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Abstract

A comparative analysis is carried out to study the unsteady flow of a Maxwell fluid in the

presence of Newtonian heating near a vertical flat plate. The fractional derivatives presented by

Caputo and Caputo-Fabrizio are applied to make a physical model for a Maxwell fluid. Exact so-

lutions of the non-dimensional temperature and velocity fields for Caputo and Caputo-Fabrizio

time-fractional derivatives are determined via the Laplace transform technique. Numerical solu-

tions of partial differential equations are obtained by employing Tzou’s and Stehfest’s algorithms

in order to compare the results of both models. Exact solutions with integer order derivative

(fractional parameter α = 1) are also obtained for both temperature and velocity distributions

as a special case. A graphical illustration is made to discuss the effect of Prandtl number Pr

and time t on the temperature field. Similarly, the effect of Maxwell fluid parameter λ and

other flow parameters on the velocity field is graphically discussed, along with tabular forms.

Keywords: Maxwell fluid; Temperature field; Velocity field; Caputo and Caputo-Fabrizio fractional

derivatives; Laplace transformation.

Nomenclature

T - Fluid temperature [K]

k- Thermal conductivity of the fluid [Wm−1K−1]

u - Velocity of the fluid [ms−1]
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Pr - Prandtl number [µCp

k
]

Cp - Specific heat at a constant pressure [jkg−1K−1]

Gr - Thermal Grashof number [βTw]

T∞ - Temperature of fluid far away from the plate [K]

h - Coefficient of heat transfer [Wm−2K−1]

g - Gravitational acceleration [ms−2]

q - Laplace transforms parameter [-]

Nu - Nusselt number [-]

y - Cartesian coordinate [m]

Greek symbols

ρ - Fluid density [kgm−3]

λ1, λ - Maxwell fluid parameter [s]

µ - Dynamic viscosity [kgm−1s−1]

ν - Fluid kinematics viscosity [m2s−1]

β - Volumetric thermal expansion coefficient [K−1]

θ - Dimensionless temperature [-]

Subscripts

∞ - Condition far away from the surface [-]

1 Introduction

The Maxwell fluid model is one of the simplest viscoelastic rate-type fluid model as compare to

other non-Newtonian models [1]-[7]. At first, the Maxwell fluid model was developed to depict the

viscous and elastic reaction of air. Presently, it is extensively studied to explain the reactions of some

polymeric liquids. However, it has some restrictions. Initially, the classical definition of derivative

was used to model the Maxwell fluid problems without analyzing the heat transfer. Therefore,

numerous analysts are interested in generalizing classical flow problems to fractional dynamics [8]-

[11]. The application of fractional calculus demonstrate functional electrical simulation and bio

potential recording. Fractional calculus can be used to generalize the circuit models representing

the non-integer order differential equation. Therefore, fractional calculus have a lot of application

in economics [12], probability and statistics [13], physics [14] and fluid mechanics [15]. Olsson and

Ystrm [16] discussed viscoelastic fluid flow and studied Maxwell fluid properties. Vieru and Rauf
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[17] investigated the Stokes flows of a Maxwell fluid by using the wall slip condition. Fetecau and

Corina Fetecau [18]-[19] discussed the Rayleigh-Stokes problem and obtained new solutions for a

Maxwell fluid. Khan et al. [20] studied the unsteady magnetohydrodynamic oscillatory flow and

found exact solutions for Maxwell fluid in a permeable medium. Zhenga et al. [21] applied the finite

Hankel transform, Laplace transform and combined sequential fractional derivatives to study the

unsteady rotating flows of a generalized Maxwell fluid and obtained exact solutions in the presence

of oscillating pressure gradient between coaxial cylinders. Abro et al. [22] obtained a solution by an

analytical method for a magnetohydrodynamic generalized Burger fluid over permeable oscillating

flat plate.

Newtonian heating conditions are considered by a lot of researchers in their problems due to

its many applications. Anwer et al. [23] used Newtonian heating to describe the unsteady natural

convection flow of viscous fluid near an oscillating plate and find exact solution via Laplace transform

technique. Vieru et al. [24] applied Newtonian heating on an incompressible viscous fluid with

chemical reaction of first order and discussed the free convection flow and mass diffusion close a

vertical plate. Hussanan et al. [25] explained the exact analysis of mass and heat transfer with

Newtonian heating past a vertical plate.

Many real world problems can be modeled through derivatives. Especially, fractional derivatives

are more applicable for certain situations than ordinary derivatives. Therefore, fractional deriva-

tives are used in many fields, especially in electrochemistry, bio-engineering, finance, tracer in fluent

currents and in fluid dynamics. Mathur and Khandelwal [26] studied Oldroyd-B fluid flow between

coaxial cylinders and used fractional derivatives to find exact solutions. Abro et al. [27] examined

the shape effects of molybdenum disulfide nanofluids in the mixed convection flow with the perme-

able medium and magnetic field by employing Atangana-Baleanu fractional derivatives. Due to some

complications, Caputo and Fabrizio (CF) [28] defined new fractional derivatives with an exponential

kernel without singularities. The CF derivative has a lot of physical applications in many fields, in-

cluding in signal processing, the edge detection of images [29], multi-scale filtering of vascular images

[30], identifying an arrhythmia in ECG signals and image processing applications including contrast

improvement and color [31]. Imran et al. [32] considered the slip condition and Newtonian heating

effects to examine the unsteady natural convection flow of Maxwell fluid over an exponentially accel-

erated infinite vertical plate via CF derivative and obtained semi analytical solutions by Stehfest’s

and Tzou’s algorithms. Imran et al. [33] applied the Caputo and CF derivatives on second-grade

fluid with Newtonian heating to find the exact solution by Laplace transform and also discussed the

comparison between them. Shah and Khan [34] applied CF derivative on a second grade fluid to
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discuss the heat transfer analysis over an oscillating vertical plate and applied the Laplace transform

to obtain an exact solution. Ali et al. [35] took the generalized Walters-B fluid and used the CF

derivative to describe the MHD free convection flow in it. Khan et al. [36] analyzed the heat transfer

analysis over an oscillating vertical plate in Maxwell fluid with CF derivative. Different problems

have been explored through the CF derivative, a few of them are [37]-[40].

In the present paper, we describe the free convection flow of a fractional Maxwell fluid in the

presence of Newtonian heating near a vertical plate. Solutions are determined by two different meth-

ods using the Caputo and CF fractional derivatives. The Laplace transform is used to obtain the

exact solutions for non-dimensional temperature and velocity fields. Solutions for fractional order

(fractional parameter α → 1) are also obtained. We comparatively analyze the solutions for the

ordinary case and for fractional derivatives. Finally, we graphically observe the effect of Maxwell

fluid parameter and fractional parameter α as well as the contributions of some flow parameters on

temperature and velocity fields. We also discuss the effect of flow parameters in tabular form.

2 Mathematical formulation of the problem

Figure 1: Physical geometry and schematic diagram of the problem

Consider the unsteady flow of an incompressible Maxwell fluid over an infinite vertical plate in the

presence of Newtonian heating at the boundary. The x-axis is taken along the plate and y-axis is

taken normal to the plate. Initially, the fluid and plate are at rest with constant temperature T∞.

At the beginning t = 0+, the local surface temperature T is proportional to the heat transfer from
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the plate to the fluid. We consider that all physical variables are functions of y and t only. The

incompressibility constraint is identically satisfied for such flow as shown in Fig. 1. The governing

equations of motion under the Boussinesq approximation are written in usual notation as [8]:

ρ

(
1 + λ1

∂

∂t

)
∂u(y, t)

∂t
= µ

∂2u(y, t)

∂y2
+

(
1 + λ1

∂

∂t

)
ρgβ(T (y, t)− T∞), (1)

∂T (y, t)

∂t
=

k

ρCp

∂2T (y, t)

∂y2
. (2)

Initial and boundary conditions are:

u(y, 0) = 0,
∂u(y, t)

∂t

∣∣∣∣
t=0

= 0, T (y, 0) = T∞, ∀ y ≥ 0, (3)

u(0, t) = 0,
∂T (y, t)

∂y

∣∣∣∣
y=0

=
−h

k
T (0, t), t > 0, (4)

u(∞, t) = 0, T (∞, t) = T∞, t > 0. (5)

Introducing the following dimensionless quantities,

y? =
y
k
h

, θ =
T − T∞

T∞
, u? =

u
g
ν
(k

h
)2

,

P r =
µCp

k
, t? =

t
1
ν
( k

h
)2

, λ? =
λ1

1
ν
.
(

k
h

)2 , Gr = βT∞, (6)

into Eqs.(1)-(5) and after dropping star notation we get the following dimensionless equations

(
1 + λ

∂

∂t

)
∂u(y, t)

∂t
=

∂2u(y, t)

∂y2
+

(
1 + λ

∂

∂t

)
θ(y, t)Gr, (7)

Pr
∂θ(y, t)

∂t
=

∂2θ(y, t)

∂y2
, (8)

Here λ, Gr and Pr are the Maxwell fluid parameter, Grashof number and Prandtl number, re-

spectively. In order to build up a time-fractional derivatives model, we simply supplant one order

time derivative with α order time-fractional derivative and we obtain the problem as follows:

(1 + λDα
t )

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2
+ (1 + λDα

t ) θ(y, t)Gr, y, t > 0, (9)
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PrDα
t θ(y, t) =

∂2θ(y, t)

∂y2
, y, t > 0. (10)

The initial and boundary conditions become:

u(y, 0) = 0,
∂u(y, t)

∂t

∣∣∣∣
t=0

= 0, θ(y, 0) = 0, y ≥ 0, (11)

u(0, t) = 0,
∂θ(0, t)

∂y
= −[θ(0, t) + 1] t > 0, (12)

u(∞, t) = 0, θ(∞, t) = 0. (13)

3 Preliminaries on fractional derivatives

3.1 Caputo fractional operator

The Caputo derivative of fractional order is define as

CDα
t f(y, t) =





1
Γ(1−α)

∫ t

0
(t− p)−α f ′(y, p)dp, 0 ≤ α < 1,

∂f(y,t)
∂t

α = 1.

The Laplace transform of the Caputo derivative is

L{CDα
t f(y, t)} = qαL{f(y, t)} − qα−1f(y, 0). (14)

3.2 Caputo-Fabrizio fractional operator

The Caputo Fabrizio fractional derivative is defined

CF Dα
t f(y, t) =





1
1−α

∫ t

0
exp

(
−α(t−p)

1−α

)
f ′(y, p)dp, 0 ≤ α < 1,

∂f(y,t)
∂t

α = 1.

The Laplace transform of the CF derivative is

L{CFDα
t f(y, t)} =

qL{f(y, t)} − f(y, 0)

(1− α)q + α
(15)
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Remark: Indeed, Caputo and Fabrizio have defined the time-fractional derivative with a nor-

malization function M(α), with M(0) = M(1) = 1. In this paper, for simplicity, we consider the

normalization function M(α) = 1.

4 Extraction of temperature profile

4.1 For Caputo fractional derivative

Imran et al. [33] obtained the solution for the temperature field via Caputo fractional derivative for

the same initial and boundary conditions. The Laplace transform is

θ(y, q) =
1√

Pr qα − 1

1

q
exp

(
−y

√
Pr q

α
2

)
. (16)

We obtain the solution of Eq. (16) by using (A.2) and (A.4) from the appendix

θ(y, t) =
1√
Pr

∫ t

0

(t− τ)
α
2
−1 Eα

2
, α
2

(
(t− τ)

α
2√

Pr

)
φ

(
1,
−α

2
; − y

√
Pr τ−α/2

)
dτ, (17)

where Ea,b(z) is the Mittag-Leffler function.

The local coefficient of heat transfer corresponding to Nusselt number from the plate to the fluid is

Nu = − lim
y→0

L−1

{
∂θ(y, q)

∂y

}
= −L−1

{
lim
y→0

∂θ(y, q)

∂y

}
= Eα/2,1

(
1√
Pr

tα/2

)
. (18)

4.2 For Caputo-Fabrizio fractional derivative

Imran et al. [33] applied the same initial and boundary conditions to find the solution for the

temperature field. So, we present its solution directly

θ(y, q) =
1√

aoPrq
q+αao

− 1
.
1

q
exp

(
−y

√
aoPrq

q + αao

)
. (19)

The inverse Laplace of Eq. (19), is determined by using convolution theorem as well as (A.1) and

(A.5)-(A.7) from the appendix is given as

θ(y, t) = v1(t) ∗ v2(y, t) =

∫ t

0

v1(t− τ)v2(y, τ)dτ, (20)

where
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v1(t) = δ(t)

∫ ∞

0

e−ua0Pr

[
1√
πt

+ eu
(
2− erfc(

√
u)

)]
du

+

∫ ∞

0

[
1√
πt

+ eu
(
2− erfc(

√
u)

)] √
uαa2

0Pr

t
I1

(
2
√

uαa2
0Prt

)
ea0uPr−αa0tdu,

(21)

where δ(t) is distribution function.

v2(y, t) = 1− 2aoPr

π

∫ ∞

0

sin yu

u(u2 + aoPr)
exp

(
− αaotu

2

u2 + aoPr

)
du. (22)

The following relations are used to get the local coefficient of heat transfer regarding the Nusselt

number:

Nu = − lim
y→0

L−1

{
∂θ(y, q)

∂y

}
= −L−1

{
lim
y→0

∂θ(y, q)

∂y

}
=

∫ t

0

N1(t− τ)N2(u, τ)dτ, (23)

where

N1(t) =
√

a0PrIo

(αa0

2
t
)

exp

(−αa0

2
t

)
, (24)

and

N2(u, t) = δ(t)

∫ ∞

0

e−ua0Pr

[
1√
πt

+ eu
(
2− erfc(

√
u)

)]
du

+

∫ ∞

0

[
1√
πt

+ eu
(
2− erfc(

√
u)

)] √
uαa2

0Pr

t
I1

(
2
√

uαa2
0Prt

)
ea0uPr−αa0tdu.

(25)

4.3 For α = 1

For α = 1, the temperature field given in Eq. (16) and Eq. (19) obtained by the Caputo and CF

time-fractional derivatives is given as

θ(y, t) = exp

(
−y +

t

Pr

)
erfc

(
y
√

Pr

2
√

t
−

√
t

Pr

)
− erfc

(
y
√

Pr

2
√

t

)
, (26)

and the Nusselt number is

Nu = exp

(
t

Pr

) (
2− erfc

√
t

Pr

)
. (27)
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5 Extraction of velocity profile

5.1 For Caputo fractional derivative

By taking the Laplace transform of Eq. (9) and keeping in mind the Eq. (16), as well as the

associated initial and boundary conditions, we have

∂2ū

∂y2
− q (1 + λqα) ū(y, q) = − Gr (1 + λqα)

q
(√

Prqα − 1
) exp

(
−y

√
Prqα

)
. (28)

ū(0, q) = 0, ū(∞, q) = 0. (29)

Eq. (28) using Eq. (29) gives:

ū(y, q) = − Gr(√
Prqα − 1

) .
q (1 + λqα)

Prqα − q (1 + λqα)

[
1

q2
exp

(
−y

√
Prqα

)
− 1

q2
exp

(
−y

√
q (1 + λqα)

)]
.

(30)

We write Eq. (30) in following suitable form to determine its inverse Laplace transform

ū(y, q) = x̄1(q)[x̄2(y, q)− x̄3(y, q)], (31)

where

x̄1(q) = − Gr(√
Prqα − 1

) .
q (1 + λqα)

Prqα − q (1 + λqα)
, (32)

x̄2(y, q) =
1

q2
exp

(
−y

√
Prqα

)
, (33)

x̄3(y, q) =
1

q2
exp

(
−y

√
q (1 + λqα)

)
. (34)

The inverse Laplace of Eqs. (31)-(33) is obtained by using convolution theorem as well as (A.2)-

(A.4) from the appendix is given as

u(y, t) = x1(t) ∗ [x2(y, t)− x3(y, t)], (35)

where convolution product is represented by ∗.
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x1(t) =

∞∑

k=0

Gr(Pr)k+1/2

λk+1

∫ t

0

Gα,(α−1)(k+1),(k+1)

(
t− τ,−λ−1

) [
τα/2−1Eα/2,α/2

(
1√
Pr

τα/2

)]
dτ

−tα/2−1Eα/2,α/2

(
1√
Pr

tα/2

)
,

(36)

where Ga,b,c(d, t) is G-function.

x2(y, t) = t.φ
(
2,−α/2,−y

√
Prt−α/2

)
. (37)

We are unable to find the exact solution of x3(y, q), given by Eq. (34). By employing Stehfest’s

and Tzou’s algorithms, we have obtained its solution numerically.

5.2 For Caputo-Fabrizio fractional derivative

Keeping in mind Eq. (19) and taking the Laplace transform of Eq. (9) under the given initial and

boundary conditions, we have

(
1 +

λq

(1− α)q + α

)
qū(y, q) =

∂2ū(y, q)

∂y2
+

(
1 +

λq

(1− α)q + α

)
GrT (y, q). (38)

ū(0, q) = 0, ū(∞, q) = 0. (39)

By using condition (39), the general solution of Eq. (38) in simplest form is

ū(y, q) = −Gr
q + a2

q(q + b1)
.

1√
aq

q+b
− 1

[
1

q
exp

(
−y

√
a1q(q + a2)

q + b

)
− 1

q
exp

(
−y

√
aq

q + b

)]
, (40)

where

a0 =
1

1− α
, a = a0Pr, a1 = 1 + λa0, a2 =

αa0

1 + λa0

,

b = αa0, b1 =
a0(α− Pr)

1 + λa0

. (41)

Eq. (40) can be written as

u(y, q) = x1(q)[x2(y, q)− x3(y, q)], (42)
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where

x1(q) = −Gr
q + a2

q(q + b1)
.

1√
aq

q+b
− 1

, (43)

x2(y, q) =
1

q
exp

(
−y

√
a1q(q + a2)

q + b

)
, (44)

x3(y, q) =
1

q
exp

(
−y

√
aq

q + b

)
. (45)

The inverse Laplace of Eq. (42) is

u(y, t) = x1(t) ∗ [x2(y, t)− x3(y, t)], (46)

where ∗ denotes the convolution product.

x1(t) = −Gr

∫ t

0

w1(t− τ)w2(τ)dτ, (47)

where

w1(t) =
a2

b1

− b1 − a2

b1

exp(−b1t), (48)

w2(t) = δ(t)

∫ ∞

0

e−ua0Pr

[
1√
πt

+ eu
(
2− erfc(

√
u)

)]
du

+

∫ ∞

0

[
1√
πt

+ eu
(
2− erfc(

√
u)

)] √
uαa2

0Pr

t
I1

(
2
√

uαa2
0Prt

)
ea0uPr−αa0tdu.

(49)

and

x2(y, q) =
a1(q + a2)

q + b
.
exp

(
−y

√
a1q(q+a2)

q+b

)

a1q(q+a2)
q+b

, (50)

x2(y, q) = a1w3(q).w4(q), (51)

where

w3(q) =
(q + a2)

q + b
, (52)
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and

w4(q) =
exp

(
−y

√
a1q(q+a2)

q+b

)

a1q(q+a2)
q+b

. (53)

The inverse Laplace of Eq. (52) is

w3(t) = δ(t) + (a2 − b)exp(−bt), (54)

and

w4(t) = e(b−a2)terfc

(
y
√

a1

2
√

t

)
−

√
a1b(b− a2)e

−bt

∫ ∞

0

√
u

t− a1u
e(2a1b−a2)u

erfc

(
y
√

a1

2
√

u

)
J1

(
2
√

a1b(b− a2)u(t− u)
)

du, (55)

so, finally

x2(y, t) =

∫ t

0

w4(t) + (a2 − b)e−b(t−τ)w4(τ)dτ. (56)

The solution of Eq. (45) by using (A.7) is given as

x3(y, t) = 1− 2b

π

∫ ∞

0

sin
(
y
√

a
b
x
)

x(b + x2)
exp

(−bx2t

b + x2

)
dx. (57)

5.3 For (α = 1)

For α = 1, the Maxwell fluid velocity given in Eq. (30) and Eq. (40) obtained by the Caputo and

CF time-fractional derivatives is given as

ū(y, q) =
−Gr√

Pr

q + A

q(q + B)
.

1√
q − C

.

[
1

q
.exp

(
−y

√
q(1 + λq)

)
− 1

q
.exp

(
−y

√
Prq

)]
, (58)

where

A =
1

λ
, B =

1− Pr

λ
, C =

1√
Pr

. (59)

Eq. (58) can be written as

u(y, t) = u11(t) ∗ [u22(y, t)− u33(y, t)], (60)
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where ∗ represents the convolution product.

u11(t) =
−Gr√

Pr

∫ t

0

[
1√

t− τ
E1/2,1/2

(
C(t− τ)1/2

)]
.

(
A

B
− B − A

B
exp(−Bτ)dτ

)
. (61)

We can write u22(y, q) in simplest form as

u22(y, q) = exp


−y

√
λ

√(
q +

1

2λ

)2

−
(

1

2λ

)2

 (62)

The inverse Laplace of Eq. (62) and u33(y, q) is

u22(y, t) =
1

2λ
exp

[
− 1

2λ
t

] ∫ t

0

y
√

λ

2q
√

πq
exp

[
−y2λ

4q

]
q√

t2 − q2
I1

[
1

2λ

√
t2 − q2

]
dq

+
y
√

λ

2t
√

πt
exp

[
−y2λ

4t
− 1

2λ
t

] (63)

and

u33(y, t) = erfc

(
y
√

Pr

2
√

t

)
. (64)

6 Numerical discussion and results

In this paper, we have discussed the free convection flow of Maxwell fluid with Newtonian heating

near a vertical plate for time greater than zero. Two different non-integer order definitions are used,

namely, Caputo and CF definition. The differential model is summed up to the fractional model. To

observe the physical appearance of the problem, graphical illustration and numerical outcome are

plotted. An important fact of the model is how the temperature and velocity fields are effected by

time and fractional parameter. These hypothetical results can be valuable for some practical issues.

We also interested in comparing the results of Caputo and CF time-fractional models. In Fig. 2,

we show the influence of time by taking different values of non-integer order α. We can see from

Fig. 2 that when the value of time t is greater, the Caputo fractional model has less temperature as

compared to CF fractional model.

Furthermore, the thermal boundary layer thickness becomes greater for greater time. Due to

this, the temperature also increases. The influence of Pr is observed in Fig. 3. It is noted that

by increasing Pr, the temperature decreases. Physically, for greater Pr input, fluid have greater
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Fig: 2 Temperature profiles for Pr = 5 and

multiple values of time.

Fig: 3 Temperature profiles for t = 6 and

multiple values of Pr.
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viscosity but lower thermal conductivity. Due to this reason, boundary layer thickness decreases.

The heat transfer from the plate to the fluid corresponding to Nusselt number with multiple values of

Pr is shown in Fig. 4. It is discovered that heat transfer rate of CF model is higher as compared to

Caputo model, but value of the Nusselt number decreases when Pr increases. A comparison between

temperature field corresponding to Caputo derivative, CF derivative and ordinary case is shown in

Fig. 5. We observed that temperature of the ordinary fluid is less than Caputo and CF derivative

for time t = 1. But when we increase the time t = 2, then the temperature of ordinary fluid also

increases.

In Fig. 6, we presented the influence of time on velocity field for various values of α, and one

can see that for smaller values of time, the velocity of CF model has greater value than Caputo

model. We noted that CF fluid velocity increases and become greatest near the plate for greater

time domain. In Fig. 7, we displayed the effect of the Maxwell fluid parameter on the fluid velocity.

It clearly appears that the size of velocity for both fractional models is an increasing function of the

Maxwell fluid parameter. The impact of Gr and Pr on the velocity field are depicted in Figs. 8 and

9 respectively. It is noted that for large values of Gr, the fluid velocity for both models increases,

but the fluid velocity for both models decreases for large values of Pr. Fig. 10 is plotted to show the

comparison between ordinary, Caputo and CF velocity profiles. We found that ordinary fluid has

higher velocity than Caputo and CF for greater value of time.

In order to highlight the differences between both models, we must analyze the evolution of the

Caputo kernel k1(α, t) = t−α

Γ(1−α)
, and Caputo-Fabrizio kernel k2(α, t) = 1

1−α
exp

(−αt
1−α

)
, α ∈ [0, 1].

Fig. 11 shows the curves k1(α, 5), k2(α, 5) and k1(α, 7), k2(α, 7). It is observed from these graphs

that values of Caputo kernel are bigger than values of Caputo-Fabrizio kernel, therefore the values

of weighted function of the thermal flux are bigger for the Caputo derivative than Caputo-Fabrizio

derivative. Physically, in the case of Caputo derivative, the heat transfer is stronger attenuated than

for Caputo-Fabrizio derivatives. From the results, the values of fluid temperature are lower for the

Caputo derivative case. This aspect can clearly be observed from Figs 2 and 3. Similar behavior can

also be seen for the velocity field as well.
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Fig: 4 Nusselt number profiles given by Eqs.

(18) and (23) for multiple values of Pr.

Fig: 5 Comparison between ordinary, Caputo

and CF temperature profiles for Pr = 2 and

multiple values of time.
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Fig: 6 Velocity profiles for Gr = 4, Pr = 2,

λ = 0.5 and multiple values of time.

Fig: 7 Velocity profiles for Gr = 4, Pr = 2, t = 6

and multiple values of λ.
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Fig: 8 Velocity profiles for t = 6, Pr = 2,

λ = 0.5 and multiple values of Gr.

Fig: 9 Velocity profiles for Gr = 4, λ = 0.5,

t = 6 and multiple values of Pr.
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Fig: 10 Comparison between ordinary, Caputo and Caputo-Fabrizio velocity profiles for

λ = 1.5, Gr = 6, Pr = 8 and different values of time.

Fig: 11 Variation with alpha of the Caputo kernel k1(α, t) = t−α

Γ(1−α)
and Caputo-Fabrizio kernel

k2(α, t) = 1
1−α

exp
(−αt

1−α

)
.

The effect of Pr and time with respect to α on Nusselt number is brought into light in Table 1. It is

noted that the heat transfer rate from plate to the fluid is greater for Caputo model when t = 1.3.

We observe that for higher values of time, flow of heat transfer for CF model increases to attain

maximum value. In Table 2, some numerical calculations for the Nusselt number and temperature

field are carried out by Stehfest’s and Tzou’s algorithms. In Tables 3 and 4, we consider the fixed

values of α to discuss the impact of Maxwell fluid parameter λ and time t. It is noticed that for

α = 0.2, the CF fractional model has less velocity than Caputo model. To investigate the influence

of the fractional parameter, we put α = 0.6 and time t = 5 and found that velocity of CF model
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Table 1: Values of the Nusselt number for variation of Pr and time

Pr t = 1.3, α = 0.3 t = 3.5, α = 0.3 t = 5.3, α = 0.3

Nu. (18) Nu. (23) Nu. (18) Nu. (23) Nu. (18) Nu. (23)

2 3.909 3.583 6.296 6.450 8.382 15.945

3 2.631 2.471 3.444 3.570 3.991 4.324

4 2.181 2.075 2.649 2.747 2.935 3.382

5 1.948 1.868 2.277 2.356 2.467 2.794

6 1.804 1.739 2.058 2.12565 2.201 2.462

7 1.705 1.651 1.914 1.973 2.028 2.246

8 1.633 1.585 1.811 1.863 1.906 2.095

9 1.577 1.534 1.733 1.780 1.815 1.983

10 1.533 1.494 1.672 1.715 1.745 1.896

11 1.496 1.461 1.622 1.662 1.688 1.825

12 1.466 1.433 1.581 1.619 1.641 1.7685

13 1.441 1.409 1.547 1.582 1.602 1.719

14 1.417 1.389 1.517011 1.55033 1.568 1.678

15 1.398 1.371 1.491 1.524 1.539 1.643

16 1.381 1.355 1.481 1.451 1.514 1.612

Table 2: Numerical values of temperature and Nusselt number by Stehfest’s and Tzou’s

Caputo Caputo Fabrizio Caputo Caputo Fabriziio

Pr T (y, t) T (y, t) T (y, t) T (y, t) Nu Nu Nu Nu

[Stehfest’s] [Tzou’s] [Stehfest’s] [Tzou’s] [Stehfest’s] [Tzou’s] [Stehfest’s] [Tzou’s]

2 0.971733 0.966405 1.202298 1.202888 4.518931 4.502033 5.189606 5.19253

4 0.203403 0.202029 0.248277 0.248384 2.243233 2.237295 2.408415 2.40989

6 0.09037 0.089749 0.110854 0.110901 1.828623 1.825026 1.924897 1.926132

8 0.050048 0.049709 0.061813 0.061838 1.646575 1.644002 1.716404 1.717533

10 0.030981 0.030777 0.038518 0.038534 1.54167 1.539679 1.59747 1.598537
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Table 3: Numerical values of velocity for multiple values of λ and t

λ t = 1, α = 0.2 t = 3, α = 0.2 t = 5, α = 0.2

u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46)

1 0.497 0.475 1.206 1.175601 1.643 1.847

2 0.547 0.527 1.515 1.474 2.116 2.355

3 0.559 0.544 1.750 1.697 2.514 2.781

4 0.554 0.544 1.929 1.864 2.851 3.14

5 0.542 0.537 2.067 1.989 3.141 3.445

6 0.528 0.528 2.173 2.084 3.389 3.704

7 0.515 0.517 2.254 2.155 3.604 3.924

8 0.502 0.507 2.315 2.207 3.789 4.113

9 0.490 0.498 2.360 2.244 3.950 4.274

10 0.4808 0.488 2.393 2.271 4.089 4.411

11 0.472 0.480 2.415 2.288 4.209 4.529

12 0.464 0.472 2.430 2.298 4.314 4.629

13 0.458 0.466 2.438 2.303 4.404 4.714

14 0.453 0.460 2.441 2.304 4.482 4.786

15 0.447 0.455 2.440 2.301 4.549 4.847

has become greater. We determined the influence of time by considering various values of λ for

α = 0.2, 0.6 on Caputo and CF velocities in Tables 5 and 6 respectively. When the value of time is

small, the value of CF velocity is also small as compare to Caputo velocity. In Tables 7 and 8, we

discussed the impact of y and time on velocities. It is noted that the velocities reduce with increasing

y. We use Tzou’s and Stehfest’s algorithms to obtain the numerical values for fluid velocities in Table

9.
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Table 4: Numerical values of velocity for multiple values of λ and t

λ t = 1, α = 0.6 t = 3, α = 0.6 t = 5, α = 0.6

u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46)

1 0.351 0.341 1.730 1.652 3.266 3.506

2 0.347 0.353 2.142 2.049 4.014 4.313

3 0.311 0.340 2.463 2.343 4.672 5.022

4 0.278 0.322 2.710 2.557 5.250 5.643

5 0.254 0.305 2.896 2.708 5.761 6.185

6 0.240 0.291 3.031 2.811 6.210 6.655

7 0.230 0.279 3.127 2.878 6.607 7.063

8 0.224 0.270 3.190 2.917 6.957 7.415

9 0.219 0.263 3.227 2.936 7.265 7.718

10 0.215 0.257 3.244 2.940 7.535 7.977

11 0.212 0.252 3.245 2.932 7.772 8.197

12 0.209 0.248 3.234 2.918 7.979 8.384

13 0.207 0.244 3.214 2.897 8.159 8.541

14 0.204 0.241 3.188 2.873 8.315 8.671

15 0.203 0.239 3.158 2.847 8.449 8.778

Numerical results are obtained by using 2.0 GHz AMD A6 machine with 4.0 GB RAM. Tzou’s

and Stehfest’s algorithms have been implemented through MATHCAD software. For convergence,

200 terms of the series of algorithms are considered to obtain the inverse Laplace transform. Time

taken by CPU is approximately 0.6 sec. The CPU time also depends on the complexity of problems

and number of terms considered in algorithms used to obtain inverse Laplace transform.

7 Conclusion

The free convection flow of a Maxwell fluid modelled with Caputo and CF differential operators

with Newtonian heating is investigated. Exact and numerical calculations of the temperature and

velocity fields have been computed using Caputo, CF and for fractional parameter α = 1 as a special

case. Numerical computations are made for Maxwell fluid parameter, Pr, Gr and time-fractional

parameter by varying time.
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Table 5: Numerical values of velocity multiple values of t and λ

t λ = 2, α = 0.6 λ = 4, α = 0.6 λ = 6, α = 0.6

u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46)

1 0.347 0.353 0.278 0.322 0.240 0.291

2 1.238 1.116 1.428 1.262 1.439 1.272

3 2.142 2.049 2.710 2.557 3.031 2.811

4 3.062 3.110 3.976 4.029 4.625 4.644

5 4.014 4.313 5.250 5.643 6.210 6.655

6 5.006 5.661 6.552 7.398 7.812 8.811

7 6.044 7.338 7.893 9.516 9.448 11.358

8 7.134 9.189 9.286 11.82 11.358 14.099

9 8.280 11.575 10.736 14.743 12.875 17.531

10 9.485 15.309 12.250 19.247 14.686 22.756

Table 6: Numerical values of velocity for multiple values of t and λ

t λ = 2, α = 0.8 λ = 4, α = 0.8 λ = 6, α = 0.8

u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t)(46)

1 0.218 0.247 0.143 0.196 0.132 0.170

2 1.248 1.158 1.396 1.259 1.317 1.201

3 2.388 2.328 3.043 2.932 3.398 3.211

4 3.674 3.691 4.769 4.806 5.569 5.586

5 5.134 4.736 6.654 6.233 7.869 7.412

6 6.774 7.353 8.724 9.460 10.351 11.229

7 8.796 10.007 11.227 12.705 13.309 15.036

8 11.011 14.913 13.944 18.579 16.499 21.807

9 13.827 35.033 17.359 42.308 20.477 48.841
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Table 7: Numerical values of velocity for fixed α = 0.6

y t = 8, α = 0.6 t = 10, α = 0.6 t = 12, α = 0.6

u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46)

0 0 0 0 0 0 0

1 9.286 11.820 12.25 19.247 15.484 79.960

2 6.418 8.067 9.432 15.283 12.793 77.020

3 2.824 3.350 4.994 8.435 7.556 56.577

4 0.816 0.912 1.995 3.744 3.608 37.642

5 0.134 0.200 0.568 1.522 1.370 24.148

6 9.575 . 10−3 0.077 0.099 0.726 0.384 15.493

7 2.701 . 10−3 0.046 7.32 . 10−3 0.446 0.066 10.09

Table 8: Variation of time for fixed α = 0.6 on velocity

y λ = 2, α = 0.6 λ = 4, α = 0.6 λ = 6, α = 0.6

u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46) u(y, t) (35) u(y, t) (46)

0 0 0 0 0 0 0

1 9.485 15.309 12.250 19.247 14.686 22.756

2 7.805 12.839 9.432 15.283 10.559 17.039

3 4.726 7.973 4.994 8.435 4.827 8.234

4 2.425 4.319 1.995 3.744 1.451 3.040

5 1.066 2.157 0.568 1.522 0.252 1.195

6 0.390 1.055 0.099 0.726 0.022 0.671

7 0.112 0.552 7.32 . 10−3 0.446 5.936 . 10−3 0.422

8 0.022 0.330 2.002 . 10−3 0.294 2.284 . 10−3 0.254
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Table 9: Numerical values of Caputo an Caputo-Fabrizio velocities by Stehfest’s and Tzou’s

Caputo Caputo Fabrizio

y [Stehfest’s] [Tzou’s] [Stehfest’s] [Tzou’s]

0.2 2.7036 2.70426 2.91354 2.91416

0.4 4.31227 4.31341 4.66352 4.66569

0.6 5.12707 5.12852 5.55074 5.55385

0.8 5.38045 5.38214 5.81438 5.81809

1 5.25044 5.25222 5.64345 5.64759

1.2 4.87213 4.87377 5.18695 5.19136

1.4 4.34674 4.34812 4.56216 4.56658

1.6 3.74912 3.75048 3.86073 3.86478

1.8 3.13399 3.13583 3.15246 3.1558

2 2.54085 2.54338 2.4876 2.49019

A few perceptions and final comments are given as follows:

• The CF model has less temperature than Caputo model for small time domain.

• For greater values of Pr, temperature of both types decreases.

• Fluid velocity becomes a decreasing function of Pr and leads to slower fluid flow.

• The fluid velocity increases with respect to Gr, α and Maxwell fluid parameter λ.

• Velocity of Caputo model is higher than CF for small time domain, while velocity of CF model

increases instead of Caputo model on increasing time domain.
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AppendixA.

If L−1[G(q)] = g(t) and h(u, t) = L−1[e−uw(q)] then

L−1{G[w(q)]} =

∫ ∞

0

g(u)h(u, t)du, (A.1)

L−1

{
e−aqb

qc

}
= tc−1φ

(
c,−b,−at−b

)
; φ(x, y, z) =

∞∑
n=0

zn

Γ(n + 1)Γ(x + ny)
; 0 < b < 1 (A.2)

Ga,b,c(d, t) = L−1

{
qb

(qa − d)c

}
=

∞∑
n=0

dnΓ(n + c)t(n+c)a−b−1

Γ(c)Γ(n + 1)Γ[(n + c)a− b]

if Re(ac− b) > 0, Re(q) > 0 and | d |<| qα | (A.3)

L−1

{
qa−b

qa + c

}
= tb−1Ea,b (−cta) ;Ea,b(z) =

∞∑

k=0

zk

Γ(ak + b)
; a > 0, b > 0 (A.4)

L−1

{
1√

q + m

}
=

1√
πt
−mem2terfc(m

√
t) (A.5)

L−1

{
exp

(
a

q + b

)
− 1

}
=

√
a

t
I1(2

√
at).e−bt (A.6)

L−1

{
1

q
exp

(
−a

√
λq

q + λ

)}
= 1− 2λ

π

∫ ∞

0

sin(ax)

x(λ + x2)
e
−λx2t

λ+x2 dx (A.7)

Distribution function:

δ(t) =





0 t 6= 0

∞ t = 0
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