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Abstract—We numerically compare the mode birefringence and
confinement loss with four patterns (case A–D) of index-guiding
photonic crystal fibers (PCF) using the finite element method. These
PCFs are composed of a solid silica core surrounded by different sizes
of elliptical air holes and a cladding which consist of the same elliptical
air holes in fiber cladding with tetragonal lattice. The maximal
modal birefringence and lowest confinement loss of our proposed case
A structure at the excitation wavelength of λ = 1550 nm can be
achieved at a magnitude of 5.3 × 10−2 (which is the highest value
to our knowledge) and less than 0.051 dB/km (an acceptable value less
than 0.1 dB/km) with only four rings of air holes in fiber cladding,
respectively. The merit of our designed PCFs is that the birefringence
and confinement loss can be easily controlled by turning the pitch (hole
to hole spacing) of elliptical air holes in PCF cladding.
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1. INTRODUCTION

Photonic crystal fibers (PCFs) have attracted a lot of research
attention due to many possibilities and promising applications in
communication and sensing [1, 2]. Based on the design flexibility and
the large index contrast, high birefringence can be easily realized in
PCFs. The birefribgence of index guiding PCFs has a magnitude
of the order of 10−3, which is 1 order of magnitude higher than the
conventional fiber (the order of 10−4). Symmetry in PCFs implies the
existence of doubly-degenerate pairs of modes, that share the same
propagation constant (β) and free-space wavelength (λ), so they must
be degenerate. As a result, the observation of birefringence must be
a result of asymmetry in the structure. These perturbations couple
the modes that propagate at slightly different phase velocities, with
the consequence that the polarization of light becomes unpredictable
after a short propagation. To overcome this drawback, it is highly
desirable to generate a large birefringence (as high as possible) with
a low confinement loss (as low as possible), and to avoid significant
perturbations in the cladding modes to cope with recent challenges
and demands in fiber optic polarization control.

To our knowledge, there are many methods to realized high
birefringence in index-guding PCFs by making the structure of the
PCF asymmetric. One effective way is to replace circular air holes in
the cladding with elliptical ones [3]. For the PCFs of this category,
high birefringence is achieved when the bulk of the mode energy is in
the fiber cladding; thus, the high birefringence is often accompanied
with poor energy confinement [4–6]. Based on our previous works [7],
in this paper, we numerically investigate a novel high-birefringence
and low confinement loss index-guiding PCF using the finite element
method (FEM). Four patterns of PCFs are investigated to compare.
The origin of the birefringence is discussed in detail and its dependence
on the structural parameters is analyzed. Furthermore, we discuss the
influence of the rings of air holes on birefringence and confinement loss.
Finally, we will show that such a design is able to offer a perfect solution
to the tradeoff between the high birefringence and the confinement loss
in elliptical-hole with tetragonal lattice PCFs.

2. SIMULATION MODELS, METHOD, RESULTS AND
DISCUSSION

The numerical method used in this study is FEM [8]. The fiber
cross section representation is very accurate as the domain is divided
into sub-domains with triangular or quadrilateral shape where any
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refractive index profiles can be properly represented. Applying the
variational FEM procedure to the curl-curl equation for magnetic field
H, one obtains an eigenvalue equation ([P ] − β2[Q]){H} = 0, where
{H} is the global magnetic field vector, β is the propagation constant,
and [P ] and [Q] are both sparse matrices. Solving the eigenvalue
equation yields the effective indices of guided modes neff ≡ β/k0, where
k0 = 2π/λ is the wave vector in free space. The modal birefringence of
the fiber is then obtained by B ≡ |nx

eff − ny
eff|, where nx

eff and ny
eff

are effective indices of the x- and y-polarized fundamental modes,
respectively. In order to model infinite PCF with two-dimensional-
finite-geometry (i.e., to enclose the computational domain without
affecting the numerical solution), it is necessary to use anisotropic
perfectly matched layers (PMLs) which are placed in the contact with
the outer most boundary.

Firstly, a comparison of the difference on birefringence between
elliptical air holes PCFs with triangular and tetragonal lattice (see
Fig. 1(a)) has been performed, taking into account in the wavelength
range between 0.8µm and 2.4µm. In the simulation models, each
elliptical air hole forms the cladding with a pitch (center to center
distance between the holes), Λx and Λy along x-axis and y-axis,
respectively. As seen in Figs. 1(a), 2(a) and 2(b) denote the length
of the elliptical air holes along x (minor axes) and y (major axis)
directions, respectively, and the elliptical ratio is set a/b = 0.3. The
core is formed by the omission of one elliptical air hole in the center of
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Figure 1. (a) Schematic diagram of the geometric arrangement of
elliptical air holes PCFs with triangular and tetragonal lattice. (b)
Comparison of the difference on birefringence between elliptical air
holes PCFs with triangular and tetragonal lattice.
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this structure. The refractive index of the background silica is set as
n = 1.45 and the air-holes is set to be 1 throughout the simulations. In
this case, we set the number of the elliptical air hole layers is assumed to
be N = 4 (i.e., four-ring elliptical air holes), a = 0.27µm, b = 0.9µm,
Λx = 3.1a and Λy = 2.4a, respectively.
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Figure 2. Cross section of four types (case A–D) proposed PCF
structures.

In Fig. 1(b), the simulation results show that the mode
birefringence formed by the PCF cladding with tetragonal lattice are
larger than that of triangular lattice one. The mode birefringence for
the tetragonal lattice case operated at the excitation wavelength of
λ = 1550 nm can be achieved at a magnitude of 1.4 × 10−2 which is
more than four times as large when compared to the triangular lattice
case (0.3×10−2). This is attributed to the index difference between the
two orthogonal polarization states of tetragonal lattice case is larger
than that of triangular lattice case. Thus, in this paper we focus on
the PCF structure employing elliptical air holes in fiber cladding with
tetragonal lattice in fused silica to compare their properties on mode
birefringence and confinement loss.

Firstly, four patterns of PCF, which are composed by different
sizes of elliptical air holes near the core and a cladding which consist
of elliptical air holes with tetragonal lattice in fused silica, are analyzed
for comparison, as shown in Figs. 2(a)–(d). For convenience, we name
the corresponding fibers as case A [all of the sizes of elliptical air holes
are the same, see Fig. 2(a)], case B [the same as case A, but air holes
above and below the core are half the size of others, see Fig. 2(b)],
case C [the same as case A, but four air holes near the core are half
the size of others, see Fig. 2(c)], and case D [the same as case A, but
left and right air holes near the core are half the size of others, see
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Fig. 2(d)], respectively.
Figure 3 shows the Effective indexes as a function of wavelengths of

four cases (A–D) of PCFs with the parameters Λx=2.04a, Λy = 2.04b,
a/b = 0.3, a = 0.27µm, b = 0.9µm for the x-polarized and y-polarized
light waves propagating in the z-direction.

Figure 3. Effective indexes as a function of wavelengths of four cases
(A–D) of PCFs with the parameters Λx = 2.04a, Λy = 2.04b, a/b = 0.3,
a = 0.27 µm, b = 0.9µm.

The background index of silica is calculated through the Sellmeier
equation [9]. It is expressed as

n2(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
, (1)

where λ is the wavelength of incident light and n is the refractive index
of silica. The coefficient of Sellmeier “B” is the oscillator strengths of
transitions, and “C” is the squares of the respective transition energies
(as photon wavelengths). We set B1 = 0.96166300, B1 = 0.407942600,
B1 = 0.897479400, C1 = 0.00467914826, C2 = 0.0135120631 and
C3 = 97.9340025 for fused silica in our calculations, respectively.
It can be seen from Fig. 3 that case A possesses larger difference
of effective indexes between x-polarized and y-polarized than other
three cases. For all cases, a difference between the effective indexes for
different polarizations is observed and the effective indexes decreases
with increasing wavelength. It is worthy to note that the difference of
effective indexes of x-polarized are larger than y-polarized light waves
due to the effective area of elliptical air hole along x axes (minor axes)
is smaller than that of y axes (major axes).
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Figure 4. Birefringence as function of wavelengths for the four cases
of PCFs with the parameters Λx = 2.04a, Λy = 2.04b, a/b = 0.3,
a = 0.27 µm, b = 0.9µm.

Figure 4 shows the birefringence as function of wavelengths for
the four cases of PCFs with the parameters Λx = 2.04a, Λy = 2.4b,
a/b = 0.3, a = 0.27 µm, b = 0.9µm, at excitation wavelength
λ = 1550 nm. It can be clearly seen in Fig. 4 that the birefringence
is sensitive to the variation of wavelengths, and the birefringence in
cases A are also higher than those of case B–D. It is worthy to note
that high birefringence above the order of 10−2 can be achieved from
the proposed case A and B cases in a broad range of wavelengths
(0.8µm < λ < 2.4µm). The corresponding maximum birefringence at
excitation wavelength λ = 1550 nm for case A is 4.9× 10−2, for case B
is 3.5× 10−2, for case C is 1.5× 10−2 and for case D is 1.4× 10−2. To
illustrate the field profile of case A–D, the corresponding fundamental
mode at excitation wavelength λ = 1.55µm are shown in Fig. 5. The
simulated results of the y- and x-polarized mode are strongly bounded
in the high index core region, respectively. It is evident in Fig. 5 that
the field intensity of the x-polarized mode is stronger than that of
the y polarized due to the x-polarized states have the lower air filling
fraction than the y polarized states. It implies that the asymmetry in
elliptical air hole PCFs with tetragonal lattice in fused silica is one of
the key factors in determining the localization extent of the transverse
mode. Another significant result from Fig. 5 is that the asymmetric
core shape can influence the polarization mode in PCFs and can split
the fields extended far beyond the core-cladding interface. It is worthy
to confirm that if the large birefringence is desired, the parameters in



Progress In Electromagnetics Research B, Vol. 22, 2010 45

(a) (b) (c) (d)

Figure 5. Corresponding fundamental mode of case A–D shown in
Fig. 4 at excitation wavelength λ = 1.55µm.

PCFs are limited by the requirement for mode profiles, which contain
higher fields intensity in the core region.

The asymmetry as well as the leakage (or loss) in elliptical air
hole PCFs due to the interruption of the lattice are evident. The field
confinement and its decay rate play a fundamental role in the leakage
properties. They depend on the air hole diameter, on their pitch and
on the number of rings. In practice, 6 to 10 rings of air holes are often
needed to reduce the confinement loss to an acceptable level. For the
sake of accuracy, we use 14 rings in this case. The influence of four
cases of PCF on the birefringence stability is also significantly, which
is illustrated in Fig. 6. It can be clearly seen from the Fig. 6 that the
birefringence of cases A–D are stable and case A (near 5 × 10−2) is
higher than others, even in the case of the numbers of rings N = 14.

The FEM with PMLs which placed before the outer boundary can
be use to calculate the confinement loss of PCFs. The confinement loss
can be deduced from the imaginary part of the complex effective mode
index and determined according to the following formulation:

Confinement loss =
2× 1010

ln 10
2π

λ
Im[ni

eff] dBm/km (i = x, y) (2)

where Im[ni
eff] is the imaginary part of the effective index of the guided

mode. Fig. 7 shows the confinement loss as a function of wavelength of
four cases with fixed parameters, Λx = 2.04a, Λy = 2.04b, a/b = 0.3,
a = 0.27µm, b = 0.9µm, at excitation wavelength λ = 1550 nm
and the number of rings N = 4. It can be seen in Fig. 7, the case
A and B structures display more confinement loss (0.04 dB/km and
0.021 dB/km, respectively), whereas case C and D (0.007 dB/km and
0.002 dB/km, respectively) structures can reduce at least a magnitude
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Figure 6. Mode birefringence of case A–D as a function of ring
number with the same parameters used in Fig. 4. Where the excitation
wavelength is λ = 1.55µm.

of one order of confinement loss than that of the case A and B. It
is known that the confinement loss in a PCF decreases rapidly as
more rings of air holes are introduced in the cladding. However, the
confinement loss of case A structure (the number of rings N = 4)
is about 0.04 dB/km, which is much lower than the value of about
490 dB/km (our calculated result from the model of Ref. [10]) obtained
from a previous structure [10] with the small air holes array along x-
axis when the air hole rings N = 7. To explain this phenomenon, the
confinement field of our proposed case A–D structure is assigned to the
PCF core, which is formed by the point defect and gives arise to more
fields confined in the core region, thus the confinement loss decreases
as more rings of holes are employed. In contrast, the small air holes
array in the central part of Ref. [10] structure is a line defect, which
demonstrates that most of the field leakage comes from the x-direction,
and higher confinement loss is presented. In the same manner, the
air holes near the PCF core of case A (all of elliptical air holes in
PCF cladding are the same) are larger than those of other three cases
(reduces some elliptical air holes near the core). Thus, the field leakage
comes from the x- and y-directions are also larger than other cases, and
higher confinement loss is presented.

Compared to the recent results of other approaches to achieve high
birefringence and low loss PCFs, such as by adding many elliptical air
holes in fiber core [6], by squeezed hexagonal lattice [4], by super-lattice
structure PCFs [11], by decreasing stress factor [12], our proposed case
A structure possesses both higher birefringence and lower loss in a
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Figure 7. Confinement loss as a function of wavelengths of four cases
PCFs with the same parameters used in Fig. 6.

broad range of wavelengths, and has the merit of ease procedures (all
the same size of air holes) of fabrication.

Due to the performance of case A structure is superior to those
of case B–C, now we focus on the structure of case A with different
parameters of Λx and Λy to explore high birefringence and low
confinement loss of PCF. The elliptical air holes in the fiber cladding
are also arranged in a tetragonal lattice but with a shorter hole
pitch. Fig. 8 shows the comparison of the birefringence obtained from
case A as a function of wavelengths with fixing structure parameters
a = 0.27 µm, b = 0.9µm, and varying pitches (1) Λx = 2.02a,
Λy = 2.02b, (2) Λx = 2.04a, Λy = 2.04b, (3) Λx = 2.7a, Λy = 2.2b
and (4) Λx = 3.1a, Λy = 2.4b, a/b = 0.3, at excitation wavelength
λ = 1550 nm and the number of rings N = 4. It can be clearly
seen that the birefringence is sensitive to the air hole spacing Λx

and Λy as wavelength λ increases in the range of [0.8, 2.4]µm. The
tendency of the birefringent curve in Fig. 8 is the same as those for
the elliptical-hole PCFs [5] and squeezed hexagonal lattice PCF [4]
with enlarging the lattice pitch along the x-axis as wavelength λ
increases in the range of [0.8, 1.6]µm, we get the lower birefringent
curves as the pitches Λx and Λy increasing. As shown in Fig. 8,
the family curves of birefringence shift upward, corresponding to a
decrement in the Λx and Λy values. Namely, the air hole spacing
is also one of the key factors in determining the localization extent
the transverse mode. The dispersion curves of birefringence increases
over the wavelength in the range of [0.8, 2.4]µm. When Λx and
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Figure 8. Comparison of the birefringence obtained from different
pitches of case A as a function of wavelengths. Where the data of
dashed lines [(1′)–(4′)] is obtained from case A–D of Fig. 4.

Λy are squeezed, while it decreases when Λx and Λy are enlarged,
because squeezing Λx and Λy further increases the difference between
the effective indices of y- and x-polarization modes, while enlarging Λx

and Λy makes the difference less. To some extent this characteristic is
similar to conventional elliptical core fibers [13, 14]. The corresponding
wavelength λ = 1.55 µm with the birefringence reaches its maximum
value B = 5.3 × 10−2 at Λx = 2.02a and Λy = 2.02b and minimum
value B = 1.4 × 10−2 at Λx = 3.1a and Λy = 2.4b, giving an
enhancement of 3.9 × 10−2 by the effect of scaling air hole spacing
along x- and y-axes. It may then be concluded that the birefringence
can be increased by squeezing the hole spacing Λx and Λy along x- and
y-axes. In order to compare the results of difference on birefringence
with Fig. 4, we put the data of case A–D obtained from Fig. 4 with
dashed lines [(1′)–(4′)] as indicted in Fig. 8. As can be seen from
the comparison of solid and dashed lines in Fig. 8, we can learn that
structures with smaller pitches for a fixed air hole size ratio exhibits
higher birefringence. It is worthy to emphasize that high birefringence
above the magnitude of 2 × 10−2 can be achieved from the proposed
case A (with parameters Λx < 2.04a and Λy < 2.04b) in a broad range
of wavelengths (0.8µm < λ < 2.4µm), which is one order higher than
those of case A and B shown in Fig. 4.

Although we have seen that the birefringence can be increased to
a magnitude above 5 × 10−2, the confinement loss still needs to be
evaluated before one can conclude the fiber structure to be useful.
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Figure 9. Comparison of the confinement loss of case A as a function
of wavelength with different pitches and the same parameters used in
Fig. 8.

Fig. 9 also shows the confinement loss of case A as a function of
wavelength with different pitches and the same parameters used in
Fig. 8. It can be seen in Fig. 9 that the confinement losses increases
as the wavelength increases. The confinement loss is in the range of
∼ 0.051 to 0.008 dB/km (can be obtained lower values when N > 4),
indicating that the confinement loss can be tuned by the pitches along
x- and y-axes, and its decay rate depend on the air-hole diameter and
on the number of rings. If the PCF is required to have an acceptable
confinement loss less than 0.1 dB/km, the birefringence will increase to
a level above 0.001. Thus, there is a tradeoff between the confinement
loss and the birefringence for an elliptical-hole with tetragonal lattice
PCF like a structure of case A which indicating that the high mode
birefringence and low confinement loss are maintained.

Figure 10 shows the ellipticity (a/b) dependence of birefringence
of case A–D with fixed parameters: Λx = 2.02a, Λy = 2.02b, ring
number N = 4 and excitation wavelength λ = 1.55 µm. With the
ellipticity a/b ranging from 0.15 to 0.45, the value of birefringence of
case A exceeds a level of 3 × 10−5 and achieves a highest magnitude
of 5.7 × 10−2 as a/b = 0.25. In additions, the value of birefringence
of case B can be also reached a level of 3× 10−5 as a/b ranging from
0.18 to 0.45. Turning to the value of birefringence of case C and D,
the birefringence decreases as a/b ratio increases. From these results,
hole ellipticity (a/b) is also a key point to enhance mode birefringence
of elliptical air hole PCFs due to the difference of nx

eff − ny
eff of case A
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is larger than those of other cases.
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Figure 10. Birefringence of hole ellipticity (a/b) as a function of
wavelengths with fixed parameters: Λx = 2.02a, Λy = 2.02b, ring
number N = 4 and excitation wavelength λ = 1.55µm.

Even though the present study is purely numerical, at the end of
this paper we would like to briefly comment on the possible fabrication
issues for the proposed fiber structure. For current PCFs with elliptical
holes, typically there is considerable variation in precise hole size and
shape [12]. The holes may be particularly susceptible to changes in
shape due to collapse and the surface tension may also tend to pull
elliptic holes into circular ones. It seems that up to date one of the most
promising fabrication methods that can overcome these problems may
be the new multi-step process of forming preforms [15]. In additions,
PCFs with elliptical holes were experimentally realized in 2004 [16],
With the appearance of new methods for fabricating PCFs, such as
performs drilling, solgel casting, and tapering [4, 16, 17], it is possible
for us to draw PCFs with our proposed structures.

3. CONCLUSION

In conclusion, we numerically compare the mode birefringence and
confinement loss with four patterns (case A–D) of index-guiding PCF
using the FEM. These PCFs are composed of a solid silica core
surrounded by four cases of different size of elliptical air holes and
a cladding which consist of the same elliptical air holes. The maximal
modal birefringence and lowest confinement loss of our proposed case A
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structure at the excitation wavelength of λ = 1550 nm can be achieved
at a magnitude of 5.3×10−2 and less than 0.051 dB/km with only four
rings of air holes in fiber cladding, respectively. There is a tradeoff
between the confinement loss and the birefringence for an elliptical-hole
PCF like a structure of case A which indicating that the high mode
birefringence and low confinement loss are maintained. Moreover, it is
worthy to note that high birefringence above the order of 10−2 can
be achieved from the proposed case A and B in a broad range of
wavelengths (0.8µm < λ < 2.4µm). Moreover, with the ellipticity a/b
ranging from 0.15 to 0.45, the value of birefringence of case A exceeds
a level of 3× 10−5 and achieves a highest magnitude of 5.7 × 10−2 as
a/b = 0.25. The merit of our designed PCFs is that the birefringence
and confinement loss can be easily controlled by turning the pitch
(hole to hole spacing) of elliptical air holes with tetragonal lattice in
PCF cladding. Our simulation results provide valuable insight into
realization of PCF with even appreciable birefringence than those
demonstrated previously in literature.
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