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Abstract—A comparative study of the application of Gaussian 

Mixture Model (GMM) and Radial Basis Function (RBF) in 

biometric recognition of voice has been carried out and 

presented. The application of machine learning techniques to 

biometric authentication and recognition problems has gained a 

widespread acceptance. In this research, a GMM model was 

trained, using Expectation Maximization (EM) algorithm, on a 

dataset containing 10 classes of vowels and the model was used to 

predict the appropriate classes using a validation dataset. For 

experimental validity, the model was compared to the 

performance of two different versions of RBF model using the 

same learning and validation datasets. The results showed very 

close recognition accuracy between the GMM and the standard 

RBF model, but with GMM performing better than the standard 

RBF by less than 1% and the two models outperformed similar 

models reported in literature. The DTREG version of RBF 

outperformed the other two models by producing 94.8% 

recognition accuracy. In terms of recognition time, the standard 

RBF was found to be the fastest among the three models.  
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I.  INTRODUCTION 

Biometrics is a measurable, physical characteristic or 
personal behavioral trait used to recognize the identity, or 
verify the claimed identity, of a candidate. Biometric 
recognition is a personal recognition system based on “who 
you are or what you do” as opposed to “what you know” 
(password) or “what you have” (ID card) [17]. The goal of 
voice recognition in biometrics is to verify an individual's 
identity based on his or her voice. Because voice is one of the 
most natural forms of communication, identifying people by 
voice has drawn the attention of lawyers, judges, investigators, 
law enforcement agencies and other practitioners of forensics.  

Computer forensics is the application of science and 
engineering to the legal problem of digital evidence. It is a 
synthesis of science and law [8]. A high level of accuracy is 
required in critical systems such as online financial 
transactions, critical medical records, preventing benefit fraud, 
resetting passwords, and voice indexing. 

In view of the importance of accurate classification of 
vowels in a voice recognition system, the need for a well-
trained computational intelligence model with an acceptable 
percentage of classification accuracy (hence a low percentage 
of misclassification error) is highly desired. Gaussian Mixture 
Models (GMMs) and Radial Basis Function (RBF) networks 
have been identified in both practice and literature as two of the 
promising neural models for pattern classification. 

The rest of this paper is organized as follows. Section II 
reviews the literature on voice recognition; overview and 
application of GMM and RBF in biometric voice recognition; 
and an overview of the RBF component of DTREG software. 
A description of the data and tools used in the design and 
implementation of this work are discussed in Section III. 
Section IV describes the experimental approach followed in 
this work and the criteria for quality measurement used to 
evaluate its validity. The results of the experiment are 
discussed in section V while conclusions are drawn in section 
VI. 

II. LITERATURE SURVEY 

A. Voice Recognition 

A good deal of effort has been made in the recent past by 
researchers in their attempt to come up with computational 
intelligence models with an acceptable level of classification 
accuracy. 

A novel suspect-adaptive technique for robust forensic 
speaker recognition using Maximum A-Posteori (MAP) 
estimation was presented by [1]. The technique addressed 
Likelihood Ratio computation in limited suspect speech data 
conditions obtaining good calibration performance and 
robustness by allowing the system to weigh the relevance of the 
suspect specificities depending on the amount of suspect data 
available via MAP estimation. The results showed that the 
proposed technique outperformed other previously proposed 
non-adaptive approaches. 

[2] presented three mainstream approaches including 
Parallel Phone Recognition Language Modeling (PPRLM), 
Support Vector Machine (SVM) and the general Gaussian 
Mixture Models (GMMs). The experimental results showed 
that the SVM framework achieved an equal error rate (EER) of 
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4.0%, outperforming the state-of-art systems by more than 30% 
relative error reduction. Also, the performances of their 
proposed PPRLM and GMMs algorithms achieved an EER of 
5.1% and 5.0% respectively. 

Support Vector Machines (SVMs) were presented by [3] by 
introducing a sequence kernel used in language identification. 
Then a Gaussian Mixture Model was developed to do the 
sequence mapping task of a variable length sequence of vectors 
to a fixed dimensional space. Their results demonstrated that 
the new system yielded a performance superior to those of a 
GMM classifier and a Generalized Linear Discriminant 
Sequence (GLDS) Kernel. 

Using a vowel detection algorithm, [4] segmented rhythmic 
units related to syllables by extracting parameters such as 
consonantal and vowel duration, and cluster complexity and 
modeled with a Gaussian Mixture. Results reached up to 
86 ± 6% of correct discrimination between stress-timed, mora-
timed and syllable-timed classes of languages. These were then 
compared with that of a standard acoustic Gaussian mixture 
modeling approach that yielded 88 ± 5% of correct 
identification. 

[9] presented an additive and cumulative improvements 
over several innovative techniques that can be applied in a 
Parallel Phone Recognition followed by Language Modeling 
(PPRLM) system for language identification (LID), obtaining a 
61.8% relative error reduction from the base system. They 
started from the application of a variable threshold in score 
computation with a 35% error reduction, then a random 
selection of sentences for the different sets and the use of 
silence models, then, compared the bias removal technique 
with up to 19% error reduction and a Gaussian classifier of up 
to 37% error reduction, then, included the acoustic score in the 
Gaussian classifier with 2% error reduction, increased the 
number of Gaussians to have a multiple-Gaussian classifier 
with 14% error reduction and finally, included additional 
acoustic HMMs of the same language with success gaining 
18% relative improvement. 

B. Gaussian Mixture Model (GMM) 

From a clustering perspective, most biometric data cannot 
be adequately modeled by a single-cluster Gaussian model. 
However, they can often be accurately modeled via a Gaussian 
Mixture Model (GMM) i.e., data distribution can be expressed 
as a mixture of multiple normal distributions [7]. 

Basically, the Gaussian Mixture Model with k components 
is written as: 

(1) 

 

where µ j are the means, sj the precisions (inverse 
variances), πj the mixing proportions (which must be positive 
and sum to one) and N is a (normalized) Gaussian with 
specified mean and variance. More details on the component 
parameters and their mathematical derivations can be found in 
[10-13, 25, 26]. 

[5] presented a generalized technique by using GMM and 
obtained an error of 17%. In another related work, [10] 
described two GMM-based approaches to language 
identification that use Shifted Delta Costar (SDC) feature 
vectors to achieve LID performance comparable to that of the 
best phone-based systems. The approaches included both 
acoustic scoring and a GMM tokenization system that is based 
on a variation of phonetic recognition and language modeling. 
The results showed significant improvement over the 
previously reported results. 

 A description of the major elements of MIT Lincoln 
Laboratory‟s Gaussian Mixture Model (GMM)-based speaker 
verification system built around the likelihood ratio test for 
verification, using simple but effective GMMs for likelihood 
functions, a Universal Background Model (UBM) for 
alternative speaker representation, and a form of Bayesian 
adaptation to derive speaker models from the UBM were 
presented by [6]. The results showed that the GMM-UBM 
system has proven to be very effective for speaker recognition 
tasks. 

[12] evaluated the related problem of dialect identification 
using the GMMs with SDC features. Results showed that the 
use of the GMM techniques yields an average of 30% equal 
error rate for the dialects in one language used and about 13% 
equal error rate for the other one.  

Other related works on GMM include [11, 13]. 

C. Radial Basis Function (RBF) 

A RBF Network, which is multilayer and feedforward, is 
often used for strict interpolation in multi-dimensional space. 
The term „feedforward‟ means that the neurons are organized 
in the form of layers in a layered neural network. The basic 
architecture of a three-layered neural network is shown in Fig. 
1. 

A RBFN has three layers including input layer, hidden 
layer and output layer. The input layer is composed of input 
data. The hidden layer transforms the data from the input space 
to the hidden space using a non-linear function. The output 
layer, which is linear, yields the response of the network.  

The argument of the activation function of each hidden unit 
in an RBFN computes the Euclidean distance between the input 
vector and the center of that unit. In the structure of RBFN, the 
input data X is an I-dimensional vector, which is transmitted to 
each hidden unit. The activation function of hidden units is 
symmetric in the input space, and the output of each hidden 
unit depends only on the radial distance between the input 
vector X and the center for the hidden unit. The output of each 
hidden unit, hj,  j = 1, 2, . . ., k is given by: 

   (2) 

 

Where        is the Euclidean Norm, cj is the center of the 
neuron in the hidden layer and Φ() is the activation function. 
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Figure 1.  The architecture of an RBF network. 

The activation function is a non-linear function and is of 
many types  such Gaussian, multi-quadratic, thinspline and 
exponential functions. If the form of the basis function is 
selected in advance, then the trained RBFN will be closely 
related to the clustering quality of the training data towards the 
centers.  

The Gaussian activation function can be written as: 

 

  (3) 

 

 

where x is the training data and ρ is the width of the 
Gaussian function. A center and a width are associated with 
each hidden unit in the network. The weights connecting the 
hidden and output units are estimated using least mean square 
method. Finally, the response of each hidden unit is scaled by 
its connecting weights to the output units and then summed to 
produce the overall network output. Therefore, the kth output of 
the network ŷk is: 

 

   
      (4) 

 

where Φj(x) is the response of the jth hidden unit, wjk is the 
connecting weight between the jth hidden unit and the kth output 
unit, and w0 is the bias term [18]. 

RBF model, with its mathematical properties of 
interpolation and design matrices, is one of the promising 
neural models for pattern classification and has also gained 
popularity in voice recognition [14].   

[15] presented a comparative study of the application of a 
minimal RBF Neural Network, the normal RBF and an 
elliptical RBF for speaker verification. The experimental 
results showed that the Minimal RBF outperforms the other 
techniques. Another work for explicitly modeling voice quality 

variance in the acoustic models using RBF and Hidden Markov 
Models, in order to improve word recognition accuracy, was 
demonstrated by  [16]. They also presented SVM and 
concluded that voice quality can be classified using input 
features in speech recognition. 

Other related works have been found in the fields of 
medicine [14], hydrology [18], computer security [19], 
petroleum engineering [20] and computer networking [21].  

D. DTREG Radial Basis Function (DTREG-RBF) 

DTREG software builds classification and regression 
Decision Trees, Neural and Radial Basis Function Networks, 
Support Vector Machine, Gene Expression programs, 
Discriminant Analysis and Logistic Regression models that 
describe data relationships and can be used to predict values for 
future observations. It also has full support for time series 
analysis. It analyzes data and generates a model showing how 
best to predict the values of the target variable based on values 
of the predictor variables. DTREG can create classical, single-
tree models and also TreeBoost and Decision Tree Forest 
models consisting of ensembles of many trees. It includes a full 
Data Transformation Language (DTL) for transforming 
variables, creating new variables and selecting which rows to 
analyze [27]. 

One of the classification/regression tools available in 
DTREG is Radial Basis Function Networks. Like the standard 
RBF, DTREG-RBF has an input layer, a hidden layer and an 
output layer. The neurons in the hidden layer contain Gaussian 
transfer functions whose outputs are inversely proportional to 
the distance from the center of the neuron. Although the 
implementation is very different, RBF neural networks are 
conceptually similar to K-Nearest Neighbor (K-NN) models. 
The basic idea is that a predicted target value of an item is 
likely to be about the same as other items that have close values 
of the predictor variables. 

DTREG uses a training algorithm developed by [28]. This 
algorithm uses an evolutionary approach to determine the 
optimal center points and spreads for each neuron. It also 
determines when to stop adding neurons to the network by 
monitoring the estimated leave-one-out (LOO) error and 
terminating when the LOO error begins to increase due to 
overfitting. The computation of the optimal weights between 
the neurons in the hidden layer and the summation layer is 
done using ridge regression. An iterative procedure developed 
by an author in 1966 is used to compute the optimal 
regularization lambda parameter that minimizes the 
Generalized Cross-Validation (GCV) error. A more detailed 
description of the DTREG can be found in [27]. 

III. DATA AND TOOLS 

The training and testing data were obtained from an 
experimental 2-dimensional dataset available in [22]. The 
training data consists of 338 observations while the testing data 
consists of 333 observations. There are 2 input variables and 
each observation belongs to one of 10 classes of vowels to be 
classified using the trained models. 
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The GMM and RBF classifiers were implemented in 
MATLAB with the support of NETLAB toolbox obtained as 
freeware from [23] while the DTREG-RBF was implemented 
using the DTREG software version 8.2. The descriptive 
statistics of the training and test data are shown in table I and II 
while the scatter plots of the training and test data are shown in 
Fig. 2 respectively. 

IV. EXPERIMENTAL APPROACH AND CRITERIA FOR 

PERFORMANCE EVALUATION 

The methodology in this work is based on the standard 
Pattern Recognition approach to classification problem using 
GMM and RBF. For training the models, Expectation 
Maximization (EM) algorithm was used for efficient 
optimization of the GMM parameters. The RBF used forward 
and backward propagation to optimize the parameters of the 
neurons using the popular Gaussian function as the transform 
function in the hidden layer as is common in literature. The 
parameters of the models were also tuned and varied and those 
with maximum classification accuracy were selected. The 
DTREG-RBF was run on the same dataset with the default 
parameter settings. 

For the GMM, several runs were carried out using the 
“diag” and “full” covariance types and with number of centers 
ranging from 1 and 10 while for the RBF, several runs were 
carried out with different numbers of hidden neurons ranging 
from 1 and 36.  

 

TABLE I.  DESCRIPTIVE STATISTICS OF TRAINING DATA 

 X1 X2 

Average 567.82 1533.18 

Mode 344.00 2684.00 

Median 549.00 1319.50 

Std Dev 209.83 673.94 

Max 1138.00 3597.00 

Min 210.00 557.00 

 

 

TABLE II.  DESCRIPTIVE STATISTICS OF TESTNING DATA 

 X1 X2 

Average 565.47 1540.38 

Mode 542.00 2274.00 

Median 542.00 1334.00 

Std Dev 216.40 679.79 

Max 1300.00 3369.00 

Min 198.00 550.00 

 

The DTREG-RBF is not flexible; only one variable can be 
set as the target at a time. It is most ideal for one-target 
classification problems. For this work, 10 different models 
were trained with each output column as the target. This was 
very cumbersome. 

The most commonly used accuracy measure in 
classification tasks is the classification/recognition rate. This is 
calculated by:  

 
 

where p is the number of correctly classified points and q is 
the total number of data points. 

For the purpose of evaluation in terms of speed of 
execution, Execution Time for training and testing was also 
used in this study. 

V. DISCUSSION OF RESULTS 

For the GMM, generally, it was observed that the execution 
time increased as the number of centers was increased from 2, 
but with a little dip at 1. Similarly, the training and testing 
recognition rates increased as the number of centers was 
increased from 1 to 2 but decreased progressively when it was 
increased from 3. Fig. 3 and 4 show the plots of the different 
runs of the “diag” and “full” covariance types and how 
execution time and recognition rates vary with the number of 
centers. The class boundaries generated by the GMM Model 
for training and testing are shown in Fig. 5.  

The results for GMM above showed that the average 
optimal performance was obtained with the combination of 
“full” covariance type and number of centers chosen to be 2. 

For the RBF, generally, the training time increased as the 
number of hidden neurons increased while the testing time 
remained relatively constant except for little fluctuations. Also, 
the training and testing times increased gradually as the number 
of hidden neurons increased until up to 15 when they began to 
fall gradually at some points and remained relatively constant 
except for little fluctuations at some other points. Fig. 6 shows 
the decision boundaries of the RBF-based classifier using the 
same training and testing data applied on the GMMs while Fig. 
9 shows the contour plot of the RBF model with the training 
data and the 15 centers. 

The results for RBF above showed that the average optimal 
performance was obtained when the number of hidden neurons 
is set to 15. 

As mentioned earlier in section IV, one disadvantage of the 
DTREG-RBF is that it accepts only one variable as the target. 
This constitutes a major restriction and poses a lot of 
difficulties. For each of the 10 vowel classes, one model was 
built by training it with the same dataset but with its respective 
class for classification. There is no automated way of doing 
this. For the purpose of effective comparison, the average of 
the number of neurons, training times and training and testing 
recognition rates were taken. Fig. 7 and 8 show the relationship 
between the number of hidden neurons and the execution time 
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and classification accuracy respectively. They both indicate 
that the optimal performance in terms of execution time and 
classification accuracy is obtained approximately at the point 
where the number of hidden neurons is set to 15.  

Comparatively, in terms of execution time, RBF clearly 
outperforms GMM and DTREG-RBF, but in terms of 
recognition rate, it was not clearly visible to see which is better 
between GMM and RBF since GMM (79.6%) is better in 
training than RBF (78.1%) while RBF (80.8%) is better in 
recognition than GMM (79.9%). To ensure fair judgment, the 
average of the training and testing recognition rates of the two 
models shows that GMM (79.7%) performs better than RBF 
(79.4%) by a margin of 0.3%. It is very clear that in terms of 
recognition accuracies, the DTREG-RBF model performed best 
with an average recognition rate of 94.79%. This is clearly 
shown in Fig. 10. 

VI. CONCLUSION 

A comparative study of the application of Gaussian Mixture 
Model (GMM) and Radial Basis Function (RBF) Neural 
Networks with parameters optimized with EM algorithm and 
forward and backward propagation for biometric recognition of 
vowels have been implemented. At the end of the study, the 
two models produced 80% and 81% maximum recognition 
rates respectively. This is better than the 80% recognition rate 
of the GMM proposed by Jean-Luc et al. in [4] and very close 
to their acoustic GMM version with 83% recognition rate as 
well as the GMM proposed by [5]. The DTREG version of 
RBF produced a landmark 94.8% recognition rate 
outperforming the other two techniques and similar techniques 
earlier reported in literature. 

This study has been carried out using a vowel dataset. The 
DTREG-RBF models were built with the default parameter 
settings left unchanged. This was done in order to establish a 
premise for valid comparison with other studies using the same 
tool. However, as at the time of this study, the author is not 
aware of any similar study implemented with the DTREG 
software, hence there is no ground for comparison with 
previous studies. 

Further experimental studies to evaluate the classification 
and regression capability of DTREG will be carried out to use 
each of its component tools such as Support Vector Machines, 
Probabilistic and General Regression Neural Networks, 
Cascaded Correlation, Multilayer Perceptron, Decision Tree 
Forest, and Logistic Regression for various classification and 
prediction problems in comparison with their standard (usually 
MATLAB-implemented) versions.  

Furthermore, in order to increase the confidence in this 
work and establish a better premise for valid comparison and 
generalization, a larger and more diverse dataset will be used. 
In order to overcome the limitation of the dataset used where a 
fixed data was preset for training and testing, we plan for a 
future study where stratified sampling approach will be used to 
divide the datasets into training and testing sets as this will give 
each row in the dataset an equal chance of being chosen for 
either training or testing each time the implementation is 
executed. 

With our previous work on the hybridization of machine 
learning techniques [29], a study has commenced for the 
combination of GMM and RBF as a single hybrid model to 
achieve better learning and recognition rates. It has been 
reported [30-33] and confirmed [29] that hybrid techniques 
perform better than their individual components used 
separately. 
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Figure 2.  Scatter plot of training data with 338 observations and test data with 333 observations. 
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Figure 3.  Relationship between the number of centers and execution time for GMM “diag” and "full" covariance types. 

 

  
Figure 4.  Relationship between the number of centers and recognition rate for GMM “diag” and "full" covariance types.  
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Figure 5.  Class boundaries generated by the GMM Model for training and testing.  
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Figure 6.  Decision boundaries of the RBF-based classifier using training and testing data.  

 

 

Figure 7.  Relationship between the number of hidden neurons and the execution time.  
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Figure 8.  Relationship between the number of hidden neurons and recognition rate.  
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Figure 9.  Contour plot of the RBF model showing the 15 hidden neurons.  Figure 10.  A comparison of GMM, RBF and DTREG RBF models by recognition rate. 
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