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ABSTRACT   

For EUV photomasks, high-k absorber materials represent a potential strategy to effectively mitigate mask 3D effects 

which are getting more prominent as the scanners’ NA increases. The performance of RESCAN, our actinic lensless 

imaging microscope is evaluated through three different absorber materials (HSQ, TaBN, and Ni) together with the 

imaging properties of the materials themselves. Defect maps for each material are analyzed and compared.  
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1. INTRODUCTION  

Extreme ultraviolet (EUV) photomask technology, including fabrication, characterization, and inspection, is of key 

importance to make EUV lithography a cost-effective technology for high-volume semiconductor manufacturing. In this 

context, one of the core challenges is the mitigation of mask 3D effects such as pitch-dependent focus shift, induced 

pattern asymmetries and image contrast loss. Indeed, mask topography effects become more important as the mask 

feature sizes decrease, so that their origin and influence in aerial images must be carefully investigated and mitigated [1, 

2].  

Among the strategies to reduce the impact of mask 3D effects, reducing the thickness of the absorber layer, i.e., changing 

the material of the absorber stack with a high-k absorber while keeping the optical contrast similar, has been widely 

studied with numerical simulations [1–5]. Nevertheless, the fabrication of such samples remains challenging [3]. A direct 

experimental comparison between different absorbers and the impact of the chosen materials on aerial image formation 

is of crucial importance. By using actinic inspection, the amount or/and the kind of defects found within a mask may 

help to discard or promote a certain material. Furthermore, the use of different absorber materials allows the possibility 

of evaluating the resolution of the inspection tool itself as a function of the contrast for a given thickness of the chosen 

absorber stack. 

In this paper, the imaging performance of the RESCAN (Reflective EUV Mask Scanning Lensless Imaging) tool on 

masks with three different absorber materials is presented. RESCAN is used for EUV mask inspection and it offers high 

resolution by employing coherent diffraction imaging (CDI) methods to retrieve both the magnitude and phase of the 

sample, thereby allowing the localization of both amplitude and phase defects with a very high sensitivity [6–8]. 

In previous works, we have demonstrated the capability of RESCAN to detect programmed defects as small as 50 nm on 

random patterns fabricated in-house[8]. In our studies, the absorber consisted of a hydrogen silsesquioxane (HSQ) layer 

with 140 nm thickness. Here, we use an analogous sample to be compared with a state-of-the-art EUV mask, which is a 

70-nm-thick TaBN absorber, and a 60-nm-thick Ni layer, where the latter is among the preferred materials to optimize 

the absorber physical properties [3, 4, 9]. In Section 2, we explain the choice of these absorber materials and their optical 

properties and describe the samples investigated during the experiments presented here (Sec. 2.1). Then, the instrumental 

setup and technique employed in RESCAN are described (Sec. 2.2). The results in Section 3 show the comparative 

analysis of the imaging properties of different samples as well as the die-to-die inspection results. 
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The defect signal-to-noise ratio (SNR) of these images can be calculated using the definition [8]: = − 	( ) 

where  and  are the average magnitude values calculated on the defect pixels of the image and on the whole image, 

respectively, while std(A)	 is	 the	standard	deviation	of	 the	magnitude	of	 the	 image.	The results are summarized in 

Table 2. The highest SNR was found for TaBN. We note that the reported SNR values are based on the average rather 

than on the integrated signal of all defect pixels and are therefore independent of the footprint of the defects. 

 

Table 2.  Defect sizes on the measured sample and signal-to-noise ratio (SNR). 

 HSQ TaBN Ni 

Defect size (nm2)  269×70 64×35 269×70 

SNR 6.85 7.89 7.64 

Thickness (nm) 140 70 60 

 
 

CONCLUSIONS AND OUTLOOK 

Three EUV photomasks with different absorber materials, i.e., HSQ, TaBN, and Ni, were prepared and evaluated from 

the actinic inspection point of view. Lensless imaging showed a better contrast for the thinnest layer, Ni, followed by 

TaBN and HSQ. On the other hand, the retrieved phases match the calculated ones from the height of the absorber 

stacks.   

Programmed defects of sizes ranging from 35 to 70 nm minimum lateral sizes could be located and evaluated in 

RESCAN through a die-to-die approach. A higher SNR was found for the TaBN absorber despite the fact that it 

exhibited a lower contrast than Ni. Further investigations are necessary in order to generalize this result and make 

conclusions about the defect detection sensibility as a function of the material. A reduction of the Ni thickness would be 

advantageous for the comparison of the materials, as well as the reproduction of the same layout and CDs. 

Manufacturability of EUV photomasks with alternative absorber materials remains nevertheless a concern and needs 

further work. In this paper we have shown that RESCAN is able to perform actinic inspection in any of the proposed 

materials, achieving high resolution and defect sensitivity and opening routes towards the study of other kinds of defects. 

Potentially, phase defects and shadowing effects at smaller pitches could be studied by taking advantage of the direct 

measurement of the phase.  
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