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Abstract

Mudstone reservoirs demand accurate information about subsurface lithofacies for field development and production. Nor-

mally, quantitative lithofacies modeling is performed using well logs data to identify subsurface lithofacies. Well logs data, 

recorded from these unconventional mudstone formations, are complex in nature. Therefore, identification of lithofacies, 

using conventional interpretation techniques, is a challenging task. Several data-driven machine learning models have been 

proposed in the literature to recognize mudstone lithofacies. Recently, heterogeneous ensemble methods (HEMs) have 

emerged as robust, more reliable and accurate intelligent techniques for solving pattern recognition problems. In this paper, 

two HEMs, namely voting and stacking, ensembles have been applied for the quantitative modeling of mudstone lithofacies 

using Kansas oil-field data. The prediction performance of HEMs is also compared with four state-of-the-art classifiers, 

namely support vector machine, multilayer perceptron, gradient boosting, and random forest. Moreover, the contribution of 

each well logs on the prediction performance of classifiers has been analyzed using the Relief algorithm. Further, valida-

tion curve and grid search techniques have also been applied to obtain valid search ranges and optimum values for HEM 

parameters. The comparison of the test results confirms the superiority of stacking ensemble over all the above-mentioned 

paradigms applied in the paper for lithofacies modeling. This research work is specially designed to evaluate worst- to best-

case scenarios in lithofacies modeling. Prediction accuracy of individual facies has also been determined, and maximum 

overall prediction accuracy is obtained using stacking ensemble.

Keywords Ensemble methods · Voting ensemble · Stacking ensemble · Reservoir characterization · Lithofacies modeling · 

Well log interpretations

Abbreviations

CL  Clay

CM  Carbonate mudstone

DM  Dolomitic mudstone

DP  Dolomitic packstone

DS  Dolomitic sandstone

DW  Dolomitic wackstone

PS  Packstone

SS  Siltstone

WS  Wackstone

MLP  Multilinear perceptron

SVM  Support vector machine

RF  Random forest

GB  Gradient boosting

HEM  Heterogeneous ensemble method

HoEMs  Homogeneous ensemble methods

10-FCV  10-Fold cross-validation

SG  Savitzky–Golay

SP  Spontaneous potential log

TT1  Acoustic transit time 2 log

DT  Acoustic transit time 1 log

MN  Micronormal resistivity log

MI  Microinverse resistivity log

MCAL  Caliper 2 log

DCAL  Caliper 1 log
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RILM  Medium induction log

RILD  Deep induction log

RHOC  Density correction log
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GR  Gamma ray log
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SPOR  Sonic log

viz.  Namely

Introduction

Mudstones are widely occurring siliciclastic sedimentary 

rocks that behave as a source, cap and reservoir rock for 

hydrocarbon systems (Aplin and Macquaker 2011). It con-

tains hidden organic-rich sweet spots and shale gas reser-

voirs which are favorable for petroleum production. Mud-

stone reservoirs are unconventional complex geological 

systems and provide challenges to conventional lithofacies 

interpretation techniques. Extraction of hydrocarbon from 

these unconventional resources requires accurate informa-

tion of formation lithofacies, its association with petrophysi-

cal properties of reservoir rock and their spatial distribution 

(Spain et al. 2015). Conventionally, qualitative analysis is 

performed to recognize subsurface mudstone facies using 

core analysis, geomechanical spectroscopy logs, Rock–Eval 

pyrolysis, etc. (Bhattacharya et al. 2016). The conventional 

methodology is found to be inconvenient, tiresome, expen-

sive in nature and requires high domain expertise.

Recognition of subsurface lithofacies is much researched 

topic and still a thought-provoking problem due to the uncer-

tainty associated with reservoir measurements (Chaki et al. 

2015; Bhattacharya et al. 2016). Quantitative modeling of 

lithofacies is essential to assess the potential of unconven-

tional hydrocarbon reservoirs lying in mudstone formations. 

It also helps to understand the diagenetic and depositional 

burial history of these reservoirs (Aplin and Macquaker 

2011). Quantitative information about underlying mudstone 

lithofacies can be taken out from conventional well logs 

which record the physical properties of rocks along with the 

reservoir depth. Several logging techniques such as wireline, 

logging-while-drilling, measurement-while-logging, etc., are 

utilized to generate wide varieties of well logs for measur-

ing petrophysical properties of reservoir rock (Anifowose 

et al. 2015, 2017). Various researchers have reported that 

logging data are found to be nonlinear, high dimensional, 

complex and noisy in nature due to the heterogeneity and 

spatial distribution of reservoir properties (Kocberber and 

Collins 1990; Chaki et al. 2015; Bhattacharya et al. 2016; 

Tewari and Dwivedi 2018a). Therefore, manual identifica-

tion of geological lithofacies from sensory well logs is an 

impractical and tedious job even for expert field engineers. 

Thus, advance predictive machine learning models are sug-

gested for extracting the lithofacies information from well 

logs.

Several machine learning models have been proposed 

to extract the facies information of conventional reservoir 

using well logs data. However, only few research works are 

available for unconventional mudstone reservoirs. Machine 

learning paradigms utilized for quantitative lithofacies mod-

eling of mudstone lithology are limited to unsupervised 

and supervised classifiers (Qi and Carr 2006; Ma 2011; 

Wang and Carr 2012; Anifowose et al. 2015; Bhattacharya 

et al. 2016). Aplin and Macquaker (2011) published a com-

prehensive review of mudstone lithology. They also studied 

the roles played by mudstone, viz. as an organic-rich source 

rock, cap rock and reservoir rock, from generation to stor-

age of hydrocarbon. Li and Schieber (2017) did a detailed 

study about mudstone facies of the Henry Mountain Region 

of Utah. Qi and Carr (2006) employed an artificial neural 

network (ANN) model for the identification of carbonate 

lithofacies existing in Southwest Kansas from well logs data. 

Wang and Carr (2012) applied discriminant analysis, ANN, 

support vector machine (SVM) and fuzzy logic techniques 

for lithofacies modeling of the Appalachian basin at USA. 

They utilized core and seismic data along with well logs to 

develop a 3-D model of shale facies at the regional scale. 

Avanzini et al. (2016) implemented unsupervised cluster 

analysis for lithofacies classification to identify hidden pro-

ductive sweet spots in the Barnett Shale formation. Bhat-

tacharya et al. (2016) compared the performance of unsuper-

vised and supervised machine learning models for mudstone 

facies present in Mahantango-Marcellus and Bakken Shale, 

USA. Bhattacharya et al. (2019) applied SVM for the identi-

fication of shale lithofacies of Bakken formation existing in 

North Dakota, USA. Table 1 contains a summary of impor-

tant published research works related to mudstone lithofacies 

classification utilizing machine learning techniques.

All the above-mentioned research works are based on sin-

gle supervised or unsupervised classifiers. However, it has 

been proved that the performance of single classifiers can be 

improved using hybrid computational models such as mul-

tiple classifier system, a committee of machines, composite 

systems, etc. (Dietterich 2000; Skurichina and Duin 2001). 

Multiple classifier system, like ensemble methods, can exca-

vate more valuable information from raw sensory data. It 

combines the decisions of several classifiers together for 

classification and regression tasks. The ensemble approach 

can be categorized into two types: (a) homogeneous ensem-

ble methods (HoEMs) such as bagging, random forest, rota-

tional forest, random subspace, etc., and (b) heterogeneous 

ensemble methods (HEMs) such as voting, stacking, etc. 

HoEMs in feature space combine several hypotheses gener-

ated by the identical type of supervised classifiers which 

are utilized as base classifiers (e.g., a cluster of hundreds 

of SVMs). In the case of HEMs, different classifiers are 

utilized to generate and combine diverse hypotheses to 

achieve maximum possible prediction accuracy for existing 

feature space. It has been proved that heterogeneity in base 

classifiers helps to develop more reliable, robust and gen-

eralized classifier models (Sesmero et al. 2015). Ensemble 

methods have the capability to handle complex, nonlinear, 
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multidimensional and imbalanced petroleum data (Tewari 

and Dwivedi 2018b; Anifowose et al. 2015; Dietterich 2000; 

Skurichina and Duin 2001). However, ensemble methods are 

not properly explored and applied in the petroleum research 

domain. Only limited applications of the ensemble approach 

can be found in the petroleum domain as explained briefly 

in the next section of the paper.

The performance of HEMs, namely voting and stacked 

generalization ensembles, along with four other popular 

classifiers, has been studied for the recognition of mud-

stone lithofacies in the paper. This research work is primar-

ily focused on the construction of diverse base classifiers 

contained in HEMs that can actually outperform single clas-

sifiers and HoEMs for lithofacies identification. A compara-

tive study has been performed among HEMs and also with 

four contemporary classifiers for the prediction of lithofa-

cies. The suitability of HEMs has also been evaluated for the 

identification of lithofacies. The complications associated 

with the development of HEMs have been discussed in this 

research work. Four popular supervised classifiers, viz. mul-

tilayer perceptron (MLP), SVM, gradient boosting (GB) and 

random forest (RF), have been combined in HEMs as base 

classifiers to provide more accurate and generalized results. 

The performance of these classifiers has been evaluated 

using Kansas oil-field data with proper parameters optimiza-

tion in their stable search ranges. Validation curve and grid 

search algorithm have been applied for parameters tuning to 

achieve maximum classification accuracy. The contribution 

of each input well logs, for the pattern recognition of mud-

stone lithofacies, has been studied using Relief algorithm. 

Relief algorithm is utilized for the attribute selections owing 

to its capability of identifying discriminatory information. 

Overall, this research work assesses the pattern recognition 

competency of HEMs for complex mudstone lithofacies.

Heterogeneous ensemble methods

Heterogeneous ensembles are lesser-known intelligent 

algorithms in the petroleum domain. They generate several 

different hypotheses in feature space using diverse base 

classifiers and combine them to achieve maximum possible 

accurate results. Sesmero et al. (2015) proved that diverse 

classification hypotheses in feature space are essential for 

the development of reliable, robust and generalized ensem-

ble classifiers. Thus, HEMs are investigated in this paper 

Table 1  Summary of some important published research works related to mudstone lithofacies classification utilizing machine learning tech-

niques

S. no. References Methods Number of wells, logs and facies Field name

1. Qi and Carr (2006) ANNs 100 well data, 6 logs, 6 facies Southwest Kansas

2. Al-Anazi and Gates (2010) Linear discriminant analysis 

(LDA), probabilistic neural 

network, general regression 

neural network and SVM

3 well data, 5 logs, 3 facies Canada field

3. Raeesi et al. (2012) Competitive learning network 

and multilayer perceptron

4 well data, 2 logs, 4 facies Farsi block, Persian Gulf

4. Wang and Carr (2012) LDA, fuzzy logic, ANNs and 

SVM

14 well data, 5 logs, 7 facies Appalachian basin, USA

5. Sebtosheikh and Salehi (2015) SVM 5 well data, 9 logs, 3 facies Iran

6. Horrocks et al. (2015) Naïve Bayes, ANNs and SVM 7 well data, 19 logs, 10 facies Juandah East, Queensland, 

Australia

7. Avanzini et al. (2016) Ward’s and K-means clustering 

algorithms

8 well data, 4 logs, 8 facies Fort Worth Basin, Texas, USA

8. Bhattacharya et al. (2016) Self-organizing map, ANNs, 

SVM and multiresolution 

graph-based clustering

4 logs, 7 facies North Dakota, USA

9. Al-Mudhafar (2017) Probabilistic neural networks 4 logs, 5 facies South Rumaila

10. Tewari and Dwivedi (2018b) Ensemble methods 1 well data, 15 logs, 9 facies Kansas, USA

11. He et al. (2019) Markov chain and ANNs 8 well data, 6 logs, 10 facies Surat Basin, Australia

12. Gu et al. (2019) Probabilistic neural network, 

Boltzmann machine and parti-

cle swarm optimization

2 well data, 9 logs, 13 facies IARA oilfield of Santos Basin

13. Imamverdiyev and Sukhostat 

(2019)

Deep convolution neural network 10 wells data, 7 logs, 9 facies Hugoton basin, Kansas, USA

14. Bhattacharya et al. (2019) SVM 554 well data, 5 logs, 7 facies North Dakota. USA

15. Moradi et al. (2019) K-nearest neighbor, Naïve Bayes 4 well data, 7 logs, 6 facies Upper Sarvak Formation, Iran
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for solving multiclass lithofacies recognition problem in 

the quest for higher classification accuracy. Extraction of 

valuable lithofacies information from well logs data is quite 

a challenging task even for intelligent HoEMs. Spatial dis-

tribution and heterogeneous behavior of the hydrocarbon 

reservoir properties contribute to complexity, nonlinearly 

and uncertainty in all types of sensor-based measurements 

(Chaki et al. 2015; Bhattacharya et al. 2016). Also, no stand-

ard tools or techniques are available in the present scenario 

that can measure the reservoir heterogeneity and its influ-

ence on other reservoir properties, well logs and drilling 

data, etc. Therefore, HEMs are employed for recognition of 

subsurface lithofacies in this paper.

Related works

Ensemble methods are less applied methodology in the 

oil and gas industry. In the petroleum domain, HoEMs are 

mostly implemented for drilling parameter estimation and 

reservoir characterization. Only a few applications of HEMs 

are found in the existing literature. Santos et al. (2003) uti-

lized a neural net ensemble for the recognition of underlying 

lithofacies. Gifford and Agad (2010) applied collaborative 

multiagent classification techniques for the identification of 

lithofacies. Masoudi et al. (2012) integrated the outputs of 

Bayesian and fuzzy classifiers to recognize productive zones 

in Sarvak Formation. Anifowose et al. (2015) utilized the 

stacked generalization ensemble for enhancing the predic-

tion capability of supervised learners for reservoir charac-

terization. Anifowose et al. (2017) wrote a review on the 

applications of ensemble methods and suggested that ensem-

ble methods are suitable for solving problems of the oil and 

gas industry. Bestagini et al. (2017) implemented the random 

forest ensemble for lithofacies classification of Kansas oil-

field data. Xie et al. (2018) published a comparative study 

on the performance of HoEMs for the recognition of lithofa-

cies. Tewari and Dwivedi (2018b) compared five HoEMs for 

the identification of lithofacies. Bhattacharya et al. (2019) 

applied ANN and random forest algorithms to predict daily 

gas production from the unconventional reservoir. Tewari 

et al. (2019) applied HoEMs for the prediction of reservoir 

recovery factors. HEMs have given higher classification per-

formance as compared to supervised classifiers as well as 

HoEMs in several engineering fields such as remote sensing 

(Healey et al. 2018), prostate cancer detection (Wang et al. 

2019), load forecasting (Ribeiro et al. 2019), wind speed 

forecasting (Liu and Chen 2019), etc. Therefore, HEMs are 

investigated in this paper to identify subsurface lithofacies. 

Two types of HEMs utilized for the identification of lithofa-

cies are briefly explained below.

Stacked generalization ensemble

Stacked generalization ensemble is popularly known as 

stacking (Wolpert 1992). It combines decisions of different 

base classifiers in a single-ensemble architecture. Different 

base classifiers search the feature space with their diverse 

perspectives to find the maximum possible accurate hypoth-

eses for a given classification task (Anifowose et al. 2015). 

The classification outcomes of base classifiers are combined 

together by a meta-classifier to provide final classification 

result. The combination of base classifiers’ outcomes is 

decided by the meta-classifier algorithm. Figure 1 shows 

Fig. 1  Conceptual architecture 

of the stacking ensemble uti-

lized for quantitative lithofacies 

modeling in this study
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the conceptual architecture of the stacking ensemble utilized 

for quantitative lithofacies modeling in this study.

Stacking ensemble can also be created by merging the 

decision of similar base classifiers having different paramet-

ric values. The selection of base and meta-classifier combi-

nation is always a matter of concern during the design of 

stacking ensemble architecture. It is also difficult to design 

the most suitable configuration of classifiers in large feature 

space. Wolpert (1992) proved that the stacking ensemble 

is good in reducing the generalization error by decreasing 

bias and variance error associated with data. Initially, input 

data are split into training and testing datasets. Further, the 

training dataset is again split into K identical subsets simi-

lar to K-fold cross-validation technique. Base classifiers are 

trained on (K − 1) subsets, while the Kth subset is retained 

as a validation set. After training with (K − 1) subsets, base 

classifiers are individually tested with the Kth validation 

subset and also with the testing data. The outcomes of each 

base classifier with validation and test datasets will act as 

new training and testing data for meta-classifier. Moreover, 

the meta-classifier will be trained with the prediction out-

comes of the validation set and the actual values of the target 

variable.

Voting ensemble

Voting ensemble combines the decisions of different 

base classifiers for the given classification or estimation 

task. It provides flexibility in combination strategies so 

that the maximum possible classification accuracy can be 

achieved. It does not utilize any algorithm for the combi-

nation of predictions from base classifiers as in the stack-

ing ensemble. Two combination schemes can be imple-

mented for merging the decisions of several classifiers, 

namely majority vote rule (hard voting) and average pre-

dicted confidence probabilities (soft voting) to predict the 

class labels of test samples (Kittler et al. 1998). In place of 

meta-classifier, the abovementioned combining strategies 

are utilized to combine outcomes of diverse supervised 

classifiers. In hard voting, class labels of test samples 

are decided by majority voting rule. Every base classifier 

individually assigns a class label to a given test sample 

during the testing phase. The final classification of the 

test sample is decided by the maximum number of times 

a particular class label gets assigned to that test sample. 

On the other hand, soft voting strategy initially assigns 

weights to each base classifier. During the testing phase, 

it generates prediction probabilities for every test sample 

belonging to various classes. Later, these probabilities are 

multiplied with the weights assigned to every class labels 

and then it is averaged. Test samples are finally classified 

into that class which achieves the highest average confi-

dence probability. Mathematically, soft voting technique 

classifies data samples as argmax (argument of maxima) 

of the sum of assigned probabilities (Kittler et al. 1998; 

Kuncheva 2004). Figure 2 shows theoretical architecture of 

voting ensemble utilized for quantitative lithofacies mod-

eling in this study.

Fig. 2  Conceptual architecture 

of voting ensemble utilized for 

quantitative lithofacies mod-

eling in this study
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Experimental evaluation

In this paper, two HEMs were utilized for the recognition 

of quantitative lithofacies modeling. The primary goal of 

this research work was to achieve higher classification per-

formance using the HEMs approach. HEMs were trained 

and tested on real-field well logs data with other popular 

classifiers, namely RF, MLP, SVM and GB. All the ensem-

ble methods were implemented on the Python Scikit-learn 

Fig. 3  Well logs of Kansas hydrocarbon-producing Deforest well (KGS database)
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platform. Figure 3 portrays a portion of the geological 

lithofacies setting of Deforest well existing in the Kansas 

oil and gas field.

A brief description of Kansas �eld

Kansas region is mainly composed of sedimentary rocks 

with a maximum width of 2850 m. A large number of uncon-

formities occur in the Kansas region with the sedimentary 

strata having 15–50% of the post-Precambrian period (Mer-

riam 1963). Northeastern Kansas is enclosed by Pleistocene 

glacial deposits. A thick layer of Mesozoic rock is present in 

the western Kansas region. Mesozoic rock layers are mainly 

made up of limestones, chalks, sandstone, marine shales and 

nonmarine shale contents. Panoma field and Hugoton field, 

existing in western Kansas, comprise of large natural gas-

producing reservoirs. Pennsylvanian and Permian systems 

are broadest structures of rock containing bedded rock salts 

in several layers. The pre-Pennsylvanian system existing 

in Kansas contains dolomites, marine, limestones layered 

alternatively with sandstones and shales. The Precambrian 

basement composed mainly of quartzite, granite and schist. 

Permian strata contain the carbonate reservoirs that pro-

duce the majority of natural gas. In 1992, Mississippian 

strata produced 43% of cumulative hydrocarbon production 

of Kansas field out of which 19% contributed to cumula-

tive oil production (Newell 1987a). The numerous uncon-

formities available in the Kansas region help trapping and 

migration of petroleum. Basal Pennsylvanian in Kansas has 

a huge deposition of hydrocarbon along with its length. A 

detailed description of the petroleum geology of the Kansas 

region can be found in Newell (1987a, b), Merriam (1963), 

Adler et al. (1971) and Jewett and Merriam (1959). Manual 

interpretation of wells logs data of such a huge hydrocarbon-

producing region is time-consuming and costly. Therefore, 

automatic detection and identification of subsurface lithofa-

cies using machine learning algorithms is highly desirable 

to minimize cost and time.

Data description

The well logs data used for the development of ensem-

ble methods were obtained from the Kansas Geological 

Survey (KGS) Web site (Kansas 2009) which is a very 

large available well logs data repository. The downloaded 

digital well logs, “Las” files, contain 13,000 data samples 

out of which 3425 samples are extracted belonging to 

nine different lithofacies, viz. dolomitic wackstone (DW) 

(1015), clay (CL) (320), dolomitic mudstone (DM) (240), 

dolomitic sandstone (DS) (455), siltstone (SS) (85), dolo-

mitic packstone (DP) (265), carbonate mudstone (CM) 

(520), packstone (PS) (465) and wackstone (WS) (60). 

The above-said lithofacies are acknowledged as class 

labels for the classification of well logs data into their 

respective lithofacies. The downloaded “Las” files belong 

to Paradise A, Deforest and Strahm wells existing in the 

Kansas field. These files also contain information about 

mineral contents and lithofacies prevailing in these wells. 

“Las File Viewer” app has been downloaded from KGS 

Web site to visualize geological settings and facies of 

these wells. Table 2 contains the range of different well 

logs acting as input predictor variables. These logs and 

recorded information about different reservoir properties 

are used in the pattern recognition of lithofacies. The 

input well logs data were downloaded from the Kansas 

Geological Survey database (KGS) available on the KGS 

Table 2  The statistical 

description of input well logs 

data

Well logs/units Minimum Maximum Reservoir properties

Depth (DT)/ft 434 3771 Depth

Sonic log (SPOR)/pu 2.774 133.212 Formation porosity

Density log (DPOR)/pu 0.652 32.118 Formation density

Gamma ray log (GR)/API 16.781 414.152 Gamma radiation

Neutron log (NPOR)/pu 0 44.143 Formation porosity

Density correction log (RHOC)/(gm/cc) 0.01 0.296 Formation bulk density

Deep induction log (RILD)/Ω m 1.905 65.158 Formation fluid saturation

Medium induction log (RILM)/Ω m 2.031 140.706 Formation fluid saturation

Deep laterolog resistivity log (RLL3)/Ω m 2.866 266.481 Formation fluid saturation

Caliper 1 log (DCAL)/inch 7.468 8.982 Borehole diameter

Caliper 2 log (MCAL)/inch 6.947 8.911 Borehole diameter

Microinverse resistivity log (MI)/Ω m 0.609 41.818 Flushed zone resistivity

Micronormal resistivity log (MN)/Ω m 0.138 44.097 Flushed zone resistivity

Acoustic transit time 1 log (DT)/(U s/ft) 51.522 235.961 Compaction, stratigraphic, etc.

Acoustic transit time 2 log (TT1)/(U s/ft) 54.36 662.885 Compaction, stratigraphic, etc.

Spontaneous potential log (SP)/MV − 1.797 71.61 Formation thickness and boundaries
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Web site only for research purposes. The well logs are 

also accessible in the form of digital logs (.csv) files. 

The digital logs (.csv) files contain null or missing values 

in the data samples that are generated due to calibration 

loss of logging sensors, faulty logging tools, etc. Figure 4 

shows generalized workflow for the HEMs to recognize 

the subsurface lithofacies.

Data preprocessing

Diaz et al. (2018) suggested that the preprocessing of petro-

leum data, such as resampling, normalization, noise filtering, 

attribute selection, etc., helps to improve the classification 

or estimation accuracy of intelligent algorithms. Initially, 

resampling of well logs data was done to eliminate samples 

containing null, garbage and missing values. After resam-

pling, the input data were normalized to reduce the impact 

of larger values on the smaller values of predictor variables. 

Input data can be normalized as given below.

where XMax and XMin are maximum and minimum values of 

the respective predictor variables. Equation (1) represents 

the Min–Max normalization technique that ensures all the 

input variables are equally scaled. Min–Max normalization 

is preferred over other scaling techniques especially when 

input data distribution does not follow Gaussian or normal 

distribution. It is highly beneficial for those machine learn-

ing algorithms that involve distance calculation or optimi-

zation in their internal mathematical architectures such as 

ANNs, K-means clustering, SVM, etc. (Mustaffa and Yusof 

2010; Shalabi et al. 2006; Suarez-Alvarez et al. 2012).

(1)X
i,norm =

X
i
− XMin

XMax − XMin

Noise �ltering

Noise filtering of well logs data was done to minimize the 

effects of noise during the pattern recognition of lithofa-

cies. Tewari and Dwivedi (2019) studied the influence of 

noise levels on the performance of supervised classifiers 

and reported its damaging effects on the classifier’s per-

formance. There are several denoising techniques that are 

available in the petroleum and geophysics literature such 

as low-pass filter, high-pass filter, Savitzky–Golay, wavelet 

denoising, moving average, Gaussian, etc. Savitzky–Golay 

(SG) smoothing filter has been found suitable and widely 

utilized noise filtering technique for geophysical data (Baba 

et al. 2014). This is a digital filter used for data smoothening 

which fits a polynomial of degree n by the linear least square 

method and maintains signal tendency through convolution 

(Baba et al. 2014). High peaks of well logs data were con-

sidered as noise components which were eliminated using 

SG filters. Noise contents harmfully affect the pattern rec-

ognition ability of intelligent classifiers. Figure 5 shows four 

important well logs with original and denoised waveform. 

SG smoothening filter was utilized for removing the noise 

content of input well logs. The degree of polynomial fitted 

in well logs for smoothening was found to be varying from 

5 to 13. The higher components or spikes in well logs were 

treated as noisy contents and eliminated through smoothen-

ing the waveforms of well logs. Fifteen input well logs data 

were smoothened using the SG filter and passed to Relief 

algorithm for important well logs selection.

Attribute selection

Important well logs were selected to decrease the dimen-

sionality of data by removing the redundant logs. The high 

dimensionality of logs data increases computational cost and 

Fig. 4  A generalized concep-

tual workflow for the HEMs 

to recognize the subsurface 

lithofacies
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time during the pattern recognition of lithofacies. Several 

attribute selection paradigms are available in the literature 

such as a forest of tree-based attributes selection, univari-

ate feature selection, Relief algorithm, etc. Overlapping 

lithofacies can only be identified by recognizing their dis-

criminatory information contained in the attributes or logs. 

Discriminatory information plays a decisive role, especially 

in classification tasks. Further, the Relief algorithm was 

applied for the attributes selection due to its capability of 

identifying discriminatory information. Relief algorithm 

recognizes conditional dependencies and correlations among 

the attributes or predictor variables and lithofacies (Jia et al. 

2013; Farshad and Sadeh 2014; Urbanowicz et al. 2017). 

Relief algorithm assigns weights and ranks to every predic-

tor variable depending upon their relevance for the pattern 

recognition of lithofacies. Figure 6 shows input well logs 

with predictor importance weights plotted on the y-axis and 

ranks on the x-axis. The well logs having negative weights 

were removed as they did not add any contribution in the 

pattern recognition process. NPOR, GR, DPOR, SP, MI, 

MN, SPOR, DT and RILD were important well logs con-

tributing to the identification and recognition of mudstone 

lithofacies as shown in Fig. 6.

Data partition

The processed input data were further divided into train-

ing sets and testing sets using a cross-validation technique. 

There are three cross-validation techniques, namely K-fold, 

leave-one-out and hold out, that are popular in the machine 

learning domain for the generation of training and testing 

datasets. K-fold cross-validation technique was utilized in 

this research work for splitting the processed input data into 

training and testing subsets (K = 10). Tenfold cross-valida-

tion (10-FCV) technique has been reported to have minimum 

variance error as compared to other cross-validation tech-

niques (Kohavi 1995). Cross-validation helps to minimize 

the chances of overfitting and underfitting of models (Xie 

et al. 2018). The input well logs data were randomly divided 

into K subsets during K-FCV. (K − 1) subsets were used for 

training the intelligent models and Kth for testing it. This 

was repeated in iterations until each subset gets selected as 

Fig. 5  Four original well logs showed with their denoised waveforms using SG smoothening filter

Fig. 6  Available well logs arranged according to their predictor 

important weights assigned by Relief algorithm for pattern recogni-

tion of lithofacies
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a testing set. The final accuracy of every machine learning 

model was decided by averaging the accuracies obtained in 

the iterations.

Optimization of model parameters

The optimum value of every model parameter is essential to 

be determined during the training phase so that models can 

be generalized for unseen data samples. Grid search algo-

rithm was utilized for tuning model parameters to achieve 

maximum classification accuracy on unseen test data sam-

ples. Models with optimally tuned parameters were saved, 

to classify unseen test data samples, and were also evalu-

ated for their generalizability and reliability. Grid search 

algorithm is one of the popular tuning paradigms in the 

petroleum domain (Tewari et al. 2019a). Machine learning 

models always have the possibility of getting overfitted or 

underfitted during pattern recognition. A separate valida-

tion score test was conducted to examine the overfitting and 

underfitting tendency of intelligent models. Validation curve 

was utilized to shrink the search range for various param-

eters. It clearly illustrates the overfitting and underfitting 

regions of the respective classifiers with a specific parameter 

variation. In an underfitting state of the intelligent model, 

training and validation scores are normally recorded to be 

low, whereas overfitting states result in high training and low 

validation scores. The parameter search range is primarily 

comprised of upper and lower constraints of a stable region. 

In stable region, no dramatic variation in training and vali-

dation scores takes place. However, the model still needs an 

optimization algorithm that explores within the stable search 

range to find the best possible value of the model parameters. 

The search range and optimum values for various model 

parameters are depicted in Table 3. Figures 7 and 8 show the 

validation curves of GB and RF classifiers for four impor-

tant parameters, namely Estimators, Min_samples_split, 

Max_depth and Min_samples_leaf. Figure 9a, b shows the 

validation curves of SVM for regularization constant (C) and 

gamma (ϒ) versus accuracy score (Fig. 9).    

The optimal settings of MLP parameters were determined 

through several computational trials to obtain the maximum 

possible classification accuracy. The speed of convergence 

and training loss function of MLP decides its classification 

performance during training and testing phases. Figure 10 

compares several learning strategies available for train-

ing of MLP classifier using training loss versus iterations 

plots. The initial learning rate of MLP was set at 0.001 for 

lithofacies prediction. MLP utilized Adam solver for weight 

Table 3  The search range and optimized values of model parameters obtained through grid search algorithm on input well logs data

S. no. Classifiers Model parameters Search range Settings

1. MLP Activation function Identity, logistic, tanh, relu relu

Solver Lbfgs, Sgd, Adam Adam

alpha 0.00001–0.1 0.0001

Learning_rate_init 0.0001–0.1 0.001

Learning _rate Constant, invscaling and adaptive adaptive

Max_iteration 10–400 200

2. SVM C 1–1000 200

gamma 0.001–1 4

Kernel RBF, polynomial, linear RBF

3. RF Estimators 10–1000 100

Max_depth 0-infinity 10

Min_samples_split 2–10 2

Min_samples_leaf 1–10 1

4. GB Estimators 10–400 250

Max_depth 0-infinity None

Min_samples_split 2–10 2

Min_samples_leaf 1–10 1

5. Voting Base classifiers Any supervised classifiers and HoEMs RF, GB, MLP, SVM

Weights 0.1–1 1,1,0.5,0.5,1

Voting Soft/hard Hard

Combining strategies Simple majority voting/weighted majority 

voting rule

Weighted majority voting rule

6. Stacking Base classifiers Any supervised classifiers and HoEMs RF, GB, MLP and SVM

Meta-classifier RF, GB, MLP and SVM GB
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optimization because of its fast convergence and low training 

loss for large data as depicted in Fig. 10. MLP updates its 

parameters iteratively during training operation using the 

fractional derivatives of the loss function. Cross-entropy 

loss function was utilized to calculate the probability for 

data samples belonging to a particular class or lithofacies. 

Figure 10 shows the comparative graph for diverse training 

strategies of MLP.

Performance evaluation

The performance of optimally tuned intelligent models was 

evaluated with testing data using five statistical performance 

indicators, namely recall, precision, f1-score, accuracy and 

Matthew correlation coefficients (MCC). The accuracy param-

eter was used to evaluate the classification performance of 

each classifier for the recognition of lithofacies. This parameter 

is recommended only for balance data conditions and becomes 

unreliable with uneven data distribution. Precision and recall 

also act as performance metrics for classifiers. Every classifier 

should maximize the values of precision and recall for good 

classification results. F1-score investigates the accuracy of pre-

cision and recall value and mostly used in information retrieval 

domains. However, in the case of data with high imbalance 

conditions, these performance indicators may give misleading 

results. Therefore, the test performance of each classification 

model is also evaluated using the MCC parameter which is 

unaffected by data imbalance issues. The performance indi-

cators used for the evaluation of machine learning models are 

given below.

(2)Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)

(3)Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)

(4)f 1-score = 2 ×
Precision × Recall

Precision + Recall

Fig. 7  Validation curves of gradient boosting classifier to identify stable search range for four primary model variables. a Number of estimators, 

b learning rate, c minimum samples required at a leaf node and (d) minimum samples required for splitting the internal node
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Fig. 8  Validation curves for RF classifier to identify stable search range for four primary model parameters. a Number of estimators, b maxi-

mum depth of tree, c minimum samples required for splitting the internal node. d Minimum samples required at the leaf node

Fig. 9  Validation curves for SVM classifier to identify stable search range for two primary model parameters. a Penalty cost parameters for mis-

classified error samples and b kernel coefficient of RBF
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where TP is a number of correctly classified data samples of 

target lithofacies, FP is a number of correctly classified data 

samples other than target lithofacies, and FN is the number 

of incorrectly recognized samples classified as target litho-

facies. In MCC,  TCk is the number of times prediction of k 

class truly happened, SC is correctly classified data samples, 

TS is the total number of data samples, and  PCk is the num-

ber of times k class predicted.

(5)Accuracy =

Correctly classified data samples

Total number of data samples

(6)
MCC =

SC × TS −
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Results and discussion

This section discusses the experimental results obtained dur-

ing the recognition of nine mudstone lithofacies belonging 

to Kansas oil and gas fields. The performance of stacking 

and voting ensembles was compared with four popular clas-

sifiers, namely GB (Friedman 2001), RF (Ho 1995), SVM 

(Cortes and Vapnik 1995) and MLP (Windeatt 2006). Stack-

ing and voting are two HEMs that were implemented to pre-

dict the complex lithofacies. Figure 4 depicts a generalized 

conceptual workflow for HEMs to predict lithofacies of the 

formations. The performance of HEMs was tested by two 

separate data-driven experiments for the prediction of litho-

facies. In the first experiment, 10-FCV was performed to 

split the input data samples into training and testing subsets 

so that generalized prediction outcomes can be obtained. 

The performance of each classifier has been reported in the 

form of precision, recall and f1-score for individual lithofa-

cies. Tables 4, 5 and 6 show precision, recall and f1-score 

acquired by HEMs and base classifiers for each lithofacies 

during 10-FCV. Overall, the classification performance of 

stacking has been found higher than all the other classifi-

ers considered in this study. Voting ensemble has secured 

second place in terms of overall classification performance 

as shown in Tables 4, 5 and 6. GB and RF classifiers have 

given similar performance scores for the identification of 

mudstone lithofacies as shown in Table 5. SVM classifier 

has also maintained good classification performance during 

10-FCV for all the lithofacies. MLP becomes the worst per-

forming classifier in terms of evaluation metrics, viz. aver-

age precision, average recall and average f1-score, as shown 

in Table 6. It is also found that voting, GB, RF and MLP 

have fluctuations in their performances for smaller classes, 

namely SS and WS. However, stacking and SVM classifiers 

are successful in maintaining their performances even for 

smaller classes as shown in Tables 4 and 6. Smaller classes 

Fig. 10  Comparison among diverse learning strategies for MLP clas-

sifier for prediction of lithofacies

Table 4  The performance of 

HEMs after tenfold cross-

validation for lithofacies 

classification

Stacking ensemble Voting ensemble

Lithofacies Precision Recall f1-score Lithofacies Precision Recall f1-score

CL 0.77 0.86 0.81 CL 0.80 0.80 0.80

CM 0.78 0.89 0.83 CM 0.76 0.87 0.81

DM 0.92 0.96 0.94 DM 0.98 0.88 0.92

DP 0.80 0.68 0.73 DP 0.86 0.60 0.71

DS 0.87 0.85 0.86 DS 0.74 0.92 0.82

DW 0.96 0.93 0.95 DW 0.95 0.94 0.95

PS 0.93 0.83 0.87 PS 0.94 0.83 0.88

SS 0.76 0.94 0.84 SS 0.8 0.94 0.86

WS 1.00 0.83 0.91 WS 1.00 0.58 0.74

Microavg. 0.87 0.87 0.87 Microavg. 0.86 0.86 0.86

Macroavg. 0.87 0.86 0.86 Macroavg. 0.87 0.82 0.83

Weighted avg. 0.88 0.87 0.87 Weighted avg. 0.87 0.86 0.86
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have contributed a lesser number of data samples during 

training and testing of machine learning models. These 

classes also represent facies having thin layers that are dif-

ficult to identify using conventional well logs interpretation 

techniques. WS and SS facies are intentionally included with 

lesser data samples to magnify data imbalance conditions 

that make classification harder even for strong classifiers 

such as GB, RF, voting, etc. Voting and stacking ensembles 

have utilized the same base classifiers for the classification 

of facies; however, stacking performed better than voting 

due to the presence of meta-classifier for combining the out-

comes of base classifiers.

In the second experiment, a separate test was also per-

formed with randomly selected training and testing data 

Table 5  The performance of 

GB classifier and RF ensembles 

after tenfold cross-validation for 

lithofacies classification

GB classifier RF classifier

Lithofacies Precision Recall f1-score Lithofacies Precision Recall f1-score

CL 0.81 0.75 0.78 CL 0.79 0.75 0.77

CM 0.74 0.87 0.8 CM 0.76 0.87 0.81

DM 0.94 0.94 0.94 DM 0.98 0.85 0.91

DP 0.85 0.64 0.73 DP 0.87 0.62 0.73

DS 0.75 0.89 0.81 DS 0.73 0.9 0.81

DW 0.93 0.95 0.94 DW 0.94 0.95 0.94

PS 0.95 0.78 0.86 PS 0.89 0.80 0.84

SS 0.78 0.82 0.8 WS 0.8 0.94 0.86

WS 0.88 0.58 0.7 SS 0.83 0.42 0.56

Microavg. 0.85 0.85 0.85 Microavg. 0.85 0.85 0.85

Macroavg. 0.85 0.8 0.82 Macroavg. 0.84 0.79 0.8

Weighted avg. 0.86 0.85 0.85 Weighted avg. 0.86 0.85 0.85

Table 6  The performance of 

SVM and MLP classifiers after 

tenfold cross-validation for 

lithofacies classification

SVM classifier MLP classifier

Lithofacies Precision Recall f1-score Lithofacies Precision Recall f1-score

CL 0.79 0.81 0.80 CL 0.38 0.33 0.35

CM 0.80 0.90 0.85 CM 0.57 0.78 0.66

DM 0.94 0.65 0.77 DM 0.70 0.67 0.68

DP 0.83 0.74 0.78 DP 0.56 0.19 0.28

DS 0.70 0.89 0.79 DS 0.52 0.73 0.6

DW 0.97 0.94 0.95 DW 0.94 0.89 0.91

PS 0.97 0.84 0.90 PS 0.78 0.78 0.78

SS 0.8 0.94 0.86 SS 0.67 0.47 0.55

WS 0.98 0.92 0.96 WS 0.0 0.0 0.0

Microavg. 0.86 0.86 0.86 Microavg. 0.69 0.69 0.69

Macroavg. 0.87 0.85 0.85 Macroavg. 0.57 0.54 0.54

Weighted avg. 0.86 0.86 0.87 Weighted avg. 0.68 0.69 0.67

Table 7  Classification accuracy of six machine learning models depicted on training (80%) and testing (20%) datasets for lithofacies classifica-

tion

S. no. Classifier Base classifier Training accuracy Testing accuracy Precision Recall f1-score MCC

1. MLP 0.6892 0.6554 0.67 0.67 0.63 0.63

2. SVM 0.9170 0.8403 0.86 0.87 0.87 0.81

3. GB Decision tree 0.9105 0.8554 0.86 0.86 0.86 0.83

4. RF Decision tree 0.9012 0.8481 0.86 0.85 0.85 0.83

5. Voting MLP, SVM, RF, GB 0.9230 0.8657 0.87 0.87 0.87 0.85

6. Stacking MLP, SVM, RF, GB 0.9278 0.8832 0.89 0.88 0.88 0.86
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samples without 10-FCV. Table 7 depicts the overall per-

formance of every classifier utilized in this study with pro-

cessed input data split into (80%) training subset and (20%) 

testing subset. The testing accuracy for individual lithofa-

cies is depicted diagonally in confusion matrices. Figure 6 

illustrates the confusion matrices of HEMs and their base 

Fig. 11  Confusion matrices for 

different classifiers using 20% 

of input data as a testing dataset 

to predict different lithofacies
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Fig. 11  (continued)
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classifiers generated during the testing phase. Training and 

testing classification accuracies of HEMs are found higher 

than all other machine learning models utilized in this study 

as shown in Table 7. Naturally, subsurface layers exist inside 

the formations with uneven thickness and patterns. There-

fore, uneven data distribution has been considered to repre-

sent real-field conditions. This also provides us an oppor-

tunity to understand worst to best possible performance of 

machine learning classifiers for individual layers during 

imbalance data conditions. The uneven data distribution is 

in particular chosen for this study to understand the effect 

of data imbalance conditions. Facies having lesser data 

points such as WS, SS, etc., are designed for magnifying 

data imbalance effects. Stacking ensemble has shown great 

potential to extract lithofacies information from well logs 

data even for smaller classes due to the presence of meta-

classifier in its architecture. Stacking ensemble has scored 

83% accuracy for WS and 94% for SS which are challenging 

smaller lithofacies. This research work is specially designed 

to evaluate worst- to best-case scenarios for lithofacies mod-

eling. Layerwise classification accuracy of HEMs along 

with its base classifiers can be summarized as follows: (a) 

stacking (67.9–95.8%), (b) voting (58.3–94.1%), (c) GB 

(58.3–94.1%), (d) RF (41.7–94.6%), (e) SVM (58.3–94.1%) 

and (f) MLP (0.0–88.7%). In the case of data with high 

imbalance conditions, performance indicators (viz. accuracy, 

precision, recall, and f1-score) may give misleading results. 

Therefore, the testing performance of each classification 

model is also evaluated using the MCC parameter which 

is unaffected by data imbalance issues as shown in Table 7. 

It is found that MCC scores of applied models also justify 

their performance as shown in Table 7. DP has emerged as 

one of the most challenging subsurface rock layers during 

the testing phase. In this study, all the classifiers have iden-

tified data samples related to DP mostly as CM. It may be 

possible that the presence of calcareous mud inside DP has 

confused base classifiers with CM. This uncertainty may be 

removed by increasing the number of training data samples 

that will help in learning discriminating features between 

similar layers (Fig. 11).

Conclusions

A rigorous facieswise comparison has been made between 

stacking and voting ensembles for the detection and identifi-

cation of lithofacies. Stacking has shown nearly 4% and 2% 

improvement in test accuracy as compared to SVM and RF. 

Four popular machine learning algorithms have been com-

bined in HEMs as base classifiers to provide more accurate and 

generalized results. In this study, HEMs have combined MLP, 

SVM, GB and RF classifiers to achieve better classification 

accuracy than their individual performances. The individual 

performance of the abovementioned classifiers has been evalu-

ated using Kansas oil and field data with proper parameter 

optimization in their stable search ranges. Validation curve 

and grid search algorithm have been properly utilized for the 

model parameters tuning to achieve maximum classification 

accuracy. The research work carried out in this paper has led 

to the following conclusions.

• The performance of HEMs depends upon the selection 

of efficient base classifiers for the quantitative lithofacies 

modeling.

• Validation curve has been found as an efficient measure 

for identifying stable search range for machine learning 

parameters.

• Stacking ensemble has shown great potential to extract 

lithofacies information from well logs data.

• The training and testing classification accuracies of HEMs 

have been found highest among the other classifiers used 

in this study.

• DP layer is found to be the most challenging facies among 

all the nine target lithofacies. Stacking ensemble has given 

the highest individual identification accuracy for all the 

layers of lithofacies.

• Prediction accuracy of individual facies ranges from 67.9 

to 95.8% (worst to best possible testing accuracy), and 

maximum overall accuracy is (training = 92.78% and test-

ing = 88.32%) obtained for stacking ensemble.

In this study, HEMs have shown its potential for quantitative 

lithofacies modeling and have outperformed the other clas-

sifiers. A combination of diverse base classifiers will lead to 

higher accuracy and better model generalization as established 

from the results obtained in this study. The analysis of results 

reveals that HEMs are practical and more accurate models, 

with a significant improvement in classification accuracy for 

lithofacies identification, as compared to the individual base 

classifiers.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, 

provide a link to the Creative Commons licence, and indicate if changes 



1866 Journal of Petroleum Exploration and Production Technology (2020) 10:1849–1868

1 3

were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated 

otherwise in a credit line to the material. If material is not included in 

the article’s Creative Commons licence and your intended use is not 

permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Appendix

See Table 8.
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