params Params Grey HSV EQU Clathe

39 20 8 32 32 32 32 32

12_SPEAKER22

_CONTROL_p_1 0.0937 156.562 0.0426 1.1707 2.9536 117.162 0.0 0.065

_822919994.dat
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Fig. 27 Division of frames per test scenarios

the results obtained will be presented. The WEKA package provided effectiveness metrics

directly in percentages, while the HTK package provided result files containing individual

projects of adjusting models to the test data. A script was developed and used to calculate

the metrics.

Koller et al. presented a framework for the speaker-independent recognition of visemes

to support the deaf people with their sign language communication [17]. They achieved

47.1 percent precision rate in the recognition attempts based on a dataset containing 180000

frames. Their research included the approach to the recognition of sequence of visemes.

The conclusion of their work is that adding a dedicated viseme interpreting module to sign

language recognition systems may gain their accuracy [21].

6.1 The first scenario (SMO)

The aim of the first scenario was to illustrate the extent to which the various types of

parameters can be effective in the detection of the viseme class. SMO classifier training ses-

sions were conducted for four speakers with the use of single parameter classes. The study

allowed to draw conclusions about the advisability of the use of the analyzed parameter dur-

ing the recognition of the viseme class as well as about their potential impact on their use in

a mixed parameter class. The graphs in Fig. 29a-c show the efficacy results obtained for the

SMO classifier from the WEKA package. At this stage, it was decided not to use the HTK

package due to the limitations of the classifier, because it requires a more comprehensive

data vector to create valid models for each of the classified viseme groups.

As is apparent from Fig. 29a, the distance parameters obtained showed the highest recall

and precision for viseme classes W1, W4 and W11 and the lowest for W3, W6 and W9.

This is due to the fact that the distance relations show the best results when the speaker

utters the phoneme in which the mouth is arranged with lip closure. In turn, it poorly char-

acterizes rounded wide open mouth. In addition, the method is very sensitive to the place of

Fig. 28 The method of applying parameter vectors
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Fig. 29 Graphs showing the results of the first test scenario with the use of: a) distance parameters, b) angle

parameters, c) surface parameters, d) parameters of the original ROI histogram, e) histogram parameters for

HSV, f) parameters of the histogram after equalization, g) histogram parameters after LAHE filtering, h)

DCT parameters
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articulation, as it does not convey the information about the events occurring inside the lips

(exposure of the teeth and tongue).

Figure 29b shows the results for the angle parameters. They show similar characteristics

to the parameters of distance, because the return is at a similar level. However, the precision

achieved is lower. The results for viseme classes where the frame shows the teeth were lower

than in the previous one. The angle parameters have a low efficiency when recognizing

classes where the lips wide open and rounded.

Figure 29c presents the results for the parameters indicating the area surface. They

showed low efficacy in the detection of the viseme class. The exceptions include the W1

group (good efficiency of ∼ 70%) and W4 and W11 (average efficiency of ∼ 50%). They

received a very low efficiency for W3, W9 and W10. The area parameters coped the least

efficiently with the characteristics of the groups showing teeth within the image frame. They

did not show efficacy because they are characterized by high sensitivity to the different

physiognomy of the mouth area of the speakers (two speakers with a small mouth, one with

a medium mouth and one with a large mouth).

The first tested textural parameter was a histogram of the original grayscale image. The

recognition results are shown in Fig. 29d. It allowed to obtain a high precision in classes

W1, W4 and W11. It proved to be effective in the detection of a large number of components

with a similar dark shade (a large number of pixels of similar brightness saturation observed

for the closed mouth as shown in an image). It poorly handled classes W3 and W7, where

the teeth exposition plays an important role. Its effectiveness is low during the classification

of the brighter shades. For other groups, the parameters proved to be effective at the level

of ∼ 40%.

After transforming the original image to the HSV color scale and after calculating the his-

togram for the brightness component, the following results were obtained (Fig. 29e) which

are characterized by detection rates higher by several percentage points for 9 viseme classes

Fig. 30 Graphs showing the

results for the set of geometric

parameters (a) and for the set of

textural parameters (b)
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as compared to the results obtained for the original image histogram. This is due to a bet-

ter representation of the value of brightness, which is presented directly, than of grayscale

images. These parameters were to characterize the presence of individual elements, such as

the tongue or the teeth in the analyzed mouth area of the speaker.

Testing the effectiveness of the viseme group classification using the parameters rep-

resenting the values of the histogram for the image of the speaker’s mouth after the

equalization showed the ineffectiveness of this type of parameters. The results were the

weakest among all the parameter types used. This is due to a weak correlation of image

parameter values after equalization to the actual information of the unit of speech trans-

ferred. This transformation makes the histogram values stretch to the full range of the scale

and in a way presents them as average values. This causes problems during the operation of

the classifier in order to create models for each class. The chart showing the results for the

parameters of the histogram after the equalization is shown in Fig. 29f.

The histogram values used, computed for the frame after filtering by CLAHE method

as parameters, showed a good efficiency. The results were presented in Fig. 29g. The high

efficiency for classes W1, W4 and W11 stems from the good separation of the parameters

extracted for the dark areas in this histogram. These parameters, however, cope poorly with

the presence of the teeth in the frame and wide-open mouth presented in ROI. The classifier

obtained the weakest effectiveness precisely for these classes where the teeth and the tongue

in the ROI area were visible.

The results obtained by calculating the content of the frequency components in the image

(Fig. 29h) showed an average performance. Reducing the length of the vector to the 32

most significant components resulted in the loss of information about the high-frequency

components that transfer data on the presence of the teeth in the frame and of widely open

mouth. It would be moreover necessary to test the use of a longer vector of these features,

e.g. after data processing via the PCA (Principal Component Analysis) method [21].

6.2 Presentation of results for the second scenario (SMO and HMM)

The second scenario followed the testing of the first scenario. The second scenario was

designed to test the effectiveness of the combination of all the above parameters calculated,

divided into two sets, taking into account class parameters. Therefore, two scenarios were

Fig. 31 Results for the set of geometric parameters



Multimed Tools Appl (2018) 77:16495–16532 16523

Fig. 32 Results for the set of textural parameters

tested; the first one for the geometrical parameters and the other one for the textural param-

eters. The results for the SMO classifier were presented in graphs in Fig. 30a and b. The

results for HTK were presented in the diagrams in Figs. 31 and 32.

The use of the combination of geometric parameters yielded good results for some of the

classes, including more than 90% efficiency for class W1, W4 and W11. This is a satisfac-

tory result considering the amount of material used for training and tests. Furthermore, the

average effectiveness rate of about 60% for classes W2, W5, W8 and W10 was obtained. It

is important to note that the presented results were obtained for four different speakers. The

parameters demonstrated a low efficacy in classes W3, W6 and W9. Classes W3 and W6

are somehow twin classes, where the difference is the place of articulation of the phoneme

(not evident externally with the use of RGB cameras). The observation of the error matrices

allows to conclude that the classifier had a problem distinguishing between these classes.

However, it was wrong within their limits, so if these classes were considered as one, the

obtained result would be 40% in terms of precision and recall.

Fig. 33 SMO results for the most effective parameters
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Using the group of textural parameters, good results were obtained in most of the classes.

They demonstrated better efficacy in classes where the geometric parameters showed the

lowest results. The standardization of ROI to 64x64 pixels for each frame image and then

the calculation of the parameters helped reduce the classifier sensitivity to the physiognomy

of the speakers. They coped the least efficiently with class W7, whose specificity is the

greatest horizontal span of the mouth in all the groups. The application of the transformation

to the standard definition removed a substantial part of this characteristics.

After the use of the geometric parameters as a set of training and test tools for HTK, the

results obtained are presented in the chart in Fig. 31. Satisfactory effectiveness was obtained

for the following viseme groups: W1, W4, W8 and W11. The calculated measures of clas-

sification accuracy for groups W2, W5, and W10 represent the mean efficiency of about

45%. In contrast, the groups W3, W6, W7 and W9 demonstrated a low efficacy. The clas-

sifier using Hidden Markov Models was adequately prepared to recognize the parameter

type designated as USER. The results may be a bit biased due to the small amount of test

and training data fed as the classifier input. The implementation of HMM in the HTK pack-

age requires a comprehensive set of training and test examples of precisely defined time

dependencies. This caused problems when creating a suitable prototype in order to obtain

optimally trained models. The results, however, legitimize conclusions about the quality of

the analyzed geometric parameters. They showed better performance than the results for the

textural parameters.

The graph presented in Fig. 32 demonstrates the results obtained for the KMM classifier

for the set of textural parameters. Satisfactory efficiency of over 70% of classification for

the following viseme groups was obtained: W1, W4 and W11. Groups W5 and W8 were

recognized with average efficiency. Other groups demonstrated a low efficiency. The results

of the HMM viseme classes classification groups demonstrated good efficacy in the sepa-

ration of viseme classes where the mouth assume a very similar shape for each utterance

in this group (regardless of the speaker). In the groups where the teeth exposure analyzed

in the image frame was the main carrier of information on viseme group affiliation, HTK

demonstrated a low efficacy. The distinction between the groups where the mouth was open

also posed problems.

6.3 Presentation of results for the third scenario (SMO and HMM)

The third test scenario assumed the use of a combination of all parameters: geometric

and textural, which showed the highest classification efficiency in the studies described in

Section 6.1. The set of parameters adopted is analyzed in this section.

The graph in Fig. 33 shows the results obtained for a set of both geometric and textu-

ral parameters. The parameters used included distance, angle and surface ones as well as

histograms calculated for the original grayscale image, HSV, the Clahe transformation, and

for the vector of the most significant DCT coefficients. They demonstrated the highest effi-

ciency in the classes W1, W2, W4, W5, W8, W10, and W11, achieving more than 60%

efficiency. The results for these classes were considered satisfactory. Bearing in mind that

the classes W3 and W6 can be put together in one class and analyzing the error matrix one

can infer that this class could also have satisfactory efficiency at about 60%. Class W9 once

again showed the lowest efficiency. The viseme class W9 was not adequately classified by

any of the parameters analyzed. The problem with the parameterization of this class is due

to the nature of the phonemes included in its composition, which, depending on the adja-

cent phonemes and the expressiveness of the speaker, demonstrates a high dynamic range

of visual realizations.
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Fig. 34 HTK results for the most effective parameters

Figure 34 shows the results obtained for HMM using the most effective set of parameters.

The viseme classes W1, W4, W8, and W11 showed a good efficiency. The results obtained

for groups W5, W8 and W10 are at a medium level. Groups W2, W3 and W6 showed very

low efficiency. In the case of group W2 a significant reduction in classification effectiveness

was observed following the addition of textural parameters to the vector of geometric fea-

tures. HMM cannot adequately fit the test data to models in the groups characterized by the

presence of teeth in the analyzed ROI area. This may be due to insufficient data to establish

an appropriate model. A more comprehensive training and test set should be used.

6.4 Summary of results for the scenarios and the classifiers

The overall efficiency for all tested sets of parameters for the SMO classifier from the

WEKA package is presented in a single chart (Fig. 35). It may be observed that the analyzed

different sets of parameters allow to achieve the same level of overall effectiveness. These

sets provide similar performance characteristics for all the 11 groups of elements of speech,

or visemes, analyzed.

In all the scenarios the best classification performance was obtained in the same viseme

groups; by contrast, the worst results were obtained for the same viseme groups. However,

the differences between the geometric and the textural parameters sometimes reached a few

tens of percentage points. By optimizing the calculated parameters and adding the vectors

of textural features only for the inner lip contour, one could obtain additional input data to

create models characterized by a better separateness of the groups which currently produce

the weakest results.

A summary of the results obtained for the HMM classifier from the HTK package is

presented in Fig. 36. The average effectiveness for each scenario is at a similar level (about

50%). This classifier proves to be sensitive to a small amount of training data. The set of test

frames should be bigger to explore possible changes in the results of viseme classification

efficiency.

Conducting tests for individual types of parameters in the first scenario allowed an

assessment of their impact on the detection of certain elements characteristic of each viseme

group. The results obtained indicate that the parameters adequately describe the visemes of

the groups W1, W4 and W11. The calculated textural parameters in conjunction with the
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Fig. 35 Results of SMO classifier for the scenarios studied

geometric ones are able to cope well with groups W5 and W8. This indicates that they ade-

quately reflect the presence of the tongue in the image frame. Of particular importance for

the detection of the tongue are the histogram values for the image in the HSV scale. The

parameters calculated for visemes from groups W2 and W7 have average performance due

to the fact that they seem to be a little resistant to the appearance of a particular speaker’s

mouth when they are uttered. They are not able account for the small differences between

these classes (e.g. width of the opening between the teeth) with sufficient accuracy. The

phonemes included in these viseme groups show a high correlation with the adjacent speech

fragments. Its nature is similar to the averaged image obtained as a result of calculating the

average appearance of the lips in each viseme group. In these groups, the parameters poorly

separate them from one another and from groups W3 and W6. The analysis of the error

matrix of the results obtained by the classifiers legitimizes a conclusion that groups W3 and

W6 are often erroneously classified within their boundaries. Group W9 is characterized by
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Fig. 36 Results of HMM classifier for the scenarios studied

high volatility in the way it is uttered by speakers, so it is hard to obtain satisfactory results

using the parameters analyzed.

The results obtained for the SMO and HMM classifiers are similar in nature for each of

the groups analyzed. The analyzed parameters allowed to obtain the best results for the SMO

classifier. The selected set of features analyzed in section 6.3. achieved the highest effec-

tiveness across all the tests carried out. The SMO can cope better with viseme separation

within a test sample analyzed and is characterized by the lack of sensitivity to the size of the

data set. The results obtained for the HMM were general the worse. The approach used dur-

ing the tests assumed the use of a three-state prototype for models in the HTK core. Thus,

it is possible that the models obtained are insufficiently accurate for the analyzed dataset.

Successive model estimates did not differ too much from preceding ones as to probability

values. The use of a prototype of a model with a higher number of states proved impossi-

ble. The HTK module calculating successive probabilities of transitions between the states

of the model required the input of a more comprehensive set of training data. These prob-

lems were related to the configuration of the environment assuming the use of a model of

input data of the USER type and top-down determination of the time relations between the

frequency of the occurrence of the following labels (denoting a viseme) with the parameter

vector correlated with it.

7 Conclusions and directions for further research

Although the algorithmic viseme (the smallest recognizable unit correlated with a partic-

ular realization of a given phoneme) recognition has been massively studied, there are no

fully satisfactory results in the recognition of speech elements on the basis of lip picture

analysis alone. A methodology was arrived at according to which phonemes are classified

into the corresponding phoneme groups which are further assigned to appropriate classes of

visemes. The different methods and approaches to this problem are then described in detail.

Finally, a comparative analysis of their efficiency is performed. It was shown that the com-

bination of geometrical and textural parameters enables a more efficient clustering in some

of the newly defined groups.
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A survey of viseme recognition methods was carried out and various ways of param-

eterization were examined. One of the tasks was also to compare the efficacy of selected

algorithms of machine learning trained with parameters related to the mouth image. The

influence of different types of parameters on the efficiency of recognition was extensively

analyzed in the paper. Tests were organized according to three different scenarios:

– single parameter types (SMO) to illustrate to what extent the various types of parame-

ters can be effective in the detection of a viseme class.

– distance-only (geometrical) or textural parameters (SMO and HMM) to test the effec-

tiveness of the combination of all the parameters studied in the first experiment, divided

into the two aforementioned groups (geometrical and textural)

– the use of the most effective set of parameters (SMO and HMM), assuming a

combination of the previous parameters (geometric and textural).

So far few published works have examined feature vectors comparatively; therefore the

results can serve as a basis for further analysis and for the development of an optimal way

of extracting parameters from the area of the speaker’s mouth. The suggested geometric

parameters tend to model the viseme more generally as they were selected to reduce the

influence of the shape/size of the speaker’s mouth, while the parameters presented in the

literature sometimes depend heavily on the speaker’s individual physiognomic factors.

As it was stated above, one of the important results of the study was the preparation of

the list of viseme groups, broken down into the corresponding phonemes. It was created as a

result of the analysis of materials related to machine recognition and speech processing (in

the context of the visual component) and the linguistic analysis of words belonging to the

corpus used for multimodal recordings. The resulting division is different from the one most

commonly used in the relevant literature, introducing a greater variety for vowel phonemes

in the context of the classification adopted. Consequently, the viseme groups created can be

used in other studies.

The main conclusion drawn from the analyzes is that the effective classification can be

made for a given viseme. The study returned an average effectiveness of 65% for WEKA

and 50% for HTK. The use of each of the classifiers allowed to obtain a similar mean classi-

fication efficiency within the viseme group for the parameter used. The calculated geometric

and textural parameters and the use of both these types enabled a very efficient data clus-

tering of 90% in viseme groups W1, W4 and W11. The prepared parameters also showed

an efficacy of 65% for classes W2, W5, W8, and W10. The results obtained for groups W3,

W6, W7 should be improved by fine-tuning of the parameter vector, more adequately car-

rying information about the location of the teeth in the analyzed frame. The poor efficiency

of classification for group W9 is largely due to the variable manner of articulation of the

sounds included in this group. The diversity of visual expressions requires the parameter-

ization catering for a high dynamics of change in the appearance of the speakers’ mouth,

depending on the command uttered. This poses a challenge because of the huge impact

of the unique characteristics of speakers’ physiognomy for this class. A set of geometric

parameters supplemented with textural parameters proved to be the most effective one; it

can be further developed and optimized in order to improve the recognition efficiency. The

directions for further research might involve the development of:

– the vector of distance parameters,

– the vector of angle parameters,

– the histogram calculated for HSV,

– the histogram after filtering by CLAHE,

– the parameters of the DCT transform.
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Furthermore, the analysis could include the vectors of parameters obtained from the

combination of the above ones, upon the use of PCA (Principal Component Analysis) algo-

rithms. Reducing the vector dimension by using this algorithm could result in a better

efficiency and assure the use of more parameters calculated for the DCT transform.

Additionally, one can also analyze the effectiveness of the parameters calculated for the

averaged models created for each viseme group, e.g. through the use of algorithms of Eigen-

Face type. The averaged models created in this way could be used to determine a new set of

parameters. In order to better reflect the presence of the teeth one should obtain the textural

parameters calculated for the inner contour of the lips. An interesting set of parameters could

be the histograms of the entire surface of the mouth and, additionally, solely for the inner

lip contour transformed to the shape of a quadrilateral (e.g. rectangle) by means of reverse

parametrization. Reducing the impact of pixels that do not directly make up the mouth area

could improve the results obtained for the textural parameters. This would allow, for exam-

ple, to improve the exposure of the surface of the teeth (or the lack of thereof) in the image

frame. The reflection of the teeth exposition could also be due to the geometric parameters

calculated for the points whose coordinates should be determined on the contour of the teeth.

Bearing in mind the continuous nature of speech one should carry out tests on the

effectiveness of the parameters for an increased number of frames fed into a classifier at

fixed time intervals. This would enable an analysis of the results in the context of smooth

transition between successive visemes, e.g. an analysis of three consecutive phonemes, or

triphones, but in the context of their being mapped to visemes. This type of tests would

facilitate the preparation of more accurate models for HTK for each of the viseme group.

One should also consider the possibility of extracting features from the interior of the

speech apparatus (the movement and the position), e.g. three areas of the tongue inside the

mouth, which are not visible in the RGB camera recordings. These features would allow the

preparation of parameters that can improve the classification efficiency of viseme groups

consisting of phonemes with a strong involvement of the tongue during the articulation of

a given speech fragment. In this context, one could consider using data from a specialized

device of electromagnetic articulography with its adequate parametrization or as shown in a

recent paper by Yang et al. [43], one can also to employ emotional head motion predicting

from prosodic and linguistic features or data acquired from a face motion capture device [24].

Nevertheless, the results obtained at this stage demonstrate that one can successfully

carry out viseme classification using the SMO or HMM algorithms. The method of viseme

division, along with a set of corresponding phonemes, and the methods for calculating the

parameters allowed to indicate the directions in which to develop this field of expertise in

order to arrive at highly efficient multimodal speech recognition systems.
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