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ORIGINAL ARTICLE 

 

A comparative study of fractional order models on state of charge estimation for 
lithium ion batteries  
 
Jinpeng Tian1,2, Rui Xiong1,*, Weixiang Shen2, Ju Wang1 

Abstract 

State of charge (SOC) estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles. Battery 

fractional order models (FOMs) which come from frequency-domain modelling have provided a distinct insight into SOC estimation. In this 

article, we compare five state-of-the-art FOMs in terms of SOC estimation. To this end, firstly, characterisation tests on lithium ion batteries are 

conducted, and the experimental results are used to identify FOM parameters. Parameter identification results show that increasing the 

complexity of FOMs cannot always improve accuracy. The model R(RQ)W shows superior identification accuracy than the other four FOMs. 

Secondly, the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational 

burden under different profiles, memory lengths, ambient temperatures, cells and voltage/current drifts. The evaluation results reveal that the 

SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs. Although more complex models can have better 

robustness against temperature variation, R(RQ), the simplest FOM, can overall provide satisfactory accuracy. Validation results on different 

cells demonstrate the generalisation ability of FOMs, and R(RQ) outperforms other models. Moreover, R(RQ) shows better robustness against 

truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.  

Keywords: Electric vehicle, lithium ion battery, fractional order model, state of charge. 

 

1  Introduction1 
 
1.1  Literature review 

Lithium ion batteries are the paramount component that 
enables the market penetration of electric vehicles (EVs). As a 
time-variant electrochemical power source, management of 
lithium ion batteries has drawn much attention. In particular, 
the accurate estimation of state of charge (SOC), which directly 
decides the driving distance and power performance, is one of 
the most indispensable tasks of battery management systems 
(BMSs) [1,2]. 

SOC is generally defined as the ratio between the available 
capacity and maximum capacity [3]. If a battery is fully 
charged, its SOC is defined as 100%. If a battery is depleted 
completely, its SOC is set to 0%. SOC works like a fuel gauge 
in conventional vehicles but it is more intricate as it cannot be 
measured directly. Numerous methods for SOC estimation have 
been proposed and are summarised in recent reviews [1,4]. 
Among them, model-based methods are most prevalent since 
battery models can be combined with observers to provide a 
closed-loop SOC estimation result [4]. Frequently used models 
for lithium ion batteries can be categorised into three main 
groups, namely electrochemical models (EMs), equivalent 
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circuit models (ECMs) and fractional order models (FOMs).  
EMs include a set of partial differential equations (PDEs) to 

describe electrochemical reactions [5,6]. Thanks to their 
explicit physical basis, EMs have been widely employed for the 
simulation of time consuming or dangerous experiments, such 
as short circuits [7,8] and battery ageing [9–11]. However, there 
are plenty of parameters in EMs, some of which cannot be 
obtained without assistance from battery manufacturers [12]. 
Furthermore, solving PDEs is an expensive task in terms of 
calculations [13]. These drawbacks hinder onboard 
applications of EM-based SOC estimation. 

ECMs are a popular choice for SOC estimation for lithium 
ion batteries. They consist of primarily ideal electrical 
components like capacitance, resistance and voltage source. 
Therefore they are computationally preferable [14,15] and are 
widely applied in microcontrollers [16–18]. A few comparative 
studies have been conducted on ECMs to reveal their abilities 
[19,20]. The main demerits of ECMs include low accuracy and 
weak physical basis. 

In the frequency domain, impedance models are widely used 
to the interpretation of processes of different characteristic 
frequencies in electrochemical impedance spectra [21]. Studies 
have demonstrated the effectiveness of the impedance models 
in the fields of ageing diagnosis [22,23] and the design of 
heating strategies [24,25]. Recently, the impedance models 
designed to fit impedance spectra in the frequency domain have 
been transplanted to the time domain for voltage simulation and 
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state estimation. This results in the so-called FOMs featuring 
constant phase elements (CPEs) which should be interpreted by 
fractional calculus [26–28]. In 2011, Andre et al. [29] studied 
the impedance spectra of a lithium ion battery and proposed a 
FOM containing three CPEs. This FOM was parameterised 
using EIS before being adopted for voltage simulation. The 
results showed that it is superior to a third order ECM. Hu et al. 
[30,31] integrated this FOM with adaptive fractional order 
EKFs to estimate SOC while updating part of the model 
parameters. The results showed the FOM has smaller SOC 
estimation error than a second order ECM. A different FOM 
with two CPEs was proposed by Xu et al. [32] and it was 
combined with a fractional order EKF to estimate SOC. The 
comparison with a first order ECM proved that the FOM has 
better voltage and SOC estimation accuracy. Several observers 
have also been designed for this FOM to achieve accurate and 
robust SOC estimation results [33,34]. Another FOM with two 
CPEs was proposed in [35], where the structural relationship 
between FOMs and ECMs was explained in detail. It was 
concluded that the first order ECM outperforms the ECM in 
terms of voltage simulation, even in the presence of short 
circuit [36]. In [37], Xu et al. simplified the FOM in [29] into a 
FOM with two “Zarc” elements, which corresponds to a 
parallel connection of a resistance and a CPE. The voltage 
simulation accuracy of the simplified FOM was illustrated by 
comparing with that of a second order ECM. This FOM was 
also adopted in [38], where a framework for SOC and state of 
health (SOH) co-estimation was proposed. Two fractional order 
EKFs were combined to estimate SOC and battery capacity, 
respectively. The results showed that the FOM was better than 
the second order and third order ECMs in terms of SOC and 
capacity estimation. To facilitate SOC estimation, the FOM was 
combined with a fractional order UKF in [39], and a 
corresponding observer was designed in [40]. Both studies 
illustrated improved accuracy compared with conventional 
ECMs. In [41], a simplified FOM containing only one CPE was 
employed for online identification of the open circuit voltage 
(OCV). Its accuracy was proved to be higher than that of the 
first order ECM. This conclusion is in agreement with [42] in 
which offline comparison of the FOM with five ECMs was 
conducted. Besides high accuracy, Sutter et al. [43] found the 
parameters of this FOM are associated with battery ageing and 
can reflect electrochemical information to a certain extent. 
Jiang et al. [44] developed a continuous time-domain 
identification method for this FOM. This model has also been 
employed for SOC estimation by using different fractional 
Kalman filters [45,46]. The results showed that this FOM 
provides higher accuracy than the first order ECM.  
1.2  Contributions 

Based upon the above discussions, one can note that a 
number of FOMs have been demonstrated to be more accurate 
and robust than conventional ECMs not only for voltage 
simulation but also for SOC estimation. However, different 

components and structures of FOMs inevitably affect the 
performance of their applications in voltage simulation and 
SOC estimation. As pointed out in [35], the most complex 
FOM does not necessarily provide the smallest voltage 
simulation error. Their ability to estimate SOC remains unclear.  

In this article, for the first time, we systematically compare 
five widely used FOMs for SOC estimation of lithium ion 
batteries. Besides estimation accuracy, the influence of memory 
length, ambient temperature, cell difference, voltage and 
current sensor drift is discussed to examine the robustness. This 
study can provide guidance to researchers and engineers in 
selecting the best FOM for SOC estimation. 
1.3.  Paper organisation 

The remainder of the present paper is organised as follows. 
The experimental setup and battery tests are introduced in 
Section 2. Five FOMs and their identification are outlined in 
Section 3. The SOC estimation method and comparison of 
FOMs on SOC estimation are described in Section 4. Finally, 
conclusions are given in Section 5. 

2  Experimental setup and battery tests  
 

In this section, the battery experiments are introduced to 
construct the dataset for the comparison of FOMs. In this work, 
seven lithium-manganese-cobalt-oxide (NMC)/graphite 
batteries randomly selected from the same batch are tested, and 
their specifications are given in Table 1. Cell 1 is used as the 
primary cell for comparison and cells 2-7 are used to evaluate 
the generalisation of FOMs. Fig. 1 shows the primary 
components of the test platform. This platform consists of an 
ARBIN tester, which is capable of charging/discharging the 
batteries under the control of the host computer, and a thermal 
chamber to regulate ambient temperature. The capacity test is 
first performed to measure battery capacity according to the 
standard charging/discharging method specified by the battery 
manufacturer. Then, the hybrid pulse power characterisation 
(HPPC) test is carried out for parameter identification. It 
comprises 49 groups of current pulses at the SOCs of 100%, 
98%, …, 4% in order to consider the SOC dependence of model 
parameters. The current pulses and corresponding voltage 
responses at different SOCs are be used for parameter 
identification of FOMs in Section 3.2. It is followed by two EV 
driving schedules, namely the dynamic stress test (DST) and 
urban dynamometer driving schedule (UDDS). The SOC 
estimation is conducted based on both profiles to simulate 
operating conditions in EVs. To assess the performance of 
FOMs under different conditions, four characterisation tests are 
conducted at 15 °C, 25 °C and 35°C. In all tests, the sampling 
frequency is set to be 1 Hz. The current and voltage profiles of 
all tests are depicted in Fig. 2. 

 
Table 1 Specifications of the NMC lithium ion batteries. 
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Specifications 

Nominal  
capacity 
(Ah) 

Nominal  
voltage 
(V) 

Cut-off 
voltage 
(V) 

Maximum 
charging/discharging 

current (A) 

Quantity 25 3.65 4.15/2.5 75/100 

 

 
Figure 1 Battery test platform. 

 
Figure 2 Current and voltage profiles of (a) capacity test (b) hybrid 
pulse power characterisation test (c) dynamic stress test and (d) urban 
dynamometer driving schedule. 

3  Fractional order models 
 

3.1  Model structures 

A few FOMs that were developed for fitting the impedance 
spectra have been introduced to time-domain applications in 
BMSs. Fig. 3 provides a summary of the widely used five 
FOMs in the literature for voltage simulation and SOC 
estimation. In these models, Uoc stands for OCV. Ri, R1 and R2 

represent resistances. Ut and I denote terminal voltage and 

current, respectively. I is defined as positive for battery 
charging. The constant phase element (CPE) is a fractional 
order element whose impedance at frequency f is expressed as  

( )
( )

( )CPE

1
, 0 1

j2
Z

Q f
 


=    (1) 

where Q (sα/Ω) and α are its coefficient and order, respectively. 
The CPE is a generalised element which can represent the ideal 
capacitance (α=1) and resistance (α=0). It is of interest to note 
that the serially connected CPE is often referred to as the 
Warburg element, a specific CPE with a fixed order of 0.5. In 
this article, this name is adopted to make it distinguishable but 
its order is considered as a variable therefore it is as flexible as 
the CPE. Its coefficient and order are defined as W and β, 
respectively. For clarity, the models are named according to the 
model structure. For example, R(RQ)W represents a model 
which consists of a resistance R, a R//CPE parallel branch and a 
Warburg element connected in series.  

 
Figure 3 Five fractional order models reported in the literature. 

The voltage Uc across a R//CPE branch and Uw across a 
Warburg element are governed by  

( ) ( ) ( )
( ) ( )

c c

W

D

D

U t RI t U t

W U t I t





 = −


=
 (2) 

where 𝜏 = 𝑅𝑄 stands for a model parameter similar to a time 
constant. Dα𝑓(𝑡) represents the Grünwald–Letnikov derivative 
[47] of a function f(t), which provides an intuitive discretised 
form: 
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where h denotes the step length and is set to 1 s in this work. [t/h] 
gives the greatest integer less than or equal to t/h. It is evident 
that in the time domain, the fractional order α leads to a 
memory of all values of 𝑓(𝑡) in the range of [0, t]. In order to 
reduce the computational cost, a short memory principle [47] is 
applied, and only data in the range of [t-L, t] are taken into 
account: 

( ) ( ) ( )
0

1
D 1

L
i

i

f t f t ih
ih






=

 
 − − 

 
  (4) 

where L denotes the memory length, and it is set to 20 in this 
work. The five models in Fig. 3 have been applied for SOC 
estimation based on sampled current and voltage data. To this 
end, these models should be firstly discretised. In light of the 
Kirchhoff's circuit laws and Eqs. (2) to (4), the discretised 
equations of the five FOMs are presented in Table 2, in which a 
new symbol is defined as 

( ) ( ) ( ) ( )
1

1
D 1

L
i

i

f t f t ih
ih






=

 
= − − 

 
  for brevity. The state 

space for SOC estimation is elaborated in Section 4. 
 

Table 2 Mathematical expressions of fractional order models. 

FOM Parameters Discretised model equations State space for SOC estimation 

R(RQ) 
[41–46] [Uoc, Ri, R1, Q1, α1] 

( ) ( ) ( ) ( )
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1 1
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R(RQ)W 
[32–34] 

[Uoc, Ri, R1, Q1, α1, 
W1, β1] 
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R(RWQ) 
[35,36] 

[Uoc, Ri, R1, Q1, α1, 
W1, β1] ( )
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R(RQ)(RQ) 
[37–40] 

[Uoc, Ri, R1, Q1, α1, 
R2, Q2, α2] 
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3.2  Parameter identification 

In this subsection, the model parameter identification is 
performed for five FOMs based on the HPPC data obtained at 
25 °C, where the current pulses are imposed at each SOC and 
the sampled current serves as the input of the FOM to simulate 
voltage response. The parameters of the FOMs are obtained 
when the root mean square error (RMSE) is minimised between 
the measured voltage Ut and FOM output �̂�t. The RMSE is 
expressed as 

( ) ( )( )2t t
1

1 ˆ
N

i

RMSE U k U k
N =

= −  (5) 

where N is the total number of Ut. The maximum absolute error 
(MAE) is taken as another index to evaluate the identification 
accuracy, but it is not considered as an objective of 
identification. It is expressed as 

( ) ( )( ) ( )t t
ˆmax 1MAE U k U k k N= −  ，  (6) 

The FOM parameters that need to be identified are listed in 
Table 2. It should be emphasised that although Uoc can be 
measured through OCV tests [48], it is considered as a model 
parameter to be identified in this study since it has proved that 
OCV identification can help to improve SOC and SOH 
estimation accuracy [41,49]. 

3.2.1  Parameter identification method 

Due to the intrinsic nonlinearity caused by fractional 
calculus, the RMSE is usually minimised by evolutionary 
algorithms such as the genetic algorithm (GA). Such algorithms 
solve optimisation problems by searching for solutions in a 
given parameter range. Hence, they are not efficient for linear 
optimisation. On the other hand, [Uoc, Ri] can be easily 
identified by the least squares (LS) algorithm when the 
polarisation voltage Uc and Uw are determined using the 
recursive equations in Table 2. Accordingly, GA is used to 
optimise the other nonlinear parameters while the LS is 
embedded in the cost function to identify linear parameters [Uoc, 
Ri] and compute the RMSE. Its main procedures are listed in 
Table 3. This identification method has been proven to be more 

efficient than a conventional GA in [49] as it reduces the 
number of parameters to be identified through GA while 
guaranteeing the globally optimal solutions. 
Table 3 The main procedures of the parameter identification method. 

Step 1: Preset the range of nonlinear parameters and stopping criteria. 

Step 2: Randomly generate the population in the range. 

Step 3: Generate the Uc and/or Uw vectors using discretised model equations in 
Table 2. 

Step 4: Identify [Uoc, Ri] using least squares and output the RMSE. 

Step 5: Evaluate the stopping criteria. If the criteria are met, stop and return 
the best solution. If not, go to the next step. 

Step 6: Generate a new population by crossover, mutation and selection. Go to 
Step 3. 

3.2.2  Parameter identification results 

As mentioned previously, the HPPC test consists of current 
pulses over the SOC range of [4%, 100%] with an interval of 
2%. Totally 49 groups of model parameters are identified for 
each FOM. Take the R(RQ)(RQ)W as an example, the model 
parameters identified at SOC=50% are listed in Table 4, and the 
measured and simulated voltage are plotted together with the 
current pulses in Fig. 4. It is evident that the simulated voltage 
is close to the experimental data with the RMSE and MAE 
being 1.012 mV and 4.306 mV respectively, indicating high 
identification accuracy. 

 
Figure 4 Current and voltage at SOC=50%. (a) Current pulses (b) 
Measured voltage and simulated voltage based on R(RQ)(RQ)W. 

Table 4 Model parameters of R(RQ)(RQ)W for voltage simulation at SOC=50% 

Uoc (V) Ri (mΩ) R1 (mΩ) α1 Q1 (s𝛼1/Ω)  R2 (mΩ) α2 Q2 (s𝛼2/Ω)   β1 W1 (s𝛽1/Ω) 

3.676  2.557  19.928  0.434  18997.936  97.051  0.863  29179.723  0.601  27330.045  

 
Figure 5 compares the identification accuracy of five FOMs. 

Overall, the identification error can be grouped into three 
ranges, namely the SOC ranges of [60%,100%], [20%, 60%] 
and [4%, 20%], corresponding to the high, middle and low SOC 
ranges, respectively. In high SOC range, both the RMSE and 
MAE of five FOMs show visible fluctuations, with the 
maximum RMSE = 2.57 mV and the maximum MAE = 11.73 

mV. When the SOC decreases to [20%, 60%], the fluctuations 
fade down, and the maximum RMSE and maximum MAE 
decrease to 1.50 mV and 6.01 mV, respectively. In these ranges, 
all models show a similar accuracy level. When the SOC 
further decreases to [4%, 20%], the accuracy of all FOMs 
decreases significantly. It can be observed from Fig. 5 (b) that 
the maximum and minimum RMSE are 8.76 mV and 5.44 mV, 
respectively, which shows a similar trend with the MAE shown 
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in  Fig. 5 (d). 

 

Figure 5 Identification error of 5 FOMs (a) RMSE over the SOC range 
of [4%, 100%] (b) Maximum, mean and minimum RMSE (c) The 
MAE over the SOC range of [4%, 100%] (d) Maximum, mean and 
minimum MAE. 

It can also be seen from Figure 5 that the simplest model 
R(RQ) has the largest error and this error is attenuated by 
adding a Warburg element, i.e. R(RQ)W and R(RWQ). The 
FOMs with two R//CPE branches including R(RQ)(RQ) and 
R(RQ)(RQ)W are more complex than the other FOMs but they 
do not necessarily provide a smaller mean and average RMSE 
or MAE. On the contrary, they are inferior to R(RQ)W and 
R(RWQ) in the low SOC region. This result shows the 
identification accuracy is not positively related to the 
complexity of FOMs. Besides, R(RQ)W enjoys smaller 
average and minimum RMSE and MAE than R(RWQ). In 
addition, the maximum error of R(RQ)W is comparable to that 
of R(RWQ) and is much lower than = remaining models. Thus, 
R(RQ)W outperforms the other FOMs in terms of identification 
accuracy. 

4  Comparative analysis of state of charge 
estimation 
 
4.1  State of charge estimation method 

SOC estimation based on FOMs has been realised by 
variants of Kalman filters. To link the output of FOMs and SOC, 
when a SOC estimation is obtained, the FOM parameters are 
computed through linear interpolation based on the identified 
model parameters at 49 SOC points. Furthermore, the 
relationship between measured current and SOC is established 
by the Ampere hour counting method, and it is expressed as 

( ) ( )1

max

D z t I t
C


=  (7) 

where z denotes SOC, η is the coulombic efficiency which is set 
to 1 for lithium ion batteries. Cmax is the maximum battery 
capacity determined by the capacity test. By integrating the 
FOMs and the Ampere hour counting method, state space 
equations for SOC estimation are established and discretised in 

Table 2. 
Since the FOMs feature fractional order derivatives, 

conventional Kalman filters are generalised to fractional order 
ones. In this study, we choose the fractional order unscented 
Kalman filter (FOUKF) in [50], which was proved to be able to 
provide satisfying accuracy as it guarantees a third order 
approximation of nonlinear functions through unscented 
transformation. Singular value decomposition is applied to 
further improve the stability of FOUKF [50]. Its main steps are 
listed in Table 5. 
Table 5 Main procedures of the fractional order unscented Kalman 
filter. 

Step 1 A fractional order system:  

( )
( )
1D ,k k k k

k k k

x f x u w

y g x v


+

 = +


= +
 

where x is the state vector, y is the measurement, u is the input. w and v 
represent the process noise and measurement noise with their variance being 
Q and R, respectively. The state error covariance is defined as P. 

Step 2 Initialisation: 
Pre-set Q, R and the initial values of x and P.  

Step 3 Time update:  
(a) Compute sigma points  

( )
( )

0, 1/ 1 1/ 1

, 1/ 1 1/ 1

, 1/ 1 1/ 1
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ˆ
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j k k k k j j

k k

x x

x x U s j n

x x U s j n n
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where n is the length of x. sj and Uj denote the jth element and jth column of S 
and U, respectively. ρ is a constant in the range of [1, √2]. 
(b) Prior state estimation  
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where the associated weights are computed as  
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with 𝛼w and 𝛽w being two algorithm parameters. 
Step 4 Measurement update:  
(a) Create new sigma points using 𝑃𝑘/𝑘−1 

(b) Generate the estimated yk and the corresponding covariance  
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(c) Update the posterior estimation 
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Step 5: k=k+1. Go to Step 3. 

 

4.2  State of charge estimation accuracy 

In this section, the SOC estimation accuracy of five FOMs is 
compared under the DST and UDDS profiles at 25 °C. To 
evaluate SOC estimation results, the reference SOC is obtained 
using the Ampere hour counting method as the initial SOC can 
be accurately set to 100% when the battery is fully charged. All 
filters are set to start 2000 s after the commencement of the 
profiles to make sure that their convergence is not influenced 
by the pre-set SOC limits, i.e. [0,100%]. Before conducting the 
SOC estimation, the settings of all filters are calibrated based 
on the 2000~5000 s of the DST profile. Specifically, the initial 
value of the state error covariance P is set to be 5 × 10−3 ×𝑑𝑖𝑎𝑔(𝑛), where 𝑑𝑖𝑎𝑔(𝑛) stands for an n×n identify matrix, n is 
the length of the state vector x. The process noise and 
measurement noise variances Q and R are set to be 10−𝑞 ×𝑑𝑖𝑎𝑔(𝑛)  and  10−𝑟 , respectively, with 𝑞, 𝑟 ∈{0, −1, −2, … , −20}. All combinations of q and r are tried to 
generate the SOC estimation results of five FOMs, and the 
combination which provides the minimum RMSE is selected to 
parameterise Q and R for subsequent SOC estimation. The final 
settings of each filter are indicated in Table 6. 

 
Table 6 Settings of five fractional order unscented Kalman filters 

Model q r n 

R(RQ) 9 15 2 

R(RQ)W 3 15 3 

R(RWQ) 8 15 3 

R(RQ)(RQ) 8 15 3 

R(RQ)(RQ)W 8 15 4 

The SOC estimation results against DST and UDDS profiles 
are shown in Fig. 6. All estimation results quickly converge to a 
±5% error boundary within 30 s. For the DST profile, R(RWQ) 
shows the highest accuracy with the RMSE of only 0.2%, but it 
fails to achieve high accuracy for the UDDS profile, and its 
RMSE increases to 1.75%, as shown in Fig. 7. Such dispersion 
also happens to R(RQ)W, whose RMSE is 1.64% and 2.21% 
for the DST and UDDS profiles, respectively. In contrast, the 
RMSE of the other models is less dependent on profiles. It 
implies the high reliability of these models. Moreover, R(RQ) 
shows an overall RMSE of 0.57%, which is superior to the 
other models in terms of SOC estimation accuracy. 

 
Figure 6 Estimation results of 5 FOMs (a) SOC estimation results for 
DST profile (b) SOC estimation error for DST profile (c) SOC 
estimation results for UDDS profile (d) SOC estimation error for 
UDDS profile. 

 

Figure 7 RMSE of five FOMs. 
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4.3  Robustness of fractional order models 

4.3.1  Influence of memory length 

One of the most salient features of FOMs is the memory 
effect, which is described by the Grünwald–Letnikov definition 
shown in Eq. (3). In real applications, the short memory 
principle indicated in Eq. (4) is usually applied to prevent the 
calculation from increasing along with time. To evaluate the 
influence of memory length on SOC estimation, we adjust the 
memory length from 5 to 50 at an interval of 5, and their 
RMSEs are shown in Fig. 8. It is noticeable that for both 
profiles R(RQ), R(RQ)(RQ) and R(RQ)(RQ)W show 
consistent behaviours in RMSEs while the other two models 
show different behaviours. This phenomenon coincides with 
the profile-dependence observed in Fig. 7. Generally speaking, 
all the models fail to achieve the minimum RMSE when L=20, 
the memory length defined before parameter identification. For 
instance, R(RQ) reaches the minimum RMSE of 0.55% at L=15 
while R(RQ)(RQ)W reaches the minimum RMSE of 0.64 at 
L=10. To give a more intuitive view, Fig. 9 shows the variation 
of SOC estimation errors of the three models when L increases. 
A general trend is that the SOC estimation error moves 
downward as L increases. Therefore, the minimum RMSE is 
achieved when the SOC error is close to x-axis. This behaviour 
can be attributed to the truncation error caused by the short 
memory principle. It can be written as 

( ) ( ) ( )
1

1
1

t

h
i

L

e L f t ih
ih




 
  

+

 
= − − 

 
  (8) 

In the FOMs, polarisation voltages Uc and Uw are depicted by 
fractional derivatives, therefore the truncation error is 
dependent on the models and profiles, which violates the 
assumption of Kalman filters that the errors are white noise [51]. 
The variances set for a fixed L can be inaccurate when L varies, 
this will affect the ability of the FOMs to adjust SOC estimation 
results. Moreover, the FOM with the complex structure is more 
vulnerable. The RMSE of R(RQ) changes within 1.34% while 
the maximum RMSE of R(RQ)(RQ) changes within 5.08%. In 
addition, one can see from Fig. 10 that the overall 
computational time almost linearly increases along with the 
increase of the memory length. Therefore, adjusting the 
memory length during actual applications can balance 
computational burdens and estimation accuracy when 
necessary. For instance, when other computationally intensive 
tasks like SOH estimation is in process, the memory length can 
be reduced.  

 
Figure 8 Influence of memory length on SOC estimation errors (a) 
RMSEs for DST and UDDS profiles (b) Overall RMSEs for two 
profiles. 

 
Figure 9 SOC estimation errors under different memory lengths (a) 
R(RQ) for DST profile (b) R(RWQ) for DST profile (c) R(RQ) 
(RQ)W for DST profile (d) R(RQ) for UDDS profile (e) R(RWQ) for 
UDDS profile (f) R(RQ) (RQ)W for UDDS profile. 
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Figure 10 Overall computational times of SOC estimation under 
different memory lengths. 

4.3.2  Influence of ambient temperature 

Battery impedance and OCV are significantly affected by 
ambient temperature [52]. Thus, it important to evaluate the 
influence of ambient temperature on SOC estimation accuracy. 
The filters designed under 25 °C are applied to estimate the 
SOC under DST and UDDS profiles at the temperatures of 
15 °C and 35 °C, respectively, and the overall RMSEs are 
reported in Fig. 11. The RMSE of all models increases when 
temperature varies. All models can guarantee a SOC estimation 
error less than 4% in case of the temperature variation of 
±10 °C. Furthermore, R(RQ)W, R(RWQ) and R(RQ)(RQ)W 
can provide a SOC estimation result with the error less than 3%. 
It is evident that R(RQ) is most susceptible to temperature 
variation, and its RMSE increases by 4.94 times when the 
temperature decreases to 15 °C. In contrast, the RMSEs of the 
other four FOMs only increase by no more than 106% as a 
result of the temperature variation of ±10 °C. Hence, complex 
FOMs are more robust than the simplest R(RQ) against 
temperature variation. 

 
Figure 11 RMSE under different temperatures. 

4.3.3  Influence of cell difference 

A battery system for EVs comprises thousands of cells. 

Modelling cells individually can be computationally 
demanding [53]. Considering the improved battery 
manufacturing and screening processes, we can expect to apply 
a model developed based on one cell to monitor the state of 
other cells. In this regard, a battery model with high 
generalisation is desirable to alleviate calculational burdens 
with ensured performance. To test the generalisation of five 
FOMs for different cells, the parameterised FOMs are applied 
to estimate SOC for cells 2 to 7. The RMSEs and the standard 
deviations (SDs) of the RMSEs are shown in Figure 12. It can 
be noted all models show satisfying generalisation ability when 
being applied for different cells with the RMSE less than 2.38%. 
The R(RQ) has the highest estimation accuracy and smallest 
SD while the most complex models R(RQ)(RQ) and 
R(RQ)(RQ)W show the highest deviation, as can be observed 
from the RMSEs of cells 6 and 7. 

 
Figure 12 RMSE and standard deviation for the estimation results of 
different cells. 

4.3.4  Influence of voltage sensor drift 

In real applications where battery voltage is sampled by a 
BMS, the measurement accuracy of the BMS cannot be as high 
as that of the test platform. Furthermore, as discussed by Zheng 
et al. [4,20], voltage drift is more detrimental to SOC estimation 
than random noise, although its magnitude is generally within 5 
mV [54]. In this subsection, the voltage drift is set to [-10, 10] 
mV with an interval of 2 mV in order to evaluate the robustness 
of five FOMs, and their RMSEs for the two profiles are shown 
in Fig. 13. It can be observed that the influence of voltage drift 
on RMSE qualitatively agrees with that of memory length 
reported in Fig. 8. The RMSEs of R(RQ)(RQ), R(RQ)W and 
R(RQ)(RQ)W show an approximately linear relationship with 
voltage drift while R(RQ) and R(RWQ) have a minimum 
RMSE in the wide range of voltage drift. Over the voltage drift 
range of [-10, 10] mV, the maximum RMSE of all five FOMs is 
within 3.40%, indicating a small influence of voltage drift on 
SOC estimation accuracy. Furthermore, all the FOMs have a 
similar gradient for positive voltage drift. Since R(RQ) has the 
minimum original RMSE but has the largest increase in relative 
RMSE for voltage drift, as shown in Fig. 13 (b). However, 

SD=0.0259

SD=0.0787

SD=0.0518

SD=0.0934

SD=0.1255
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R(RQ) is still the most accurate FOM in most cases. 
The SOC estimation errors of the three FOMs are plotted to 

visualise the effect of voltage drift on SOC estimation, as 
shown in Fig. 14. One can notice that the results qualitatively 
coincide with those shown in Fig. 9, i.e. increasing voltage drift 
can make SOC estimation error move downward. Thus, both 
truncation error and voltage drift influence SOC estimation 
indirectly by affecting voltage simulation accuracy of FOMs. 
Consequently, we might devise a new SOC estimation 
framework to adjust memory length to compensate for the 
effect of voltage drift, which may be an interesting topic for 
FOMs. 

 
Figure 13 Influence of voltage drift on SOC estimation error (a) 
RMSEs versus voltage drift (b) Normalised RMSEs based on RMSEs 
under no voltage drift. 

 

Figure 14 SOC estimation errors under different voltage drift (a) 
R(RQ) for DST profile (b) R(RWQ) for DST profile (c) R(RQ)(RQ)W 
for DST profile (d) R(RQ) for UDDS profile (e) R(RWQ) for UDDS 
profile (f) R(RQ)(RQ)W for UDDS profile. 

4.3.5  Influence of current sensor drift 

Different from voltage drift, current drift influences both 
modelling accuracy and Ampere hour counting algorithm. 
Zheng et al. [4] suggested that current drift can reach 200 mA in 
normal circumstances. To examine the influence of current drift 
on SOC estimation, we set the current drift to [-200, 
-150, …,200] mA and track the changes of SOC estimation 
error.  

As shown in Fig. 15, the current drift has a smaller influence 
on the RMSEs of all the FOMs than voltage drift but their 
trends are similar. Moreover, the RMSEs of both R(RQ) and 
R(RQ)(RQ)W show a linear relationship with current drift, 
while R(RWQ), instead of R(RQ) in voltage drift, becomes the 
most sensitive model to current drift. Overall, R(RQ) and 
R(RQ)(RQ) show the highest and lowest accuracy under 
various current drifts, respectively.  

The SOC estimation errors for all the FOMs are shown in Fig. 
16. It can be seen that SOC errors accumulate due to the 
Ampere hour counting method. At the end of the two profiles, 
the SOC errors based on all the FOMs under different current 
drifts converge, except for R(RWQ). Therefore, R(RWQ) is the 
most vulnerable FOM to current drift although it can keep 
satisfactory results at the occurrence of voltage drift. 
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Figure 15 Influence of current drift on SOC estimation error (a) 
RMSE versus current drift (b) Normalised RMSE based on RMSE 
under no current drift. 

 
Figure 16 SOC estimation errors under different current drifts (a) 
R(RQ) for DST profile (b) R(RWQ) for DST profile (c) R(RQ)(RQ)W 
for DST profile (d) R(RQ) for UDDS profile (e) R(RWQ) for UDDS 
profile (f) R(RQ) (RQ)W for UDDS profile. 

5  Conclusions 
 
In this article, five fractional order models (FOMs) for 

lithium ion batteries are compared in terms of state of charge 
(SOC) estimation. Offline parameter identification of the five 
FOMs is conducted first, and the comparisons of the simulated 

and experimental results show that increasing the complexity of 
FOMs cannot always improve modelling accuracy. R(RQ)W 
shows superior identification accuracy than the other four 
FOMs. Based on the FOMs with the identified parameters, 
SOC estimation accuracy, complexity and robustness are 
evaluated under different profiles, memory lengths, 
temperatures, cells and sensor drifts. The assessment results 
illustrate that the simplest FOM, R(RQ), has the highest 
accuracy under normal conditions. The evaluation of the 
influence of memory length shows that R(RQ) is not sensitive 
to truncation error, compared with the FOMs with the complex 
structure. Nevertheless, it has the poorest robustness against the 
variation of ambient temperature. Validation results on seven 
cells show the FOMs have good generalisation ability and the 
R(RQ) shows the smallest error and standard deviation. In the 
case of current and voltage drifts, all the FOMs can provide 
satisfactory results over a large range of drift. In particular, 
R(RQ) has a large relative error when voltage drift happens, but 
it can still provide the highest accuracy. On the other hand, 
R(RWQ) is more susceptible to current drift rather than voltage 
drift, as it cannot weaken the accumulated SOC error. 

The work in this article provides a reference for FOM based 
SOC estimation as FOMs have been illustrated to be feasible 
for various types of batteries. In the future, we will focus on the 
application of fractional calculus on battery pack modelling. 
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Figures

Figure 1

SOC estimation errors under different current drifts (a) R(RQ) for DST pro�le (b) R(RWQ) for DST pro�le
(c) R(RQ)(RQ)W for DST pro�le (d) R(RQ) for UDDS pro�le (e) R(RWQ) for UDDS pro�le (f) R(RQ) (RQ)W
for UDDS pro�le.



Figure 2

In�uence of current drift on SOC estimation error (a) RMSE versus current drift (b) Normalised RMSE
based on RMSE under no current drift.



Figure 3

SOC estimation errors under different voltage drift (a) R(RQ) for DST pro�le (b) R(RWQ) for DST pro�le (c)
R(RQ)(RQ)W for DST pro�le (d) R(RQ) for UDDS pro�le (e) R(RWQ) for UDDS pro�le (f) R(RQ)(RQ)W for
UDDS pro�le.



Figure 4

In�uence of voltage drift on SOC estimation error (a) RMSEs versus voltage drift (b) Normalised RMSEs
based on RMSEs under no voltage drift.



Figure 5

RMSE and standard deviation for the estimation results of different cells.



Figure 6

RMSE under different temperatures.

Figure 7

Overall computational times of SOC estimation under different memory lengths.



Figure 8

SOC estimation errors under different memory lengths (a) R(RQ) for DST pro�le (b) R(RWQ) for DST
pro�le (c) R(RQ) (RQ)W for DST pro�le (d) R(RQ) for UDDS pro�le (e) R(RWQ) for UDDS pro�le (f) R(RQ)
(RQ)W for UDDS pro�le.



Figure 9

In�uence of memory length on SOC estimation errors (a) RMSEs for DST and UDDS pro�les (b) Overall
RMSEs for two pro�les.



Figure 10

RMSE of �ve FOMs.



Figure 11

Estimation results of 5 FOMs (a) SOC estimation results for DST pro�le (b) SOC estimation error for DST
pro�le (c) SOC estimation results for UDDS pro�le (d) SOC estimation error for UDDS pro�le.



Figure 12

Identi�cation error of 5 FOMs (a) RMSE over the SOC range of [4%, 100%] (b) Maximum, mean and
minimum RMSE (c) The MAE over the SOC range of [4%, 100%] (d) Maximum, mean and minimum MAE.



Figure 13

Current and voltage at SOC=50%. (a) Current pulses (b) Measured voltage and simulated voltage based
on R(RQ)(RQ)W.



Figure 14

Five fractional order models reported in the literature.



Figure 15

Current and voltage pro�les of (a) capacity test (b) hybrid pulse power characterisation test (c) dynamic
stress test and (d) urban dynamometer driving schedule.



Figure 16

Battery test platform.


