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Abstract

Face landmarking, defined as the detection and localization of certain characteristic points on the face, is an important
intermediary step for many subsequent face processing operations that range from biometric recognition to the
understanding of mental states. Despite its conceptual simplicity, this computer vision problem has proven extremely
challenging due to inherent face variability as well as the multitude of confounding factors such as pose, expression,
illumination and occlusions. The purpose of this survey is to give an overview of landmarking algorithms and their
progress over the last decade, categorize them and show comparative performance statistics of the state of the art.
We discuss the main trends and indicate current shortcomings with the expectation that this survey will provide
further impetus for the much needed high-performance, real-life face landmarking operating at video rates.

1 Introduction
Accurate face landmarking and facial feature detection are

important operations that have an impact on subsequent

tasks focused on the face, such as coding, face recognition,

expression and/or gesture understanding, gaze detection,

animation, face tracking etc. We define a face landmark

as a prominent feature that can play a discriminative role

or can serve as anchor points on a face graph. Com-

monly used landmarks are the eye corners, the nose tip,

the nostril corners, the mouth corners, the end points of

the eyebrow arcs, ear lobes, nasiona, chin etc. We pre-

fer using the term facial component as denoting an entire

facial semantic region, such as the whole region of an eye

or of eyes, the region of the nose, mouth, chin, cheek,

or eyebrows. Landmarks such as eye corners or nose tip

are known to be little affected by facial expressions, hence

they are more reliable and are in fact referred to as fiducial

points. Fiducial points in imaging systems refer to marks

deliberately placed in the scene to function as a point of

reference or a measure. By extension, relatively stable or

robust facial landmarks such as eye corners or nose tip are

also called fiducial points or fiducial landmarks in the face

processing literature.

Typical applications where face landmarking plays a

prominent role are facial expression analysis [1,2], face

animation [3,4], 3D face reconstruction [5], registration
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[6,7], feature-based face recognition, verification [8-10]

and face tracking [11,12], head gesture understanding

[13]. Subsequent applications of landmarking could be for

anonymization of facial identity in digital photos, image

editing software tailored for faces, lip reading, sign lan-

guage interpretation etc. Below we give more details on

four these landmark dependent tasks:

• Expression understanding: Facial expressions form a

visual channel for emotions and nonverbal messages,

and they have a role in supporting the spoken

communication [14]. The spatial configuration and

temporal dynamics of landmarks provide a viable way

to analyze facial expressions and to objectively

describe head gestures and facial expressions.

Automatic identification of action units within the

framework of the facial action coding system (FACS)

[15] benefits from detected landmarks and their

position. Some of the approaches that use landmarks

for recognizing Action Units are [1,2] and for

interpreting head gestures and facial expressions are

[16,17].
• Face recognition: Face recognition schemes typically

locate the eye region and then extract holistic

features from the windows centered on various

regions of interest [18,19]. The located landmark

coordinates also give rise to a number of geometric

properties such as distances and angles between them

[20]. In fact, anthropometrical face models, where
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typically the face graph nodes correspond to

landmark points, combine both sources of

information, the configurational and appearance

sources. The graph-based methods have proved to be

quite effective in many applications. One seminal

work in this area is the elastic bunch graph matching

technique (EBGM) [9].
• Face tracking: Most face tracking algorithms benefit

from tracked landmark sequences. In the

model-based group of methods [11,21], a face graph

model is fitted to 60-80 facial landmarks. Face

tracking is realized then by letting the model graph to

evolve according to face shape parameters, facial

components and geometrical relations between them.

The alternative tracking approach is model-free

[12,22,23] and is principally based on motion

estimation. In these methods, the motion is estimated

at and around the landmarks vis-à-vis some reference

frame. The advantage of landmark-based tracking is

that both the head motion and the facial

deformations are jointly estimated. This enables us to

detect and classify head gestures, head and facial

emblems, interpret certain mental states as well as to

extract clues for head and face animation.
• Face registration: Face registration is the single most

important factor affecting face recognition

performance [24]. Other applications of landmarking

involve building of 3D face models from stereo, from

multiple images or from video sequences where

landmark points are used to establish point-to-point

correspondences. For example, Jain et al. [5] and

Salah et al. [6], use landmark points and the thin

plate-spline (TPS) algorithm to fit a generic model to

the face. This capability enables various other

applications, e.g., face morphing and face animation

[25]. Thus a face can be transformed into those of

other individuals (inter-personal) or into different

expressions of the same individual (intra-personal,

e.g., a neutral face to a smiling face). In summary, face

landmarking is a prerequisite for face normalization

and registration whether in 2D or 3D.

The goal of this article is to present a comprehensive

review of the past work on face landmarking, to catego-

rize the multitude of algorithms, to point out novel trends,

to show the performances on a comparative basis, and

to understand the limitations. The article is organized

as follows. In Section 2, we list the relevant facial land-

marks, define the performance metrics, describe some

typical feature sets and the face preprocessing steps. The

major landmarking methods in the literature are catego-

rized and reviewed in Section 3. 4 addresses a different

data modality: 3D face data. Section 5 is intended as a

resume of the recent trends and progress in the literature.

Section 6 describes the principal face databases used in

the landmarking literature, and reports the performance

results obtained with simulation results. Finally, we draw

our conclusions in Section 7.

2 Landmarks: preprocessing, performance
evaluation and challenges

2.1 Challenges of landmarking

Despite the plethora of articles, the quest for improved

face landmarking schemes continues. On the one hand,

emerging applications require that the landmarking algo-

rithms run in real-time while operating with the compu-

tational power of an embedded system, such as intelligent

cameras. On the other hand, these applications require

increasingly more robust algorithms against a variety of

confounding factors such as out-of-plane poses, occlu-

sions, illumination effects and expressions. The details of

these confounding factors that compromise the perfor-

mance of facial landmark detection are as follows:

• Variability: Landmark appearances differ due to

intrinsic factors such as face variability between

individuals, but also due to extrinsic factors such as

partial occlusion, illumination, expression, pose and

camera resolution. Facial landmarks can sometimes

be only partially observed due to occlusions of hair,

hand movements or self-occlusion due to extensive

head rotations. The other two major variations that

compromise the success of landmark detection are

illumination artifacts and facial expressions. A face

landmarking algorithm that works well under and

across all intrinsic variations of faces, and that

delivers the target points in a time efficient manner

has not yet been feasible. Figure 1 illustrates the

variations that the mouth can be subjected to under

different expressions and poses.
• Acquisition conditions: Much as in the case of face

recognition, acquisition conditions, such as

illumination, resolution, background clutter can

affect the landmark localization performance. This is

attested by the fact that landmark localizers trained

in one database have usually inferior performance

when tested on another database. A case in point is

version 1 and version 2 (FRGC-1 and FRGC-2) of the

Face Recognition Grand Challenge, which differ in

their data collection conditions. FRGC-1 is a less

challenging database collected under controlled

studio conditions while FRGC-2 is an uncontrolled

image sets collected under varying illumination

conditions, e.g., hallways, atria, or outdoors [26] with

two facial expressions (neutral and smiling). Akakın

and Sankur [27] show a performance drop of about

20–30% when trained on FRGC-1 and tested on

FRGC-2), and vice versa. In a more recent article,



Çeliktutan et al. EURASIP Journal on Image and Video Processing 2013, 2013:13 Page 3 of 27

http://jivp.eurasipjournals.com/content/2013/1/13

Figure 1 Illustration of intrinsic mouth variation over identity (upper row), expression (middle) and pose factors (lower row).

Dibeklioǧlu et al. have extensively reported

landmarking performances under several factors such

as resolution, occlusion, expression, model choice and

database [28].
• Number of landmarks and their accuracy

requirements: The accuracy requirements and the

number of landmark points vary based on the

intended application. For example, coarser detection

of only the primary landmarks, e.g., nose tip, four eye

and two mouth corners, or even the bounding box

enclosing these landmarks, may be adequate for face

detection or face recognition tasks. On the other

hand, higher level tasks, such as facial expression

understanding or facial animation, require greater

number of, e.g., from 20–30 to 60–80, landmarks

[29,30] as well as higher spatial accuracy. As for

accuracy requirement, fiducial landmarks such as on

the eyes and nose need to be determined more

accurately as they often guide the search for

secondary landmarks with less prominent or reliable

image evidence. It has been observed, however, that

landmarks on the rim of the face, e.g., chin, cannot be

accurately localized in either manual annotation and

automatic detection. Consequently, the 17 landmark

points within the face contour (4 eyebrows, 6 eyes, 3

nose, 4 mouth) are grouped together as inner

landmarks and denoted asm17 in the literature. We

follow this tradition in our study and base most of the

performance comparisons on them17 set (see Section

6). Shape guide algorithms can benefit from the richer

information coming from a larger set of landmarks.

For example, Milborrow and Nicolls [31] have shown

that the accuracy of landmark localization increases

proportionally to the number of landmarks

considered and have recorded a 50% improvement as

the ensemble increases from 3 to 68 landmarks.

In the final analysis, accurate and precise landmark-

ing remains a difficult problem since, except for a

few, the landmarks do not necessarily correspond to

high-gradient or other salient points. Hence, low-level

image processing tools remain inadequate to detect

them, and recourse has to be made to higher order

face shape information. This probably explains the tens

of algorithms presented and the hundreds of articles

published in the last two decades in the quest to

develop a landmarking scheme on a par with human

annotators.

2.2 Types of landmarks

It is convenient to consider facial landmarks in two

groups, denoted as fiducial and ancillary, or primary and

secondary landmarks. This somewhat artificial distinction

is based on the abundance and reliability of image fea-

tures aiding their detection. For example, the corners of

the eyes, of the mouth, the nose tip, and sometimes the

eyebrows can be detected relatively easily using low-level

image features such as gradient information, cornerness

or local information extracted, e.g., with scale invari-

ant feature transform (SIFT) [32], histogram of gradients

(HOG) [33], and generic information on the face mor-

phology. These directly detected landmarks are referred to

as the primary or fiducial ones, and they play amore deter-

mining role in facial identity and face tracking. The land-

marks in the secondary category such as nostrils, chin,

nasion, cheek contours, non-extremity points on lips or

eyebrow midpoints, eyelids etc. often present scant image

evidence, and the search for them is often guided by the

primary landmarks. The secondary group of landmarks

take more prominent roles in facial expressions, although

the demarcation between these two tasks is not always

clear-cut. The primary and secondary landmarks most

commonly used in the literature are shown in Figure 2.
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Primary landmarks Secondary landmarks

Number Definition Number Definition

16 Left eyebrow outer corner 1 Left temple

19 Left eyebrow inner corner 8 Chin tip

22 Right eyebrow inner corner 2-7, 9-14 Cheek contours

25 Right eyebrow inner corner 15 Right temple

28 Left eye outer corner 16-19 Left eyebrow contours

30 Left eye inner corner 22-25 Right eyebrow corners

32 Right eye inner corner 29, 33 Upper eyelid centers

34 Right eye outer corner 31, 35 Lower eyelid centers

41 Nose tip 36, 37 Nose saddles

46 Left mouth corner 40, 42 Nose peaks (Nostrils)

52 Right mouth corner 38-40, 42-45 Nose contours

63,64 Eye centers 47-51,53-62 Mouth contours

Figure 2m17 landmark set includes squares representing the primary (first order) landmarks.m7 landmark set consists of the most fiducial
points represented by red squares. Green dots the secondary (second order) landmarks, totally 64 landmark points.

2.3 Landmarking performance

One can define two different metrics to evaluate land-

marking performance: (i) ground-truth based localization

error; (ii) task-oriented performance. For ground-truth

based localization error, a straightforward way to assess

landmarking performances is to use manually annotated

ground-truths. For task-oriented performance, one can

measure the impact of the landmarking accuracy on the

performance scores of a task.

A straightforward way to assess landmark detection

and landmark localization performances is to use man-

ually annotated ground-truths. If the ground-truth posi-

tions are available, the localization performance can be

expressed in terms of the normalized root mean square

error (NRMSE). NRMSE can be computed per landmark

or NMSE figures can be averaged over all the landmarks

to produce a global precision figure. The normalization

is typically done with respect to IOD: Inter-Ocular Dis-

tance, which is defined as the distance between the two

eye centers. Normalizing landmark localization errors

by dividing with IOD makes the performance measure

independent of the actual face size or the camera zoom

factor.

One can declare a landmark to be detected whenever the

localization error remains below a suitably chosen error

threshold,Th. The landmark errors are assumed isotropic,

so that one can conceive around each ground-truth land-

mark a detection circle with radius equal to the error

threshold. If the Euclidean distance of the estimated land-

mark is below the threshold, the landmark is considered

as detected; otherwise, whatever the value of the localiza-

tion error, it is declared as a missed landmark. A detection

circle is illustrated in Figure 3. A nice way to illustrate the

detection performance is to plot the percentage of times

a particular landmark is detected within a given error

radius. In Figure 3, the abscissa denotes the error radius

while the ordinate is the empirical probability of landmark

detection. The allowed error radius (detection threshold)

is taken as some percentage of the inter-ocular distance

IOD, typically 10% or below of IOD.

The localization precision is thus computed as the

Euclidean distance d(., .) between the ground-truth coor-

dinates, (x, y), and the estimated coordinates, (x̃, ỹ) , nor-

malized by dnorm, the IOD. The error is given as

δi
k =

d{(xki , y
k
i ), (x̃

k
i , ỹ

k
i )}

IOD
, (1)

where the superscript k indicates one of the landmarks

(e.g., eye corner, nose tip) and the subscript i is the image

index.

Landmark detection statistics can be characterized by

the exceedance probability of the localization error. A

general agreement in the literature is that δi
k < 0.1 is

an acceptable error criterion so that a landmark is con-

sidered detected whenever it is found within proximity

of one tenth of the inter-ocular distance from its true

Figure 3 Detection probability of the left eye outer corner versus

normalized error. Concentric circles denote error ranges with radii
0.05 (red), 0.1 (green), and 0.2 (blue) times IOD, respectively.
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position. More specifically, we calculate the per-landmark

performance:

P(k) = 100

∑I
i=1[ i : δi

k < Th]

I
(2)

where [ i : δi
k < Th] is the indicator function assuming 1

if the deviation is smaller than a threshold, otherwise its

value is 0, and I denotes the number of test images. The

overall performance is averaged over all landmark types

P = 100

∑K
k=1

∑I
i=1[ i : δi

k < Th]

K × I
. (3)

A goal-oriented landmarking measure could be its

impact on the performance of tasks. Some instances of

goal-oriented applications based on landmarking are face

registration algorithm, expression classification as in [28]

or fitting of the active appearance model (AAM) algo-

rithm as in [34], and gesture recognition as in [16,35].

The landmarking accuracy on the performance of the

registration, expression classification, gesture recognition

and AAM fitting algorithms, respectively, would be goal-

oriented measures of landmarking.

2.4 Preprocessing for landmark extraction

There is always some preprocessing before a method

engages in landmark detection. Typical of these steps are

the following: illumination artifact removal, modest geo-

metric corrections, segmentation of the face, use of color

information.

2.4.1 Illumination compensation

The detected face region is subjected to illumination

compensation, which can be operated pixelwise, locally

or globally. One example of pixelwise normalization

is CSDN: center-surround divisive normalization [36],

where each pixel is divided by the mean value of a block

around it; another example is rank filtering where pixels

in the surrounding block are ranked, and the central pixel

is simply assigned its rank value and all such assignments

finally stretched to the [ 0, 255] interval. Local normal-

ization can be attained via filtering with Laplacian of

Gaussians or using a facet model as in [37]. Finally, the

prototypical example of global normalization is histogram

equalization.

Use of geometry: The task of landmark localization is

aided by the knowledge of the geometric relationship

(distances, angles etc.) between landmarks and over-

all shape characteristics. This knowledge can be con-

verted to a set of rules and/or can be expressed as a

set of statistics of point-to-point distances and angles

subtended by local ensembles, e.g., triples of landmarks.

The eyes and sometimes the mouth can be found via an

algorithm like Viola-Jones [38], Gabor filters [39], pro-

jection histograms [40], specifically trained SVMs [41],

or else. Once a few facial components are detected,

e.g., the eyes and mouth, geometry information can be

used to initialize the search for the remaining ones in a

reduced search area. Geometric constraints also help the

post-processing stage where landmarks are geometrically

verified. For example Shih and Chuang [39] initialized

the mouth at one IOD below the eyes, nostrils within

0.6 × IOD below and eyebrows within 0.4 × IOD above

etc. If certain landmarks are missing or if the detected

landmarks or face components do not to satisfy given

reliability criteria, they can be recovered or their search

re-initialized via the geometric face model.

2.4.2 Face segmentation

A commonly occurring theme is the heuristic segmenta-

tion or compartmentalization of the face encompassing

target regions of interest [39,41-43]. For example, the face

is partitioned with a grid structure resulting in two or

more horizontal and vertical stripes. This helps to delin-

eate the search areas so that, e.g., the eyes are searched

in the northeastern and northwestern corners while the

mouth is searched in the southern sector [44]. A pop-

ular method to segment the face is to use projection

histograms [40,45]. The relatively darker eye and mouth

regions cause dips in the histograms and the correspond-

ing bands are used to initialize the search for the eyes

and mouth. Pitas and Tsekeridou [46] take advantage of

the mirror symmetry of the face and use vertical and

horizontal histograms to initialize the location of face

components. Most of the recent study, e.g., [47] however,

use training images to learn the a priori location of the

target landmark within the bounding box of the detected

face.

2.4.3 Role of color

Color information, mostly in the pre-Viola-Jones era, has

been used for face and mouth detection. For example,

in [48], Hsu et al. proposed a face segmentation method

based on skin labeling in the non-linear YCbCr color

model and the connected components analysis. Within

the face region, any non-skin colored blob is regarded as

a candidate for eyes or mouth. In a companion study, in

[49], color information is used in the energy functional of

the snakes [50] or to assist in the initialization step and fit-

ting process of ASM [51]. There have been also a number

of studies, e.g., [52], to detect lips automatically based on

their color properties.

3 Review of face landmarkingmethods
The plethora of face landmarking methods in the liter-

ature can be categorized in various ways, for example,

based on the criteria of the type or modality of the

observed data (still image, video sequence or 3D data),

on the information source underlying the methodology
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(intensity, texture, edge map, geometrical shape, configu-

ration of landmarks), and on the prior information (e.g.,

anthropometrical data), if any used.

The goal of any categorization attempt must be to lead

to a better understanding of the commonality and differ-

ences of the approaches, and to extract a sense of where

the state-of-the-art is heading. Despite the difficulty of

finding clear-cut distinctions since algorithms often share

techniques common to more than one category, neverthe-

less we have found it useful to categorize them based on

the type of information used and on the specific method-

ology [53,54]. In a previous such attempt, Phimoltares et

al. [53] have used the five categories of geometry-based,

color-based, appearance-based, edge-based and motion-

based landmarking algorithms.

We believe that there are two basic categories of

facial landmark detection methods: model-based meth-

ods and texture-based methods. Model-based methods,

also known as shape-based methods, consider the face

image and the ensemble of facial landmarks as a whole

shape. They learn “face shapes” from labeled training

images, and then at the test stage, they try to fit the proper

shape to an unknown face. The second category, texture-

basedmethods, also known as nonmodel-basedmethods,

aim to find each facial landmark or local groups of land-

marks independently, without the guidance of a model. In

these methods the shape information may still be invoked,

but at a later stage for verification.

These two broad categories of landmarking methods

can each be further split into two sub-categories. The

model-based methods can be split as explicit methods,

of which prime examples are ASM and AAM, and as

implicit methods, for example, algorithms using a neural

network applied to the whole face. Similarly, the texture-

based methods can be discussed under the sub-categories

of transform-based methods, e.g., Gabor filters or HOG

features, and template-based methods. Figure 4 illustrates

this categorization. Note that the transform methods can

further be split into linear transform methods, like prin-

cipal component analysis (PCA), independent component

analysis (ICA), Gabor transform, and nonlinear transform

methods like Kernel PCA (KPCA), local linear embedding

(LLE) etc. However, in this study subcategorization at this

detail was not warranted. At this stage, to preclude any

misinterpretation, we have to emphasize that the shape

and texture approaches are not mutually exclusive. As a

case in point, the shape-based methods do also utilize the

local texture information to guide the model shape to fit;

conversely, most of the texture-based methods eventually

use some shape information, e.g., at a later stage for veri-

fication. The shape or texture categorization in this article

puts into evidence the predominant source of information

inmarking. Thirdly, it would be possible to extend the tax-

onomic tree by including the category of 3D landmarking

methods (Section 4). However, we consider 3D as a differ-

ent data modality rather than a methodological category.

In fact, other interesting data modalities that we could

consider would be infrared images, photo-sketch based

images etc.

3.1 Texture-based methods

The texture based category of methods will be con-

sidered in two classes, namely, transform-based and

template-based. In the transform-based schemes, a win-

dow scanning the image has its content transformed

into a feature vector and this feature vector is com-

pared with the learned patterns. In the template approach,

a landmark template or a set of landmark templates

scan the image to identify the target landmark accord-

ing to the strength of the template matching response.

An overview of the texture-based methods is given

in Table 1.

3.1.1 Transform-basedmethods

Pioneering examples in this track are the modular PCA

method and eigenfeatures, which are essentially the eigen-

face approach specialized to facial components. Pentland

et al. [18] derive eigenmouths, eigeneyes and eigennoses,

which coupled with eigenfaces result in good recognition

in multi-pose face databases. The authors also point out

Figure 4 Categorization of landmarking approaches.
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Table 1 An overview of the texture-based face landmarking algorithms

Work Highlights of the method Domain knowledge used Landmark types

Yuille et al.
[72], 1989

Using image saliencies of the face components,
geometrical templates are developed consisting
of arcs and circles. Eye template consists of a cir-
cle for iris, two parabola sections for eye contours,
two center points for the white sclera.

Descriptive information of the eye and
mouth geometries.

Eye, iris and mouth contours.

Pentland et al.
[18], 1994

Extension of the eigenface approach to eigen-
mouth, eigeneye and eigennose. Multiple
eigenspaces mitigate variations due to pose.
Face-ness, mouth-ness etc. are assessed based
on the concept of distance from corresponding
(eye, mouth, nose etc.) eigenspace.

None. Mouth, nose and individual
eye components.

Vukadinovic &
Pantic [44], 2005

GentleBoost templates built from both gray level
intensities and Gabor wavelet features. A sliding
search is run with templates over twenty face
regions.

Face initially divided into search regions on
the basis of IOD vis-à-vis the detected eyes.
In addition horizontal and vertical projection
histograms and symmetry of the frontal face
are used.

20 landmarks.

Arca et al. [41],
2006

Face is detected with skin features, and eyes
are located using SVM. Facial components are
extracted using parametric curves specific to
each component as in [72], and facial landmarks
are traced on these curves.

Various facial component heuristics such as
the vertically alignment of the eyes, the
mouth is centered with respect to the eye
positions etc.

16 landmarks

Zhang & Ruan
[73], 2006

Rectangular eyes, mouth and nose templates
resulting from averaging several instances used
for detection. Geometrical templates consisting
of arcs and circles are fitted to components for
detailed modeling.

Eye and mouth geometry. Eye, iris and mouth contours.

Akakın & Sankur
[16,27], 2007

Templates based on 50% of block DCT fea-
tures (block size 0.4 × IOD) scan the image and
SVM score map is obtained. Initial combinatorial
search decides for 7 fiducial landmark, and the
rest of the landmarks are predicted and locally
tested with their DCT features.

Landmark distances and angles are learned,
modeled as Gaussians and the information
embedded in a graph.

17 landmarks.

Ding & Martinez
[68], 2010

Face components are found via Subclass Deter-
minant Analysis, where multiple models for the
target component, eyes and mouth are devel-
oped; the context is the subspace representation
of the regions surrounding the components.

Estimated positions of the face components
within detected face boxes.

Eyes and mouth
components.

Valstar et al. [70],
2010

SVRs are trained to predict the landmark locations
using RoI samples. The search is regularized via
a Markov network to exploit the learned spatial
relationships between landmarks.

A priori probabilitymap of the likely locations
of seven fiducial landmarks and the locations
of 15 less fiducial landmarks vis-à-vis the first
seven.

20 landmarks as in [44].

to the higher tolerance of the eigenspace approach to

geometric variations as compared to simple template

matching, and claim a method for view-independent

facial component detection. Other instances of the

appearance-based category extract features using Multi-

resolution Wavelet Decomposition [55-57], Gabor

wavelet transform (GWT) [44,57-60], discrete cosine

transform (DCT) [27,61], and independent component
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analysis (ICA) [62]. For any given landmark, after its fea-

tures are extracted, a classifier is trained to convert the

feature vector into a likelihood score.

Gabor transform

Gabor wavelet transform can produce effective features

as these wavelets are known to generate biologically-

motivated convolution kernels [9]. To this effect, a bank

of filters is created by using Gabor kernels in different

orientations and frequencies (scales), and then convolved

with the data to form a Gabor space. In this vein, Smeraldi

and Bigun [59] developed a bio-inspired scheme where

Gabor features were computed on a retinatopic sampling

grid on the face. For uniform frequency coverage, they

used modified Gabor filters, where shifts of Gaussians on

the log-polar frequency plane correspond to rotations and

scaling. The facial components are found by displacing the

retinatopic grid and evaluating the output with SVM clas-

sifiers. Similarly, Vukadinovic and Pantic stacked Gabor

responses at eight orientations and six scales into a feature

vector [44]. This feature is then used to train a Gentle-

boost classifier for each landmark type within its own

region of interest (RoI).

Ersi and Zelek [60] conjectured that facial components

must have higher entropy as compared to the rest of

the face, and they initialized the search regions with a

high entropy threshold. Subsequently, facial components

are verified by using the combined features of Gabor

coefficients and the local entropy (entropy of the search

window). Two- or multi-tiered approaches are common

search strategies [57,63]. A two-level hierarchical Gabor

wavelet networks (GWNs) is presented in Ferris et al. [57].

Here a GWNdenotes a constellation of 2DGabor wavelets

that are specifically chosen to reflect the object proper-

ties and together with its location they constitute a node

in a tree representation. The hierarchy consists of a set

of GWNs that are organized in child node-parent node

relationship, which may differ in position, scale and orien-

tation. The first-level network, trained for the whole face,

yields orientation and scale information of the face as well

as approximate landmark locations. The set of second-

level networks, trained for each landmark separately, yield

refined landmark locations. Duffner and Garcia [63] also

used a neural architecture in such a hierarchical way

where the search area is restricted by the preceding step.

Discrete cosine transform

Salah et al. [58] presented another coarse-to-fine app-

roach where they first search on a lower resolution image

for coarse landmark locations, and then refine them on

the original resolution image. In a comparative analysis,

they observed that DCT features perform slightly better

than Gabor features, both using SVM classifiers [58,64].

DCT coefficients have also proved to work surprisingly

well as low-level features leading to high localization

performance, and furthermore they offer the advantage

of the existing DCT implementation. In [61], Zobel et

al. used DCT features in a probabilistic structure to

detect facial components where the spatial dependencies

between landmark points are statistically modeled. More

specifically, the length of rays emanating from the face

center and pointing to the eyes and mouth as well their

angles subtended were modeled as Gaussians. Akakın

et al. [27,58] generalized this idea and used a proba-

bilistic graph-based framework as a post-processing tool

to correct erroneous estimates and recuperate missing

landmarks.

Independent component analysis

In [62], Antonini et al. resorted to ICA features to

exploit higher order dependencies in images. They ini-

tialize candidate locations with Harris corner detector

and proceed to extract ICA features within 32 × 32 win-

dows at these corners. The resulting feature vectors are

classified with SVM to result in 10 landmarks. It is inter-

esting to note that the ICA method applied to Gabor

features, resulting in the so-called independent Gabor fea-

tures (IGF), improves the performance over the Gabor

only method [64].

Landmark initialization heuristics

Since the costly part of appearance-basedmethods is the

brute-force search for the landmarks, an efficient method

to restrict the search area is the use of vertical and hor-

izontal gray-value projections. Projections are simple to

implement, while being at the same time quite effective

in determining a first coarse estimate of feature positions.

Brunelli and Poggio [65] have performed edge projection

analysis by partitioning the edge map in terms of horizon-

tal and vertical edge directions. Other researchers found

out that more exact results can be obtained by applying

the projection analysis on the intensity image, since most

faces have fairly smooth contours faces [39,40,44,66,67].

These approaches use histogram dips caused by the gray

level variations of the face components, which for the eyes

and mouth regions tend to be darker than the skin level.

Similarly, Ding and Martinez [68] define two patches

enclosing the eyes through a statistical analysis of eye

locations in the training images. They resort to subclass

discriminant analysis (SDA) [69] to combat the variabil-

ity of the appearances of the eye components. Thus, the

gray-level distributions of the patches centered on the

components and of those in their vicinity of the target

regions are modeled with K-means clustering, where the
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optimal value of K is separately determined for the tar-

get and surrounding non-target patches. While eye loca-

tion information aids in the detection of the remaining

landmarks, chin proves especially difficult, and conse-

quently it is deduced with the aid of a quadratic curve

fitted to the available face boundaries [68]. In a more

recent study, Valstar et al. [70], after finding the face

box, model the prior probability of the x- and y-position

of each facial point relative to the coordinate system

of the detected face. Thus the x- and y-coordinates of

the landmarks are described by a set of bivariate Gaus-

sians, with means and variances learned using training

images.

3.1.2 Template-basedmethods

The main differences between template-based and

transform-based category are the matching procedure

and the representation of facial features. Transform-based

methods reduce the observed image patch to a feature

vector, which is then classified; template-based methods

calculate the matching scores.

Fixed templates

In fixed template methods, a face object (component or

landmark) is detected if it responds strongly when con-

volved with the template mask, and the highest scoring

point on the face is declared as the target location. The

template can be obtained using adaptive matched filter

techniques [65]. However, the weakness of the template-

based methods is their scale and pose dependency, since

cross-correlation operation is highly sensitive to geomet-

rical distortions. To mitigate scale dependency of these

methods, Poggio et al. proposed a scheme where target

locations are investigated at multiple resolutions [19]. In

a follow-up study focused on face recognition robust to

poses, Heisele et al. [71] used 14 component detectors

based on component SVMs. The geometrical configura-

tion of these components were analyzed on a second level

in order to complete the face detection and recognition

tasks.

Deformable templates

Deformable templates are proposed to cope with the

limitations of fixed templatematching. A pioneering study

in this direction was presented by Yuille et al. [72].

Accordingly, a deformable parametric template is made

evolve by internal and external forces. The template is

attracted to salient features such as peaks, valleys and

edges in the intensity images. For example, eye and lip

templates are first extracted via morphological filters and

the energy function resulting from internal and external

forces is minimized with a gradient descent algorithm

[72]. In a recent study [73], Zhang and Ruan combined

the fixed and deformable templates, such that first, fixed

templates are used to locate a rectangular RoI around

the face components, and then deformable templates are

used to extract the contour of the component. Notice

that template or transform techniques are often used

in model-based algorithms as well as part of low-level

image processing.

In summary, texture-based methods generate landmark

candidates independently from each local detector. These

result in a score surface for each landmark on the test

face, whether the score is the outcome of the matched fil-

ter or of the classifier, e.g., SVM. The peaks on the score

surface, judiciously chosen in the light of a prior model

for face geometry form the landmarks. Algorithms often

attempt to solve the combinatorial search problem using

various heuristics or invoking learned face models. The

enforcement of the prior information plays the role of a

regularizer.

3.2 Model-based methods

Shape-guided or model-based methods consider the

whole face and the ensemble of landmark as an instan-

tiation of a shape. Of the two sub-categories of model

based methods, the explicit model-based methods are by

far more popular, while there are only a few research

articles in the alternative implicit methods. Neverthe-

less we will discuss it briefly for the sake of com-

pleteness. Major model-based methods are listed in

Table 2.

3.2.1 Implicit model-basedmethods

Implicit models based methods use models without

state information: unstated models. Methods that use

pixel gray levels as input of a neural network to

detect multiple facial landmark try to learn implicitly

the spatial relations between landmark points. Search

with genetic algorithms can also be considered under

this category. For example, Cesar et al. [74] use inex-

act graph matching to discover landmarks. The model

image is segmented at and around landmarks while

the test image is oversegmented, e.g., using water-

shed algorithm, hence it contains a much larger num-

ber of segments as compared to the training (model)

images. Landmarking of the test image, in other words,

labeling of the segments as belonging to a landmark

location is carried using inexact graph matching. The

global dissimilarity function between the two graphs is

minimized using randomized tree search and genetic

algorithms. Ryu and Oh [75] segment the face, and

using a number of heuristics about the geometry of

facial components of interest, develop a face tem-

plate based on genetic algorithm, and apply multilayer

perceptrons as nonlinear templates at the landmark

level.
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Table 2 An overview of themodel-based face landmarking algorithms

Work Highlights of the method Domain knowledge used Landmark types

Leung et al. [76],
1995

Face image is Gaussian filtered at multiple ori-
entations and scales. This process provides a set
of candidate landmarks. Each possible configura-
tion of candidates is validated through random
graph matching.

The geometrical relationship between land-
marks is expressed with a probabilistic
model, which reduces the matching com-
plexity and eliminates irrelevant points.

Eye centers and nose.

Wiskot et al. [9],
1997

A labeled graph is constructedwhere links are the
average distances between landmarks andwhere
nodes represent 40-dimensional Gabor jets at
candidate locations. The face graph is elastically
deformed toward the query face.

Multiple face graphs capture head rota-
tions and bunch graphs capture the various
appearances.

An example graph:

Cootes et al. [79],
1998

AAM, a generalization of ASM, jointly models
the shape and texture variation of the fiducial
points. The main goal is to find the appropriate
model parameters that minimize the difference
between the query and the model face.

PCA models of both texture and shape. An example of fitting:

Cristinacce et al.
[80,81], 2003

Multiple landmark detectors are run on the face
and locate the initial landmarks. Then, two steps
are repeated until convergence: First, estimated
locations are improved by boosted regression;
second, shape model is fitted to the updated
landmark locations.

Configurational constraints are applied to
eliminate false positives as well as to recover
missing landmarks.

17 landmarks: eye, eyebrow,
nose, mouth and chin.

Cristinacce et al.
[83], 2008

Local templates per each landmark type are com-
bined into a geometrical configuration. The esti-
mated locations are updated by a shape-driven
search.

Learned global shape model to avoid non-
plausible face shapes.

22 landmarks.

Milborrow and
Nicolls [31], 2008

Enhancements on ASM such as stacking of two
ASMs for better initialization, 2D profile search for
individual landmarks etc.

Learned profile models for the individual
landmarks and learned global shape model
via PCA

76 landmarks.

Belhumeur et al.
[106], 2011

A local detector collects SIFT features and
landmark-specific SVMs output landmark likeli-
hoods. A Bayesian framework unifies the local
evidences into a global shape.

Anatomical and geometrical constraints on
facial landmarks derived implicitly from the
exemplars.

29 features.

Zhu & Ramanan
[99], 2012

Local and global information merged from
beginning via tree-connected patches covering
the landmarkable zones of the face. Patches
represent HOG features while global shape is
imposed via quadratic springs between them.
The maximum likelihood setting of the tree is
searched.

Linearly-parameterized, tree-structured pic-
torial structure of the landmark rich parts of
the face.

68 landmarks for
frontal and 39
landmarks for profile faces.
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3.2.2 Explicit model-basedmethods

Most of the explicit methods can be subsumed under the

topics of graph methods and active appearance methods.

Graph methods

The study of Leung et al. [76] based on random graph

matching is one of the first methods in this category.

They start with a set of candidate points by convolv-

ing the image with multi-oriented and scaled Gaussian

derivative filters. In order to validate the spatial arrange-

ment of the landmarks, each configuration is tested

by matching it against a graph obtained from train-

ing data. In these graphs, the normalized mutual dis-

tances between landmarks are assumed to be Gaussian

distributed. This probabilistic model helps also to elim-

inate irrelevant configurations and reduce the matching

complexity.

A seminal study in graph fitting was presented by

Wiskott et al. [9], called elastic bunch graph matching

(EBGM). In this model, nodes of the graph are charac-

terized by Gabor jets, that is, Gabor wavelet responses

at several scales and orientations, all stacked as a vector.

The Gabor jet energies help to register the nodes of the

graph to the face landmarks where the graph similar-

ity measure takes into account both the magnitude and

phase information of the jets. This method deforms elas-

tically the face graph depending upon collective Gabor

responses while preserving its geometric configuration.

In the same vein, Zhu and Ji initialize a set of 28 land-

mark points using a face model [77], scaled to the detected

face size. In the first iteration, landmarks are anchored

at the eyes, which are detected via the Viola-Jones algo-

rithm [38]. The initial mesh estimation is successively

refined using Gabor jets and a slightly modified version

of EBGM (using grid search based procedure for match-

ing the phase coefficients). Any abnormal deviation of

facial landmarks is corrected via PCA subspace model.

One disadvantage of these configurational models such as

EBGM or AAM is that they need a good initialization,

which is not straightforward for unknown head poses.

To overcome this limitation, Wiskott et al. [9] trained

graphs corresponding to profile, half-profile and frontal

faces.

Two-tier graph methods

In the studies of [68,78], statistical decision theory is

compounded with geometry information for additional

robustness. Most likely-landmark locator (MLLL), pro-

posed by Beumer et al. [78], can also be thought as a

variety of Viola-Jones algorithm. MLLL aims to maximize

the likelihood ratio of a set of points to be in the prox-

imity of a landmark versus the negative case. This initial

localization step is followed by a shape correction method

based on PCA subspace projection and elimination of

false positives.

In this vein, Akakın and Sankur [27] continue the two-

tier landmark-refinement tradition and employ a prob-

abilistic graphical model (PGM). The initial landmark

estimates are found via landmark specific SVMs oper-

ating on DCT masks. Each landmark neighborhood is

described by selected zonal DCT coefficients. The arcs

between the nodes of the PGM (landmarks) and the sub-

tended angles are modeled as Gaussian spring forces with

parameters learnt during a training phase. Obviously, the

spring forces toward nearer landmarks are stronger since

one expects that the corresponding anthropometric vari-

ability will be smaller and those linking the more distant

landmarks will be weaker. For example, the left outer eye

corner would be tightly coupled to left eye inner corner,

but more loosely coupled to right eye corners, to mouth

corners or to the nose tip. The PGM acceptsm candidates

for each of the k landmark points (m is usually a small

number, a function of the specific landmark), resulting in

a combinatorial search. The n points, composing the best

configuration, are called the support set and they do not

necessarily cover all the landmarks. This support set is

used as anchor points for adapting the graph to the actual

face. Any landmark missing due to occlusion or poor data,

(k − n) points, is estimated using back-projection of the

graph [64]. In [16], the authors increase the number of

detected landmarks to 17 and used them for the purpose

of facial expression and head gestures analysis.

Active shape and appearance models

The most important paradigm in the model-based cat-

egory consist of the active shape model (ASM) and AAM

varieties and their various descendants. In ASM, the

deformable objects (i.e., faces) are represented by a set

of fiducial points, which are found with feature detection

methods. Configurational shape variations are regular-

ized by PCA so that the face shape can only deform

in controlled ways learned during training. In the same

vein, AAM is proposed to impose jointly the constraints

of shape variation and texture variation [79]. In AAM,

the shape and texture are combined in the PCA sub-

space such that PCA coefficients are jointly tuned to

account for the geometry and texture differences from

the mean face. Recall that, in contrast to ASM, AAM

is a generative approach in that by adjusting the model

parameters, the shape and texture of plausible new faces

can be generated. In a sense, a model face is morphed

into a target image so as to minimize the model fitting

residual.

Cristinacce and Cootes have also proposed a Shape

Optimized Search algorithm where the feature responses

corresponding to the landmark shape models are learned

using the ASM [80]. Three types of landmark features are
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used, namely, (i) Gray-level information (15 × 15 win-

dows reduced with PCA), (ii) Orientation maps resulting

from Sobel edge operator, (iii) Features resulting from

a boosted classifiers, e.g., [38]. The concatenation of

these three feature sets forms the landmark shape vector.

The shape vector is then used in a shape-guided search

to select the best candidate among possible configurations

while the positions of missing points are predicted by

the shape model. The Shape Optimized Search method,

where in effect templates are learned under configura-

tional constraints, outperforms AAM approach [79]. Sev-

eral variants of ASM/AAM have recently been proposed.

One of them is the boosted regression ASM [81]. The

main difference of this variant is that it uses landmark

detectors based on Haar features and boosted classifiers

[38] instead of eigen models. In another variant [82],

separate boosted cascade detectors, one for each land-

mark, model shapes implicitly by learning the pairwise

distribution of all true feature locations. This approach

can be thought as a combination of multiple detec-

tors, called pairwise reinforcement of feature responses

(PRFR). Finally an AAM which models edge and corner

features instead of normalized pixel values is used for

refinement.

An important step forward from the AAM algorithm

is the CLM: constrained linear model algorithm [83].

Despite inheriting some of the important tools of AAM,

CLM differs from AAM because it is not a genera-

tive model for the whole face, instead it produces itera-

tively landmark templates and applies a shape-constrained

search technique. Like AAM, CLM also profits from

labeled training set. The idea of template update was

used by the authors in their previous study [79]. In

[83], this idea was developed further so that the posi-

tion vectors of the landmark templates are estimated

using the Bayesian formulation. The posterior distri-

bution in the Bayesian formula incorporates both the

image information via template matching scores and

the statistical shape information. Thus, new landmark

positions are predicted in the light of the image and

the joint shape model, and then templates are updated

by sampling from the training images. The optimiza-

tion search is instrumented via Nelder-Mead simplex

algorithm.

Another important contribution to the ASMmethodol-

ogy was made by Milborrow and Nicolls [31], and their

software, called standard ASM (STASM) is practically one

of the standards, widely adopted by the community. Their

starting point is the original work of Cootes and Taylor

[84], and they modify several of the steps such that cumu-

latively the resulting algorithm—STASM—works roughly

60% better, in that the average landmarking errors form17

decreases from 0.08 × IOD to 0.05 × IOD. The three

improvements consist in using two dimensional profiles

while searching for landmark updates, second, in adapt-

ing the shape model along the progress of the iterative

search by varying the number of shape eigenvectors, and

finally in running two search steps in cascade to recover

from fatal starts. A recent addition to the constrained local

models is the study of Saragih et al. [85] where the authors

bring a probabilistic interpretation to the optimization of

the statistical shape model parameters.

4 Landmarking of 3D faces
Although most of the methodological advances in face

landmarking has been realized on 2D images, the inter-

est in processing 3D face images is rapidly increasing due

to the wider availability of 3D cameras, e.g., Kinect sen-

sor device, the evolution of 3D television and video. A

recent review article on 3D human face description [86]

traces the history of the use of landmarks from anatomi-

cal studies to aesthetic concerns, from face recognition to

anthropometric measures for face correction.

The anatomical landmarks used in 3D are the same

as those used in 2D images; while 2D image landmark-

ing uses the gray-level features, 3D benefits from surface

curvature features. There are, of course schemes that ben-

efit simultaneously from 2D texture and 3D curvature

information since 3D imaging devices provide also regis-

tered 2D optical images. One advantage of landmarking

in 3D is that it enables alternate processing techniques

for landmarks since there are multiple ways of represent-

ing 3D face data. For example, point clouds, depth maps,

multiple profiles, voxels, curvature and shape index [87]

have been used for face recognition, and these have not

yet fully exploited for landmarking. A more important

advantage is that it can potentially mitigate some of the

limitations encountered in 2D landmarking. Recall that

2D landmarking becomes very sensitive to pose variations

beyond 20° tilt and/or yaw, and it suffers also from illumi-

nation effects. In this sense, 3D face data has the promise

of filling the performance gap in the presence of severe

lighting and pose variations. The downside is that 3D face

raw data demands substantially more preprocessing as

compared to 2D. For example, the face surface must be

smoothed, spikes and discontinuities removed, and gaps

filled in.

4.1 The use of heuristics

3D face data provides the heuristics of nose tip defined

as the closest point to the range camera. The nose tip

is found to be a reliable and easily detected landmark,

barring poses with excessive tilt and/or yaw. In fact,

many studies in the literature have exploited this sim-

ple heuristic. Lu and Jain estimated jointly the yaw angle

of the face and the nose tip by exhaustively search-

ing over quantized sectors [88]. The remaining fiducial

landmarks (inner eye corners, mouth corners and chin)
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are estimated using the face orientation information, cor-

nerness feature from intensity image and shape index

from the range image [89]. Note that their method [88]

allows a wide pose angle range extending from -90° to

90°. Dibeklioǧlu et al. [90] introduced a heuristic approach

to increase the performance of 3D landmarking. They

extracted the relevant regions by thresholding the dif-

ference between the Gaussian curvature and the mean

curvature images. This difference image highlights the

facial landmarks and its higher peak locations correspond

to candidate regions. They determined a circular interest

region that embraces all the components left after thresh-

olding the difference image. They also profited from these

heuristic rules on the curvature difference image to deter-

mine a circular RoI that embraces all the components

and the nose tip robustly, both even under occlusions and

severe pose variations.

4.2 Average face model

Gökberk et al. [87] solved the problem by initializing

the landmarks of the test face with the landmarks of an

average face model (AFM), the two being aligned initially

via iterative closest point (ICP) algorithm. The landmark

positions are then searched and refined using such shape

descriptors as Gaussian curvature, mean curvature, sur-

face normals and relative distances to the facial symmetry

plane.

4.3 Surface curvature

Akagündüz et al. [91], inspired by the scale-invariant fea-

ture transform (SIFT), described the facial surface with

the mean and Gaussian curvatures. The curvature data is

calculated at many scales using a Gaussian pyramid and

then binarized via thresholding. This yields a 3D curva-

ture field, with two spatial dimensions (UV) and one scale

dimension (S). The facial components (chin, nose and eye

pits) are then identified using connected components in

the UVS space, and their geometrical relationships sub-

sumed by a graphical model. Segundo et al. [92] also

use the curvature field the landmarks that are the least

affected by expressions, namely the nose tip, eye corners

and nose corners. Using biquadratic approximations to

the local surface, the Gaussian and mean curvature are

computed to identify the peaks and pits. For example, eye

corners present a pit-like surface, and the nose tip presents

a peak-like surface. The coordinates of the landmarks are

found by a number of heuristics, such as the projections

of the depth information reliefs.

Nair and Cavallaro [93] use a different approach, that of

point distribution model (PDM for face detection), regis-

tration, landmarking and description. The PDM actually

represents the face shape including the required land-

marks, as well as the statistical information of the shape

variations. Once a statistical model of PDM is obtained

using a training set (49 ground-truthed landmarks are

used), one proceeds to fit this model to the actual faces.

The fitting process is guided by the curvature-based

feature map characteristic of the faces. The model is

initialized with fiducial landmarks such as eye corner

(endocanthus, exocanthus) curvatures. These vertices

generate the remaining candidates, and they eventually

settle on the landmark as a result of model transformation

with the minimum deviation from the mean shape, while

respecting the constraints of subspace shape.

Conde andCabello [94] used spin images to characterize

the local surface around the landmarks. Spin images can

be thought of as a 3D-to-2Dmapping such that each patch

is characterized by relative distances of the surface points

to a reference point, some sort of distance histogram. The

search space is reduced by selecting the areas with higher

mean curvature, and SVM classifiers are used to differen-

tiate between the spin images of nose tip and inner eye

corners.

4.4 Joint use of 2D and 3D

Since most of the 3D acquisition devices provide also

2D color-texture image over an identical sampling grid,

the prospect of utilizing 3D and 2D data jointly becomes

attractive. Such multi-modal approaches have already

shown promising results [42,95]. For example, Boehnen

and Russ [42] used range and color data jointly. First,

range data is used to eliminate the background and to con-

strain the facial component search area. A YCbCr color

model in conjunction with a geometric-based confidence

measure is used to segment skin regions and determine

eye and mouth regions. Geometry-based modality aids in

the selection of the best landmark set, and it is based on

the 3D measurements made over the range data.

Salah and Akarun [95] compared 3D-based landmark

extraction with 3D-aided 2D landmark extraction. They

model Gabor jet features statistically as a mixture of

Gaussians in a lower-dimensional manifold, and to this

end they use mixture of factor analyzers. They con-

cluded that under favorable conditions (e.g., FRGC v.1)

2D and 3D systems perform on a par. Under unfavor-

able conditions (e.g., FRGC v.2), 3D performs better on

nose tip and eye corners, though the detection rate is

lower at mouth corners. However, under adverse condi-

tions, the 2D and even 3D-assisted 2D algorithms com-

pletely fail. Open-mouthed facial expressions is one of

main reasons for their lower localization performance,

and they observed that the wrinkles between lower lip

corner and chin also cause false positives for the mouth

corners in 3D.

Akakın and Sankur had addressed the 3D landmarking

problem as a combinatorial search [27]. Recently Sunko

et al. [96] have managed the combinatorial problem using

RANSAC algorithm. First, they find the reliable features
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using spin images as features, and the missing ones are

regressed using the multivariate Gaussian model encom-

passing all 3D landmark coordinates. To sort out the

correct landmarks from themultitude of candidate points,

they use all combinations of four points, and RANSAC

is used as the basis of the feature matching procedure.

The median of the closest candidates for the missing land-

marks is considered. The cost function consists of a part

accounting for the reconstruction error, that is the PCA-

instrumented shape fitting term for the found landmarks,

while the other part accounts for the distance from the

inferred landmarks to their closest candidates.

3D face landmarking methods are summarized in

Table 3.

5 Recent progress in face landmarking
Interest in face landmarking seems recently to be

revamped as attested by the flurry of articles in the

last five years. In contrast to the efforts of the last two

decades, recent studies are characterized by the following:

(i) A wider employment of machine learning techniques

ranging from random ferns to the aggregation of weak

learner outcomes to result in a more robust estimator;

(ii) Confronting a wider range of out-of-plane face poses,

notably yaw angles; (iii) Training and testing across sev-

eral databases and increasing use of “faces in the wild”,

e.g., real world faces in unconstrained environments col-

lected mostly from the web; (iv) A more pronounced

employment of regression techniques, whether support

vector regression (SVR) or Random Forests, in lieu of

classification techniques.

Belowwe discuss a sampling of algorithms introduced in

recent articles, which we think are prototypical of recent

progress in face landmarking. These articles could also

have been discussed in Section 3 under the appropriate

categories. However, we opt to discuss them separately

to give a flavor of recent research trends in landmarking.

Furthermore, we have added suggestive subtitles to indi-

cate what we think to be the more innovative aspect

of the work, but otherwise they do not denote a strict

categorization.

5.1 Regression methods

The two-tier approach of Valstar et al. [70] uses in the

first level surrounding image information to predict land-

mark location via support vector regression (SVR), and

in the second level, the global shape information via a

Markov Network. The regressor simplifies the landmark

search in contrast to exhaustive sliding-window search

with a template window. Briefly, they use Haar-like filters

as descriptors of local appearance, benefiting also from

the speed advantage of the integral images. The search for

the initial seven fiducial landmarks exploits a prior model

of landmark locations in the bounding box of the face. The

features are selected by the Adaboost regression, which

uses multiridge regression as the weak classifier, and their

ultimate number is determined not by Adaboost itself, but

subsequent cross-validation using SVRs. Once the fiducial

landmarks are consolidated, they generate hypotheses for

the positions of the remaining 15 “unstable” landmarks,

which are refined then with another application of SVR.

A bank of regressors predict the distance and angle to

the target landmark, and their votes are combined via

the median operator. Finally, the global information is

put into use by means of a Markov Network, which uses

the learned spatial relationships between landmarks and

penalizes improbable landmark configurations. Network

nodes are not landmark locations per se, but relation-

ships between pairs of landmarks, that is, vectors that

point from one landmark to another. Since the angular dif-

ferences and the length ratios of these vectors are used,

planar rotation and scaling problems as well as any initial

Viola-Jones face detector errors are automatically taken

care of. The innovative aspects of this study is a rela-

tively new way of combining local and global information,

rightly called Boosted SVR coupled with Markov Net-

works: BORMAN. In a follow-up version of this work [47],

they use evidence-driven sampling, and test the enhanced

algorithm on a much larger set of conditions and of

databases.

Cao et al. [97] point out that local evidence is sufficiently

strong only for a few prominent landmarks, but otherwise

most others are not salient enough and cannot be reliably

characterized by their image appearance, and therefore

shape constraint is essential. Their method is regression

based where the shape constraint is realized in a nonpara-

metricmanner. Their nonparametric approach is based on

the fact that the regressed shape is a linear combination of

all training shapes. An interesting aspect is that instead of

using the regressors in parallel and fusing their result as in

[98] the authors use sequential regressors, where each one

in the sequence uses the image information and the shape

estimated from the previous stage of regression. Further-

more, the regressed shape is always constrained to reside

in the linear subspace constructed by all training shapes.

This guarantees the plausibility of the shape as well as

global consistency.

5.2 Tree-structured search

Zhu and Ramanan [99] address the three linked prob-

lems of face detection, face pose estimation and face

landmarking jointly. Since pose is part of estimation, the

algorithm practically works as a multiview algorithm. In

contrast to [47,70], where local and global information

are invoked in succession, this algorithm is shape driven,

and local and global information are merged right from

beginning. This is implemented by considering several

(30 to 60) local patches that are connected as a tree, which
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Table 3 An overview of the 3D face landmarking algorithms

Work Highlights of the method Domain knowledge used Landmark types

Lu & Jain [88], 2006 Shape index and cornerness information are
fused into a field where extrema are searched
at conjectured locations. Since face orientation
is estimated, the method is robust against pose
(i.e., yaw).

Nose tip is detected as the peak of
the central vertical profile. Prior loca-
tion probability of the eye and mouth
corners vis-á-vis the nose tip. Anthro-
pometric distances between landmark
points measured in world coordinate
system form a constraint set.

Mouth, inner eye corners,
nose and chin tip.

Gökberk et al. [87],
2006

An Average Face Model with 10 landmark
points is aligned to the scene face via Iterative
Closest Point algorithm. Initialized landmark
positions are corrected via shape descriptors
of Gaussian curvature, mean curvature, surface
normals and landmark distances to the face
symmetry plane.

3D Average Face Model introduces
both face geometry and local shape
information.

10 landmarks (m7 plus
philtruma , nasion and chin).

Conde & Cabello [94],
2006

Mean curvature field of the face reveals the
high curvature extrema; spin images at these
extrema are classified via SVM as eye inner cor-
ners and nose tip.

None. Endocanthionb and nose tip.

Akagunduz & Ulusoy
[91], 2007

Mean and Gaussian curvatures are calculated
at many scales, and organized as a space-scale
Gaussian pyramid (UVS). Surface shape proper-
ties within the connected components in the
UVS space are investigated as being eye pits,
chin and nose protuberances.

Topological graph to regularize the
search is only suggested.

Eye pits, nose tip and pit,
chin.

Salah & Akarun [95],
2006 and Dibeklioǧlu
et al. [90], 2008

Gabor jets are statistically modeled as incre-
mental mixture of factor analyzers (IMoFA) to
generate a lower-dimensional manifold. IMoFA
is run on the difference image of the Gaussian
and mean curvature fields.

Nose tip heuristics. m7 landmark set.

Nair & Cavallaro [93],
2009

PDM: Point Distribution Model, i.e., a
parametrized model of the 49 3D landmark
configurations is computed. The PDM is fitted
to the face driven by local curvedness and
shape index information.

(i) PCA model of the 49 landmark
points; (ii) face heuristics to prune out
combinations of candidate landmarks
to arrive to plausible shapes.

49 upper face landmarks.

aPhiltrum is the vertical groove between the base of the nose and the border of the upper lip.
bEndocanthion is the point at which the inner ends of the upper and lower eyelid meet.

collectively describe the landmark related region of the

face; in other words, the patch-based face graph mod-

els the RoI of the detected face and incorporates its pose

and landmark information. This approach is an adaptation

of the idea of tree-structured pictorial structures [100].

In more detail, each patch is characterized by a HOG

descriptor [33], and these patches are connected with

quadratic springs in order to configure a shape. The

authors employ a mixture of trees where each tree cor-

responds to a pose or to an expression in the frontal

pose. The final shape is determined by the maximum

likelihood tree structure that best explains the landmark

locations for the given mixture, assuming that the land-

marks are Gaussian distributed. In effect, one infers the

face pose and landmarks by maximizing over all mix-

tures and over all possible shapes given the patch HOGs.

They also investigate the sharing of parts [101], and not

surprisingly, non-shared model is better, albeit slightly,

in both pose and landmark accuracies. Tree-structured

pictorial structures have also been successfully applied
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to face recognition by Everingham et al. [102], where

the local appearance of each landmark are learned by

a variation of Adaboost algorithm with Haar-like fea-

tures [38]. Similarly, Uricar et al. [103], inspired by pic-

torial structures, jointly optimize appearance similarity

and deformation cost with a parameterized scoring func-

tion where the parameters are learned from manually

annotated instances using the structured output SVM

classifier.

5.3 Random forests and ferns

Dantone et al. [104] propose pose-dependent land-

mark localization scheme that is achieved by condi-

tional random forests. While regression forests try to

learn the probability over the parameter space from

all face images in the training set, conditional regres-

sion forests learn instead several conditional probabili-

ties over the parameter space, and thus can deal with

facial variations in appearance and shape. The head

pose is quantized into five segments of “left profile,

left, front, right and right profile” faces and specific

random forests are trained. The local properties of a

patch is described both by texture and by 2D displace-

ment vectors that are defined from the centroid of

each patch to the remaining ones. Specifically, texture is

described by Gabor filter responses in addition to nor-

malized gray values in order to cope with illumination

changes. Training of conditional random forests is very

similar to random forests; the main difference is that

the probability of assigning a patch to a class is condi-

tioned on the given head pose. This approach is able to

deliver located landmarks in a query image at real-time

speed.

Efraty et al. [105] contain a very extensive study on land-

marking performance using a multitude of face databases.

Their version of local and global information paradigm

operates as follows: locally, unions of simpler polygonal

sub-shapes represent groups of landmarks; globally, all

sub-shapes are deformed in parallel toward their target

landmark positions. The global search is instrumented via

agglomerate fern regressors. The sub-shapes are triangles,

whose vertices should eventually settle on the correspond-

ing landmark positions. Since multiple instances of sub-

shapes are initialized, the scheme is claimed to be robust

against pose, illumination and expression artifacts. The

final landmark positions are computed as the mean of

these parallel instantiations, and their variance indicates

the reliability of the landmark. In summary, while their

preprocessing step and shape model are fairly standard,

the originality of the method lies in the bank of regres-

sors, which are charged with the duty of predicting the

deformations for all instances of sub-shapes. The algo-

rithm fuses every few iterations the predicted positions for

the landmarks shared by several sub-shapes.

5.4 Bayesian approach

Belhumeur et al. [106] use innovatively a fully Bayesian

approach to deduce landmark positions from local evi-

dences. An interesting aspect of their work is that these

evidences, that is, the local detector outputs are collected

from a cohort of exemplars (sample faces with annotated

landmarks), which thus provide non-parametrically the

global model information. In other words, anatomical and

geometrical constraints on facial landmarks are implicit in

the exemplars. Depending upon the choice of the exem-

plars, localization robustness can be obtained against a

large range of real-world variations in pose, expression,

lighting, makeup and image quality. The local detector

itself consists of a sliding window whose size is pro-

portional to IOD and which collects SIFT features. The

normalized SVM score of the SIFT feature set, d, gives

local likelihood of a landmark at position x: P(x|d). In the

next stage, the global detector models the configurational

information of the ensemble of fiducial points. Thus the

joint probability of the locations of the n landmarks, X =

[ x1, . . . , xn], given the vector of their local detector out-

puts, D =[ d1, . . . , dn], that is P(X|D), is maximized. It is

interesting to note that this method surpasses in accuracy

the performance of the manual landmarking in most of

the 29 landmarks considered.

5.5 Semi-supervised learning

Tong et al. [107] address the tedious and often imperfect

task of manual landmark labeling, and suggest a scheme

to partly automate it. In their method, a negligible per-

centage (e.g., 3%) of faces need to be hand labeled, while

the rest of the faces are automatically marked. This is real-

ized by propagating the landmarking information of the

few exemplars to the whole set. The learning is based on

the minimization of the pairwise pixel differences result-

ing in two error terms: The penalty in one term controls

the warping of each un-marked image toward all other

un-marked images, so that they become more alike irre-

spective of the content. The penalty in the other term

controls the warping of un-marked images towardmarked

images, and it is here that the physical meaning of the

content is imposed. The warping function itself can be a

global affine warp for the whole face, or a piecewise affine

warp to model a non-rigid transformation.

5.6 Multi-kernel SVM

Rapp et al. [108] start with the two major patches on the

face: one covering the eye region and the other roughly

the mouth region. For testing, pixels in the respective

regions to be part of a target landmark; texture data is

extracted using the multiresolution windows (progres-

sively smaller nested windows) that capture information

ranging from global to local view. The pyramidal infor-

mation is not concatenated; instead, every resolution level
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is fed into a different kernel and the convex combina-

tion of these kernels, each dedicated to a resolution level,

forms a multi-kernel SVM. The SVM is trained using

center-surround architecture, with the surround windows

forming the negative examples. Following the discovery

of landmark points, initially without any spatial relation-

ship among them, point distribution models are invoked

to reach to plausible shapes. The point distribution mod-

els are particularized to the eye-eyebrow pairs and to

the mouth. The shape alternatives are evaluated using

Gaussian mixture models (GMMs), so that the point com-

binations that possess the highest sum of SVM scores and

that fit best to the learned models are selected.

5.7 Extended template

Kozakaya et al. [98] solve the landmarking problem

using multiple voting of extended templates. An extended

template is defined for each point as a combination of

three parts, of a local descriptor at the sampling point, of

its directional vector pointing to the given landmark posi-

tion, and thirdly, of the local likelihood pattern around the

landmark positions. Sampling points are taken on a regu-

lar grid. Every local descriptor has N vectors pointing to

the N landmark points and the associated local likelihood

patterns, where local likelihoods are obtained from the

HOG vectors. In other words, local information resides in

the HOG features of the two, sampling and target land-

mark localities while the global shape information resides

in the joint treatment of the N landmarks. This scheme

attains robustness by two means, by the large number

of sample points around each target on the face and by

nonlinear fusion of the resulting pointing vectors. In the

fusion stage, pointing vectors are weighted inversely pro-

portional to the local appearance error and are combined

robustly with least median of the squares.

In summary, from the above articles and from the many

others reviewed but not accommodated in the text, we

have observed the leitmotiv of coordinating and exploiting

the local image evidence and the global shape information

at various levels of sophistication.

6 Experimental study and comparisons
6.1 Standard databases

Since standard databases are compulsory for experimental

assessment and performance comparisons of algorithms,

we briefly review the most relevant face databases suitable

for landmarking studies. Ground truth data, i.e., manu-

ally landmarked spatial positions of the landmark points

is much desired for referenced landmarking performance.

One way to obtain the ground-truth data is to employ

manual work or use Amazon mechanical turk (MTurk)

scheme to carry out this tedious task. Typically, several

folds of independent manual landmarking are run since

there is rarely full agreement between the markers, and

the ground truth positions are taken as the mean of these

folds (typically three). An interesting result is reported in

[106] where the automatic landmark detector proves to

be more consistent than three human annotators, espe-

cially for eyebrows and chin tip. We would like to note

that quality of the manual landmarking is critical since

higher consistency can boost performance. A case in point

is the annotation with Mechanical Turk where the quality

checks are loose; instead the average variance of trained

annotators tends to be much lower.

We present prominent ground-truthed face databases

according to two categories: databases under controlled

conditions and databases without any control and con-

ditioning. Controlled databases are collected within the

framework of a defined experimental setup using one

or more of the four control instructions: (i) differ-

ent facial expressions; (ii) occlusions; (iii) head rota-

tions; and (iv) illumination variations. For example, CMU

Multi-PIE database [109] is a good testbed for rota-

tions, and the Bosphorus database [110] is very rich

in the variety of facial action units and facial expres-

sions. Uncontrolled databases, on the other hand, are

collected without any directives given to the subjects,

and they are appropriately called sometimes “faces in

the wild”. Recently, databases culled from social network

sites such as google.com, flickr.com, facebook.com have

stirred a lot of interest, first, because they provide more

realistic and challenging databases, and second, due to

the huge potential of web sources in sharp contrast to

the laborious process of building controlled databases.

The downside is, of course, uncontrolled faces are

seldom labeled.

6.1.1 Controlled databases

Themore commonly used controlled face databases are as

follows:

Aleix-Robert face database (AR’98): AR face

database contains 4000 color images of 126 people

[111]. There are strict constraints on the pose of

subjects. Each subject has 13 different images,

including 4 facial expressions, 3 illumination

variations, 2 occlusions (wearing sun glasses and

scarf) and 4 occlusions on top of illumination changes

(e.g., wearing sun glasses and leftward illumination);

these images are captured in two sessions with a

two-week interval. Ding and Martinez[68] have

provided also 130 manually annotated landmarks on

the contour of faces and of the facial components.

The dataset is available on request at: http://www2.

ece.ohio-state.edu/~aleix/ARdatabase.

Extended M2VTS database (XM2VTS’99):

XM2VTS database contains video recordings of 295

people [112]. All recordings are collected in four

http://www2.ece.ohio-state.edu/~aleix/ARdatabase
http://www2.ece.ohio-state.edu/~aleix/ARdatabase
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sessions over a period of four months. Each

recording is captured while the subject is speaking or

rotating his head along yaw and pitch directions as

instructed. The collection consists of 2360 color

images, sound files and 3D face models. Note that

30% of the images are of poor quality due to motion

blur on faces or due to closed eyes and hair occlusion

on face. The data set is available on request at:

http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb.

Cohn-Kanade database (CK’00): The 97 subjects in

the first released portion of the Cohn-Kanade

AU-Coded Facial Expression Database [113] were

instructed by an experimenter to perform a series of

facial displays that include single action units and

combinations of action units. Totally, 486 video

sequences were recorded where each sequence

begins with a neutral expression and leads to the

apex of the target expression. The extended version

CK+’10 [114] contains 43 FACS coded action units

and 8 studied facial expressions as well as

spontaneous smile expressions. Faces in all

sequences are frontal and free of illumination

variations. In this release, the number of subjects is

further increased to 123, resulting in totally 593 video

sequences. For each sequence, a keyframe is

manually annotated, and in the remaining frames

annotated landmarks are automatically aligned to

face by the gradient descent AAM fitting algorithm

in [115]. The dataset is available for distribution at:

http://www.pitt.edu/~jeffcohn/CKandCK+.htm.

Bosphorus 3D face database (Bosp’08): This

database includes 2D and 3D facial images of 105

subjects imaged with a great variety of action units

(more than 35 per person), in addition to the six

universal motions and several occlusion instances.

The head poses of subjects can have mild rotation,

yaw and/or tilt, but otherwise faces are free of the

illumination artifacts [110]. Since faces are captured

both in 2D and in 3D with a structured light camera,

the two modalities are registered. The faces

annotated with 24 landmarks in addition to being

FACS (Facial Action Coding System) [116] coded,

therefore this database can be used as a testbed for

3D landmarking as well as for comparative study of

2D and 3D landmarking. Information on how to

obtain the dataset can be found at: http://bosphorus.

ee.boun.edu.tr.

CMUmulti-pose, illumination, and expression

face database (Multi-PIE’08): The CMU PIE face

database [109] contains over 750, 000 facial images of

337 people. People are imaged across 15 different

poses, under 19 different illumination conditions,

and with 6 different expressions. The number of

annotated landmarks, provided only for a small

subset of the dataset, varies between 39 and 68 since

all landmarks are not visible in profile faces. Details

on obtaining the dataset can be found at: http://www.

multipie.org.

While the collections described above are the more

important controlled databases for landmarking, we find

it worth mentioning the following: FRGC data set of

2D and 3D face images [26], FERET database con-

taining face rotations from frontal to left/right profiles

[117], MMI Facial Expression database [118], UHDB11

database containing rotations and light variations [119]

etc.

6.1.2 Uncontrolled databases

Uncontrolled face databases are become increasingly pop-

ular in face detection, recognition, pose estimation and

in landmarking studies as they are more realistic and

challenging. The following datasets are of interest:

BioID face database (BioID’01): BioID database is

one of the most popular benchmarks for landmarking

algorithms. The database consists of 1521 gray level

images [120], collected within the framework of

FGNet project, European Working Group on face

and gesture recognition. These images show the

frontal views of faces of 23 different subjects, which

are recorded during several sessions in uncontrolled

conditions using a web camera within an office

environment. Compared to the controlled databases,

this dataset features a larger variety of illumination

conditions, backgrounds and face sizes.

Faces are manually annotated on 20 landmarks for the

purposes of facial analysis and gesture recognition.

The data is publicly available at: http://www.bioid.

com/downloads/software/bioid-face-database.

Labeled face parts in the wild database

(LFPW’11): LFPW database contains 3000 face

images downloaded from the web [106]. Face images

are automatically detected by a commercial face

detection system. This database exhibits a large

variety in appearance, e.g., facial expressions, pose,

age, ethnicity, imaging and environmental conditions

etc., and also includes manipulated photos, cropped

faces from movie scenes with extreme make-up and

clothing. However, the face detector fails to detect

near- and in-profile faces, which therefore are

excluded from the database. There are 29 manually

landmarked points, and this number can go up to 35

whenever landmark points on the ear are visible.

Manual annotations are obtained by employing three

MTurk workers and the ground truth is determined

by averaging the three manual annotated locations. A

subset of the database is made available and divided

http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb
http://www.pitt.edu/~jeffcohn/CKandCK+.htm
http://bosphorus.ee.boun.edu.tr
http://bosphorus.ee.boun.edu.tr
http://www.multipie.org
http://www.multipie.org
http://www.bioid.com/downloads/software/bioid-face-database
http://www.bioid.com/downloads/software/bioid-face-database
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into two protocols, i.e., training and testing, at:

http://www.kbvt.com/LFPW/.

Annotated facial landmarks in the wild

(AFLW’11): In the same vein, AFLW, contains

real-world images collected with a large variety in

appearance from Flickr [121].

This database is an order of magnitude bigger and

more complex as compared to LFPW dataset in that

the number of images and with annotated face

landmarks totals to 25, 993 and it possesses a much

larger variety of face poses (the ratio of the

non-frontal faces is 66% including up to ±90° head

rotations). Annotated locations are provided for 21

landmark points in addition to the ellipses and

rectangles enclosing the face can be found. The

database is available on request at: http://lrs.icg.

tugraz.at/research/aflw.

Annotated faces in the wild (AFW’12): AFW

dataset [99] is another example of in-the-wild

collections and differs from the previous datasets

[106,121] in that it consist of 205 images including

more than one face per image, 468 faces in total. This

renders AFW relatively more challenging as it

contains images with highly cluttered background

and with large variations both in face scale and pose,

i.e., it is possible to observe frontal and non-frontal

faces or close up and distance shots in a single image.

Each face is labeled with a bounding box, 6 landmark

locations and head rotation angles. The database is

not available online yet, but more information can be

found at:http://www.ics.uci.edu/~xzhu/face.

Another potentially useful database is called labeled

faces in the wild (LFW’07) [122], which contains 13, 233

facial images downloaded from the web. There are 5749

distinct subjects, 1680 of which have more than one

image. Manual landmark annotations are not provided

for this dataset, though recently Dantone et al. [104] had

MTurk workers to annotate the locations of 10 landmark

points.

The main characteristics of the aforementioned data

sets are summarized in Table 4.

Table 4 Overview of databases for landmarking studies

Number Number Number of Control Reference

of of landmarks∗ Modality tag∗∗ works

subjects images

Controlled

AR’98 [111] 126 4000 130 color image e, i, o, f [31,123]

[28,108]

XM2VTS’99 [112] 295 2360 68 video sequence o, f, nf, b [59,80,81]

[41,47,85]

[31,83,124]

[28]

CK+’10 [114] 123 10,734 68 video sequence e, f [28,44,108]

Bosp’08 [110] 105 4666 22–24 color, 3D data e, o, f, nf, r [28,90]

Multi-PIE’08 [109] 337 750,000 39–68 color image e, i, f, nf, r [47,105,123]

[85,99,108]

Uncontrolled

BioID’01 [120] 23 1521 20 gray-scale image e, i, o, f, nf, s [81,82,105]

[47,70,83]

[97,106,124]

[28,31,108]

Uncontrolled

LFPW’11 [106] – 3000 29–35 color, e, i, o, f, nf, s [97]

gray-scale

AFLW’11 [121] – 25,993 21 color e, i, o, f, nf, r, s –

AFW’12 [99] 468 205 6 color e, i, o, f, nf, r, s –

*Number of landmarks can vary upon visibility, e.g., 68 landmarks points are not available for profile faces.
**Acronyms of the control tags are as follows: i: illumination changes, f: facial expression, o: occlusion, r: head rotation, f: frontal face, nf: near-frontal (up to 15° yaw), s:

scale change, b: blur. The rightmost column lists representative methods that have used the corresponding database.

http://www.kbvt.com/LFPW/
http://lrs.icg.tugraz.at/research/aflw
http://lrs.icg.tugraz.at/research/aflw
http://www.ics.uci.edu/~xzhu/face
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Table 5 Experimented face landmarking algorithms

Acronym Face detector #Landmarks Training set Face pose Processing time

and expression per image⋆

FFPD [44] Haar feature based 20 CK frontal faces Frontal; Neutral 0.85

GentleBoost classifier

AAM [125] Viola-Jones face 66 Multi-PIE, XM2VTS Near-frontal; 0.12 s

detector Expression

STASM [31] Viola-Jones and Rowley 76 XM2VTS, AR Near-frontal; 0.18 s

face detector [126] Expression

BORMAN [70] Viola-Jones face detector 22 FERET, MMI Near-frontal; 65 s

detector Expression

ZhuRamanan† [99] A mixture of tree 68 Multi-PIE Free of pose and 25 s

structured part models expression

Everingham [102] Viola-Jones face detector 9 Consumer images Near frontal 0.4 s

flandmark [103] Description NA 7 LFW Near frontal; 0.12 s

expression

⋆Average run time on BioID database with a CPU of 2.50GHz and 8GB RAM. Each image has a resolution of 384 × 286.
†Trained model with 1050 parts.

Figure 5 Results of the tested algorithms. The columns refer to different algorithms form left to right: FFPD, AAM, STASM, BORMAN,
ZhuRamanan, Everingham, and flandmark. The rows correspond to three different datasets: BioID (upper row), CK+ neutral (middle) and CK+
expressions (lower row).
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Figure 6 Experimental results on BioID database. Th is set to 0.1.
(a) Detection rates of the seven different methods on them7
landmark set; (b) detection rates of the five different methods (FFPD,
AAM, STASM, BORMAN, ZhuRamanan) on them17 landmark set.

6.2 Comparative assessment of landmarking methods

In this section, we present the performance of selected

landmarking algorithms comparatively as tested on three

diverse face databases. Among several candidates, we

selected seven landmarking algorithms as listed in Table 5.

The rationale of selection was that the algorithm was

deemed to be representative of the state of the art and

for which an open software was available. For a thorough

comparison, we ran the algorithms both on controlled

databases (CK+ and Bosphorus) and an uncontrolled

database (BioID). With the controlled databases, we aim

to study in detail the influence of two confounding fac-

tors: facial expression (CK+) and head pose (Bosphorus).

These tested databases have been particularly selected

since none of the algorithms listed in Table 5 have been

trained on these three databases. We believe that this

point is important for a fair evaluation of algorithms. Face

literature ranging from face recognition to pose estima-

tion reports that testing and training within the same

database, even with non-overlapping training and test-

ing subsets, can yield optimistic results as compared to

experiments where databases used for training and testing

are different. The experiments on the Bosphorus database

is limited, because the considered methods were trained

only with frontal and near-frontal faces, and this did not

permit us to make a fair comparison against head poses

on Bosphorus database.

The results of the tested algorithms are illustrated for

BioID and CK+ database in Figure 5. The detailed exper-

imental results are presented in the sequel.

Recall that there are two subsets of landmarks that are

often used for testing, and these are referred to as the m7

andm17 subsets:

• m7 set: This set consists of four eye, one nose and

two mouth landmarks. According to Figure 2, these

are 28, 30, 32, 34, 41, 46, and 52.
• m17 set: This set consists of four eyebrow, six eye,

three nose, and four mouth landmarks. These are

16, 19, 22, 25, 28, 30, 32, 34, 40, 41, 42, 46, 49, 52, 55, 63,

and 64 as illustrated in Figure 2.

6.3 Tests on BioID database

We first compared the seven different methods on the

BioID dataset, which is the most frequently used uncon-

trolled testbed for landmarking algorithms. Figure 6a

reports the performance results for the m7 set and

Figure 6b reports those for the m17 set. Since the two

methods, Everingham and flandmark are not designed to

Figure 7 Comparison of landmarking accuracy due of different landmark of types (BioID database).
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Figure 8 Experimental results on CK+ database. Th is set to 0.1.
(a) Detection rates of the seven different methods on them7
landmark set; (b) Detection rates of the five different methods (FFPD,
AAM, STASM, BORMAN, ZhuRamanan), on them17 landmark set.

output m17 landmarks, there are only five competitors

for the m17 set: FFPD, AAM, STASM, BORMAN, and

ZhuRamanan. We observe that only STASM qualifies and

has the best performance among all, reaching above 90%

detection rate at the 0.1 × IOD threshold. AAM can be

considered as a runner up form7 with a performance high

in the upper 80%. One would have expected, for exam-

ple, ZhuRamanan to achieve better performance over 90%

on this uncontrolled database. One explanation would be

that ZhuRamanan was trained with Multi-PIE database, a

controlled database, while BioID is uncontrolled.

Recall that the m17 set contains somewhat more dif-

ficult landmarks, such as mouth centers and four on

the eyebrows, while m7 contains the most fiducial ones.

Hence it is natural that the m17 curves are below

those of m7. In Figure 7, a more detailed compar-

ison based on landmark types is given. The figures

reported in the bar chart are the average of the left

and right landmarks, e.g., “eye centers” means the aver-

age of the eye center accuracies of the left and right

eye. We observed that STASM does overall quite well

while the other remaining four methods have variable

performance, some dramatically falling down on cer-

tain landmarks. We found out that FFPD and BOR-

MAN detect almost the middle of eyebrows instead of

the eyebrow outer corners. This is illustrated in the

first and forth columns of Figure 5. This explains the

significant lower performance of eyebrow outer corner

detection in Figure 7. However, even excluding eye-

brow outer corners and evaluating the performance

over the remaining 15 landmark points did not change

the performance: STASM, AAM, FFPD, BORMAN, and

ZhuRamanan.

6.4 Tests on CK+ database

We repeated the same experiments on the CK+ database,

a controlled database, where we compared the seven and

the five selected algorithms for m7 and m17 landmark

sets, respectively. Figure 8a gives the performance of the

seven algorithms on m7 and Figure 8b of the five algo-

rithms onm17. We notice that in this controlled database,

AAM and ZhuRamanan algorithms surpass the perfor-

mance of STASM, partly because the former two were

trained on similar (but not identical) databases. Following

the same reasoning, one can state that the FFPD algorithm

has a low performance for expression faces since it is only

trained with neutral faces. In Figure 8b, while the perfor-

mances of STASM, FFPD, and BORMAN are significantly

dropped, AAM and ZhuRamanan are much more robust

under different facial expressions. Figure 9 reveals perfor-

mance details per expression type. Again we see that AAM

and ZhuRamanan are the best performers, uniformly over

all expressions while STASM is a lagging runner-up.

A summary of experimental results as exceedance per-

centage of the 0.1 × IOD threshold is given on BioID

and CK+ databases in Table 6. It is difficult to reach

a fair and general conclusion on the methods because

their performance depends critically on their training

set. However, taking into account the computational effi-

ciency and overall performance (please refer to Tables 5

and 6, respectively), AAM and STASM seem to be most

promising for real time applications, while ZhuRamanan

is the method to pursue for offline applications. It is true

that the algorithm of ZhuRamanan is two orders of mag-

nitude slower than, for example the AAM method. On

the other hand, it is one of the best performing meth-

ods, especially in adverse conditions where most other

methods fail.

6.5 Tests on Bosphorus database

The Bosphorus database is rich in facial action units, in

expressions and poses. Since expressions were addressed
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Figure 9 Comparison of landmarking accuracy for different facial expressions (CK+ database).

in the CK+ experiments, we used a subset of the Bospho-

rus database with yaw movement, that is, faces with yaw

angles of 10°, 20°, 30°, 45°, and 90°. However, all algorithms

fail since their code uses the Viola-Jones detector, which

can only handle faces up to ±15° yaw angles. The only

surviving algorithm is ZhuRamanan algorithmwhich does

not explicitly depend upon the Viola-Jones face detector.

For this reason, and partly because one cannot express

performance figures for occluded landmarks, we lim-

ited ourselves to give illustrations of landmark detections

for various yaw angles. As can be seen from Figure 10,

ZhuRamanan can handle yaw rotations even if trained

on a different database, which is another merit of this

algorithm.

7 Conclusion
After surveying of face landmarking techniques, of recent

research trends and comparative performance figures, we

could draw the following conclusions:

• State-of-the-art: The successful methods are the

model-based ones, which integrate landmark

evidences from local patches with a global shape

constraint. The two-tier approaches are methods that

in the first tier extract fiducial landmarks, and in the

second tier predict and consolidate landmarks with

less informative features under the guidance of a face

shape model are more successful. The coordination

Table 6 The detection accuracies of the algorithms on

BioID and CK+ databases for the threshold set at 10% IOD

value

BioID database CK+ database

m7 m17 m7 m17

FFPD 65 60 83 69

AAM 84 79 95 92

STASM 93 94 95 83

BORMAN 53 50 79 66

ZhuRamanan 69 51 94 90

Everingham 59 NA 76 NA

flandmark 69 NA 86 NA

Average 70 66 85 78

of the local and global information, or first- and

second-tier operations is realized with a diversity of

methods ranging from Bayesian prediction to SVR. It

appears that the performance of algorithms in the last

five years have improved to a point where for the

m17, it is on a par with manual landmarking. In fact,

if we limit our observations to the published results in

the articles this signifies a few percentage points, like

2–3% of IOD. Outside them17 set, the accuracy

remains within 5–8%. However, our experiments on

the seven most prominent landmarking algorithms

have revealed that these results are not always

reproducible. More specifically, when testing and

training database pairs are different than the ones

mentioned in the article, there can be significant

deviations from the announced results.

• Landmarking under realistic and adverse

conditions: Face landmarking methods, being often

local in nature, can be made more robust to intrinsic

variability and acquisition conditions. It is possible to

state that illumination effects can be mostly

compensated by such preprocessing steps as LoG:

Laplacian of Gaussian filtering or histogram

equalization. Similarly, facial expressions and modest

pose variations can be made up for by a richer set of

training instances. The bane of landmarking remain

severe pose variations, i.e., beyond 20° yaw angles and

tilts, especially when self-occlusions occur. We

assume that in-plane rotations can be corrected after

detection of the face and of the eyes. It appears that

hybrid methods like appearance-assisted

geometry-based methods [9,58], 3D-assisted methods

[88,90] or a connected battery of local templates as in

[99] hold a good promise for success.
• Robustness and ground-truthed databases: The

performances of algorithms may differ strongly from

database to database. In fact, the across-database

performance of the early algorithms, when they were

trained on one database and tested on another

database, showed this weakness, incurring sharp

drops in performance. It is encouraging to witness

that recent algorithms, notably [47,97,99,106,108]

have robust performance across a number of

different databases. The experimental results, though
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Figure 10 Results of the ZhuRamanan algorithm on Bosphorus database. Sample landmarked faces for different yaw rotations (from left to
right): 10°, 20°, 30°, 45°, and 90°.

quite extensive in intent, has not yet revealed the

ultimate and most fair comparison, in that methods

have not been given chances to be trained on

arbitrary combinations of databases. In fact, for a fair

comparison, we suggest that methods should be

tested in the LODBO manner: Leave One Database

Out style, where algorithms are trained with all

databases except one and then tested on the excluded

one. Finally, this survey of methodological

comparisons and the landmark databases should be

extended to dynamic scenes to evaluate the

concomitant problem of landmark tracking

algorithms [35]. In fact, the landmark tracking

problem itself deserve a separate

review effort.

• Methods to be explored:We believe some of the

promising research paths in landmarking techniques

are the following: (i) Sparse dictionaries: The

paradigm of recognition under sparsity constraint

and building of discriminatory dictionaries seems one

viable method. The discriminative sparse dictionary

can be constructed per landmark [127,128] or

collectively as in [129]; (ii) Adaboost selected features

for multiview landmarking: Gabor or Haar wavelet

features selected via modified Adaboost scheme

where commonality and geometric configuration of

landmark appearances is exploited [101]; (iii)

Multiframe landmarking: Determination of landmark

positions exploits the information in subsequent

frames of a video, using, for example, a

spatio-temporal representations [130,131].

• Facial expression and gesture data mining:

Presently Internet contains at least 200, 000 face

videos [132], usually annotated with contextual

information, and this number is rapidly increasing.

This wealth of data provides an interesting

opportunity to explore human facial expressions, in a

sense, to data mine expressions across cultures,

genders, ages and contexts. This source of face data is

important because it has been pointed out that the

lack of naturalistic, spontaneous expression data was

a major roadblock in computer analysis of facial

expressions. It has been pointed out that role-playing

expressions, that is facial expressions acted out as

prompted by a controller differ in their dynamics and

variety as compared to spontaneous expression

of the same emotions. We believe robust

landmarking will be instrumental for tapping this

very rich web source of genuine human expressions.

In conclusion, facial landmarking has come a long way

from its meager beginning at the end of eighties. The

problem can be considered to be solved for near frontal

faces with neutral to mild expressions, and adequate res-

olution. It appears that some of the successful algorithms

can be run at video rates. On the other hand, for uncon-

trolled conditions involving arbitrary poses and expres-

sions, the problem cannot yet be considered as thoroughly

solved. Recent research results, however, give us a positive

outlook.

Endnote
aNasion is a distinctly depressed area directly between

the eyes, just superior to the bridge of the nose.
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