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Figure 1: Example of retargeting the butterfly image shown in Figure 2 to half its size. In this study we evaluate 8 different image
retargeting methods, asking users to compare their results and examine what qualities in retargeted images mattered to them. We also
correlate the users’ preferences with automatic image similarity measures. Our findings provide insights on the retargeting problem, and
present a clear benchmark for future research in the field.

Abstract

The numerous works on media retargeting call for a methodologi-
cal approach for evaluating retargeting results. We present the first
comprehensive perceptual study and analysis of image retargeting.
First, we create a benchmark of images and conduct a large scale
user study to compare a representative number of state-of-the-art
retargeting methods. Second, we present analysis of the users’ re-
sponses, where we find that humans in general agree on the evalua-
tion of the results and show that some retargeting methods are con-
sistently more favorable than others. Third, we examine whether
computational image distance metrics can predict human retarget-
ing perception. We show that current measures used in this context
are not necessarily consistent with human rankings, and demon-
strate that better results can be achieved using image features that
were not previously considered for this task. We also reveal specific
qualities in retargeted media that are more important for viewers.
The importance of our work lies in promoting better measures to as-
sess and guide retargeting algorithms in the future. The full bench-
mark we collected, including all images, retargeted results, and the
collected user data, are available to the research community for fur-
ther investigation at http://people.csail.mit.edu/mrub/retargetme.
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1 Introduction

Content-aware media retargeting has drawn much attention in
graphics and vision research in recent years (See [Shamir and
Sorkine 2009] for a detailed background). However, little work

has been done to methodologically evaluate the results of retarget-
ing methods both quantitatively and qualitatively. Some works con-
ducted small-scale user studies to support their evaluation, but most
resort to simple visual comparison of results – typically involving a
small set of images, and a small subset of previous methods. There
is a clear need to create a benchmark and a principled evaluation
framework, not only to evaluate current methods, but also to enable
a more structured comparison of results in the future. In this paper
we present such a benchmark and framework.

Collecting pure ground-truth retargeting data is challenging, and
quite different from collecting user data on segmentation [Martin
et al. 2001; Chen et al. 2009], line-drawing [Cole et al. 2008] or
optical flow [Baker et al. 2007]. Manual retargeting requires a pro-
ficient artist. One possibility is giving an image to several artists
and have them resize it to the required dimensions. Such a task is
extremely laborious, and will greatly limit the size of the bench-
mark. It is also not clear what set of tools the artist should use in
this process. For example, we can allow the artist to employ some
of the suggested retargeting techniques in addition to standard edit-
ing tools, but this may clearly insert bias towards one method over
another. This experiment setup is insufficiently constrained, and
might end up in different results by different artists which would be
difficult to compare and analyze. Moreover, we aim at collecting
large scale user data, spanning a wide variety of viewers, and not
just artists. We therefore choose to concentrate on a comparative
study of existing retargeting methods.

Creating a benchmark image set for retargeting is not enough. Re-
targeting poses an inherent difficulty for evaluation. First, many
times the results could depend on the media content itself: one
method might work best on certain types of images, while another
on different ones. Second, such evaluation is considered highly
subjective. To date, there is no objective computational measure
that can evaluate retargeting quality since it is mainly a perceptual
criterion. Third, it is not clear if such a measure should be sought
after: perhaps different people prefer different results and there is
no consensus even among humans on retargeting evaluation?

Our goal in this work is to advance the understanding in all of the
above questions and to provide a common ground for comparison
between existing and future retargeting methods. We have con-
ducted a comprehensive user study rating the results produced by
eight different retargeting methods on a predefined set of images.



Our results clearly indicate an answer to the first and third ques-
tions: there is a general consensus among people regarding the eval-
uation of retargeting results. Our subjective analysis indicates that
it is sensible to search for a computational measure of quality. We
also provide the means to do this by offering a ground-truth ranking
of various retargeting results.

When examining the smorgasbord of retargeting methods presented
up to date, three main objectives are usually mentioned:

1. Preserving the important content of the original media.
2. Limiting visual artifacts in the resulting media.
3. Preserving internal structures of the original media.

Again, it may seem that the importance of each objective can
change not only between different images, but also between dif-
ferent viewers. To this end, we defined a set of image attributes that
could be mapped to these objectives and examined human evalua-
tions based on these attributes. We found that viewers consistently
demonstrate high sensitivity to deformation, particularly for images
that include specific types of content like faces, well defined geo-
metric structures and symmetry. Interestingly, in many cases users
prefer sacrificing content over inserting deformation to the media.
Our study further shows that these findings are invariant to whether
or not the users are aware of the original (non-resized) content.

In an objective analysis, we attain somewhat surprising results con-
cerning finding objective measures for retargeting evaluation. We
compare computational measures that were suggested in this con-
text to the labeled data, and show that they do not anticipate hu-
man retargeting perception well. Driven by this finding, we sug-
gest ways to improve on those measures, and demonstrate better
results using two image similarity measures which were not previ-
ously used to estimate retargeting quality. We believe our insights
can help define new measures which will enable to better assess or
even guide retargeting algorithms in the future.

2 The Benchmark

Content-aware retargeting methods work best on images where
some content can be disposed of. These include either smooth
or irregularly-textured areas such as sky, water, grass, or trees.
On such images most retargeting methods would work sufficiently
well. Challenge is posed in images containing either dense informa-
tion or global and local structures that may be damaged during re-
sizing. To create our benchmark set, we first gathered images from
various retargeting papers. Additionally, based on insight gained
from those works, we chose a set of image attributes that could be
mapped to the three major retargeting objectives (preserving con-
tent, preserving structure and preventing artifacts), and gathered
images containing such attributes. These attributes are: people and
faces, lines and/or clear edges, evident foreground objects, texture
elements or repeating patterns, specific geometric structures, and
symmetry. The final benchmark is made up of 80 images having
one or more of these attributes.

Retargeting Methods. Media retargeting methods can be clas-
sified as discrete or continuous [Shamir and Sorkine 2009]. Dis-
crete approaches remove or insert pixels (or patches) judiciously to
preserve content, while continuous solutions optimize a mapping
(warp) from the source media size to the target size, constrained
on its important regions and permissible deformations. The set of
retargeting methods used in our study covers most of the recent
major publications in the field, and equally samples from these two
approaches. Those are: Nonhomogeneous warping (WARP) [Wolf
et al. 2007], Seam-Carving (SC) [Rubinstein et al. 2008], Scale-and-
Stretch (SNS) [Wang et al. 2008], Multi-operator (MULTIOP) [Ru-
binstein et al. 2009], Shift-maps (SM) [Pritch et al. 2009], Stream-

ing Video (SV) [Krähenbühl et al. 2009], and Energy-based defor-
mation (LG) [Karni et al. 2009]1.

We also used the results of a simple scaling operator (SCL), as well
as manually chosen cropping windows (CR). The comparison to
cropping is of particular interest in order to investigate the percep-
tual tradeoff between deformation and content removal. For the
convenience of the reader, we supply a succinct summary of each
operator in our supplemental material. Sample results produced by
the methods we use are shown in Figure 1.

Retargeted Images. Given that some methods only support one-
dimensional resizing, we restricted the changes to either the width
or the height of the image. We concentrated on reduction in image
size, and chose to use considerable resizing (25% or 50%) as most
methods will work reasonably well for small changes. For accuracy
of the experiment, we asked the original authors of each method to
retarget the images. Note that different methods may be guided by
different importance criteria on the image, as those are often not
easily separable from the operator itself. For reasons of design and
manageability of the experiments (see Section 3), we chose a subset
of 37 images to conduct our user study.

Finally, in a pilot study we classified these 37 images accord-
ing to the selected attributes (the numbers in parentheses indi-
cate how many images belong to each set): lines/edges (25),
faces/people (15), texture (6), foreground objects (18), geometric
structures (16) and symmetry (6). Note that one image can belong
to several different sets, since it can contain several attributes. This
classification sheds more light on the performance of the methods
based on a high-level description of the image content. Figure 2
shows some examples of the input images used, along with the at-
tributes assigned to each one during the pilot study. The full image
set and classifications are given in the supplementary material.

3 Subjective Analysis

We aim at comparing the retargeting results from an observer’s per-
spective, which requires multiple stimuli with differences between
them often being quite subtle (see Figure 1). More importantly, the
quality of the results that we aim to measure cannot be represented
in a linear scale [Kendall and Babington-Smith 1940], which ad-
vises against ranking methods. We thus chose the paired compar-
isons technique, where the participants are shown two retargeted
images at a time, side by side, and are asked to simply choose the
one they like better. A web-based interface allowed them to conve-
niently switch between the two retargeted results in order to make
the differences between them more apparent, and to view the orig-
inal image as well (please refer to the supplementary material for
screen shots and demonstration of the survey system).

Given our set of images and the eight methods tested, the total num-

ber of possible paired comparisons is too large:
(

8

2

)

= 28 per image
× 37 images = 1036 comparisons. It is therefore unrealistic to ask
a participant to perform a complete test while maintaining the nec-
essary level of attention. Thus, we need to sample this space of
possible comparisons in a way that ensures a solid statistical anal-
ysis. Kendall [1955] and Bose [1955] introduced the problem of
what constitutes a satisfactory subset of the comparisons when the
total number of comparisons is too large. Building on that, we fol-
low the linked-paired comparison design [David 1963], which al-
lows to measure not only the performance of the algorithms, but the
agreement between participants as well.

1Due to scheduling (we received the retargeting results after the user

study began) we did not use the LG method in our analysis, but the results

are still included in the benchmark for the benefit of future studies.



Brick House (L, T, G) Taj Mahal (L, G, S) butterfly (F, G) Fatem (L, P, T, G) boat (L, F)

Figure 2: Samples of the images used in our tests, spanning the range of attributes taken into account: lines/edges (L), faces/people (P),
texture (T), foreground objects (F), geometric structures (G) and symmetry (S).

p1 0-5 1-4 2-3 6-7 4-2 5-1 6-0 3-7 6-4 0-3 1-2 5-7

p2 1-6 2-5 3-4 0-7 5-3 6-2 0-1 4-7 0-5 1-4 2-3 6-7

p3 2-0 3-6 4-5 1-7 6-4 0-3 1-2 5-7 1-6 2-5 3-4 0-7

p4 3-1 4-0 5-6 2-7 0-5 1-4 2-3 6-7 2-0 3-6 4-5 1-7

p5 4-2 5-1 6-0 3-7 1-6 2-5 3-4 0-7 3-1 4-0 5-6 2-7

p6 5-3 6-2 0-1 4-7 2-0 3-6 4-5 1-7 4-2 5-1 6-0 3-7

p7 6-4 0-3 1-2 5-7 3-1 4-0 5-6 2-7 5-3 6-2 0-1 4-7

Table 1: Linked-paired comparison design for a single image. The
eight methods tested are generically numbered [0..7], while pi de-
notes the participant number. Each participant thus performs 12 of
the total of 28 possible paired comparisons per original image, ac-
cording to the parameters chosen in the design (see text for details).

To ensure that the experiment is balanced by comparisons and by
participants, the test should be designed such that:

• Each pair is compared by the same number k of participants.
• Within the pairs compared by each participant, each stimulus

appears an equal number of times β.
• Given any two participants, there are exactly λ pairs compared

by both of them.

The parameters we used in our design were k = 3, β = 3 and
λ = 4. According to these parameters, and following the deriva-
tion by David [1963] (see Table 1), each participant is assigned 12
out of the total of 28 possible paired comparisons per image. To
provide a complete set of three results per pair (β = 3) seven par-
ticipants are required, arriving at a total of 28·3 = 84 votes cast per
image. Each participant would judge between three and five images
(at 12 comparisons per image). To ensure more robust statistics, we
collected three complete sets per image, meaning that each image
was judged by 21 participants, yielding a total of 252 votes.

A total of 210 participants took part in the test, casting a total of
9324 votes. About half of the participants were volunteers and half
workers from Amazon Mechanical Turk. Mechanical Turk was suc-
cessfully used before [Cole et al. 2009], and in fact the comments
we received from participants were very positive (they enjoyed the
test and found it interesting; see supplementary material). About
40% were females and 60% males, average age was around 30, and
they had varying degrees of computer graphics knowledge, being
naı̈ve as to the design and goals of the experiment. To investigate
whether knowledge of the original content affects the preferred re-
sized result, we conducted a blind version of the exact same test (us-
ing 210 new participants), where the original image was not shown.
This perhaps simulates better the real-world scenario, where hu-
mans are typically exposed to edited media, and are unaware of the
original (unedited) source. We refer to this version as no reference
image test and discuss it later in this section.

Additionally, to gain more insight on the reasons to choose one re-
sult over another, the participants were occasionally asked to pick
one or several items out of a proposed set of reasons for not choos-
ing a result. This question appeared randomly with a probability of

lines/ faces/ texture foreground geometric symmetry Aggregate

edges people objects structures

u (with ref.) 0.073 0.166 0.070 0.146 0.084 0.132 0.095

u (no ref.) 0.047 0.086 0.027 0.075 0.059 0.054 0.059

R′ 107 83 53 91 85 53 129

Table 2: Agreement of results from the paired comparison study
with and without a reference image. For the reference version
(the regular version of our test), there is clearly more agreement
between participants for the faces/people, foreground objects and
symmetry sets. Without a reference image, the agreement drops
significantly. In both cases and for all categories, the coefficient of
agreement is statistically significant at p < 0.01. The values of R′

(Equation 2) are used for the grouping in Figure 4.

1/6, a frequency we found suitable in order to maintain the partici-
pant’s attention without making the test tedious. Table 5 shows the
complete list of reasons by image attribute (note that five of them
are common to all six attributes).

3.1 Analysis and Discussion

Agreement. We are first interested in studying the similarity of
choices between participants; all participants would be in complete
agreement if they voted the same way. High disagreement, on the
other hand, reflects difficulty making choices, suggesting either that
the stimuli were very similar or that users tend not to agree. For this
purpose, Kendall and Babington-Smith introduced the coefficient of
agreement [1940], defined as:

u =
2Σ

(

m
2

)(

t
2

) − 1, where Σ =

t
∑

i=1

t
∑

j=1

(

aij

2

)

(1)

where aij is the number of times that method i was chosen over
method j, m is the number of participants (which varies depending
on whether we are analyzing a single image, a set of images or
the combined choices over all images), and t = 8 is the number
of retargeting methods tested. If all participants are in complete
agreement, then u = 1; the minimum value of u is attained by an
even distribution of answers and is given by u = −1/m.

The coefficient over all images is u = 0.095, a relatively low value
suggesting that the participants in general had difficulty judging.
However, by analyzing the images according to their attributes we
find (see Table 2) that the three sets defined by faces/people, fore-
ground objects and symmetry clearly show greater agreement. The
statistical significance of u can be determined by testing the null hy-
pothesis that the comparisons are assigned randomly (no agreement
amongst users). A χ2 test shows that u is statistically significant at
the significance level of 0.01 in all six categories.

Ranking. Figure 3 shows the eight methods, ranked by the number
of votes received (number of times a method was preferred over a
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Figure 3: The number of votes and total ranking (rightmost) of the eight methods per attribute, when the reference (original) image was
shown. We notice that three operators, namely SV, MULTIOP and CR consistently rank better than the others.

Rank SV MULTIOP CR SM SCL SNS WARP SC

Ψ (with ref.) 1.59 1.94 2.03 4.58 5.29 5.45 6.80 7.13

Rank CR MULTIOP SV SM SNS SCL WARP SC

Ψ (no ref.) 1.44 1.91 2.18 4.23 5.45 5.86 6.63 7.38

Table 3: The eight methods sorted by their rank products, with a
reference image (top row) and without (bottom row). Smaller result
indicates better ranking (operator more favored by users).

lines/ faces/ texture foreground geometric symmetry Aggregate Rank

edges people objects structures product

0.964 0.988 0.946 0.737 0.950 0.957 0.978 0.985

Table 4: Correlation coefficients between the reference and no-
reference tests. The high correlation between the two versions in-
dicate that the presence of the source image in the test did not have
large effect on participants’ choices.

different method). We show both the global result, as well as the
results per attribute. Table 3 (top row) shows the results of the rank

product Ψ(O) = (
∏

i
rO,i)

1/b, where rO,i is the specific ranking
for method O and category i (i = 1..b), in all six categories.

In order to analyze the true meaning of these rankings, we perform
a significance test of the score differences. This reveals whether
any two retargeting algorithms produced results that were statis-
tically indistinguishable (and thus can be considered to belong to
the same group), or were perceived as clearly different (belonging
to different groups). Following the approach of Setyawan and La-
gendijk [2004], we need to find a value R′ for which the variance-
normalized range of scores within each group is lower or equal.
The value of R′ depends on the confidence level α, which means
that we need to compute R′ so that P [R ≥ R′] ≤ α. We set again
α = 0.01. It can be shown [David 1963] that R′ can be obtained
from:

P
(

Wt,α ≥
(

2R′ − 0.5
)

/
√

mt,
)

(2)

where the value of Wt,α has been tabulated by Pearson and Hart-
ley [1966]. In our case, W8,0.01 = 4.9884 which yields the R′

values shown in Table 2.

Figure 4 shows the resulting groups for each attribute and for the
combined analysis. An interesting and important finding of this test
is that three algorithms (CR, SV and MULTIOP) consistently stand
out from the rest and usually yield results that can be considered
perceptually similar in terms of ranking, whereas another group of
algorithms (SCL, SC and WARP) was consistently ranked the lowest,
also yielding statistically undistinguishable results.

Discussion. Our analysis shows a clear distinction in performance
among existing methods, and additionally provides some insights
that can help future design of retargeting methods. The results of

Figure 4: Grouping of the algorithms per attribute for the reference
version of the study. Operators are ordered according to received
votes from left (more votes) to right (less votes). Operators within a
group are statistically indistinguishable in terms of user preference.

the coefficient of agreement u suggest that: (i) detecting salient ar-
eas of the images at object level may be valuable in a retargeting
context, and (ii) there is a correlation with the fact that symmetry
detection is an important mechanism of human perception to iden-
tify object structure [Tyler 1996; van der Helm 2000], and it may
be the most important structural aspect that retargeting algorithms
need to maintain.

The significance test of the ranking results reveals clear and con-
sistent grouping of algorithmic performance. Interestingly, two of
the content-aware methods that ranked highest use very different
approaches. SV relies on complex analysis of image importance
combined with various constraints. MULTIOP, on the other hand,
uses simple operators and simple image features but combines them
together effectively. The third one, CR, is the only operator that,
by definition, does not create any artifacts. This suggests that loss
of content is generally preferred over deformation artifacts. The
search for optimal cropping windows (see e.g. [Liu and Gleicher
2006]), which somewhat lost its place in recent years to more so-
phisticated deformation-based methods, is still very much a valid
and relevant research venue.

Although we allowed a certain degree of user guidance in SV, we
found no statistical difference in the total number of votes between
the images with user intervention (average of 41.83) and those
without (average of 41.19). Similarly, it may seem that MUL-
TIOP achieved its ranking because it was using cropping, which was



Attribute Reason ID

lines/edges Lines or edges were broken 1

lines/edges Lines or edges were distorted 2

faces/people People or faces were squeezed 3

faces/people People or faces were stretched 4

faces/people People or faces were deformed 5

texture Textures were distorted 6

foreground objects Foreground objects were squeezed 7

foreground objects Foreground objects were stretched 8

foreground objects Foreground objects were deformed 9

geometric structures Geometric structures were distorted 10

symmetry Symmetry was violated 11

Common Content was removed or cut-off 12

Common Proportions in the image were changed 13

Common Smooth image areas were destroyed or removed 14

Common Can’t put my finger on it.

The other result was simply more appealing 15

Common Other 16

Table 5: Proposed reasons for not choosing a result, grouped by
image attributes. The last five are common to all attributes and
were always offered to the participants.

ranked high as well. However, the normalized means and standard
deviations of the ratio of operations used in the MULTIOP results are
(0.5750, 0.1920) for scaling, (0.3195, 0.1896) for seam carving
and (0.1055, 0.1164) for cropping. Clearly, it is the combination
of the three which yields favorable results.

No-reference Comparison. As stated above, we repeated the ex-
periment with a new set of participants, where the original image
was not shown. As expected, the results show lower agreement be-
tween participants in general (see Table 2, bottom row), given that
the comparison is less constrained without explicit knowledge of
the source image. Note that although the agreement is lower, the
χ2 test still shows that u is significant at the confidence level of
α = 0.01.

Still, the second experiment provides some interesting findings.
First, there is an extremely high correlation between the tests with
and without a reference image (see Table 4). The rank product
results in Table 3 (bottom row) show again a very similar pattern
with respect to the test with reference image. Second, the results
of the significance test of the score differences are also very simi-
lar: again CR, SV and MULTIOP are consistently ranked better than
the rest and are perceived as similar, whereas SCL, SC and WARP

are always grouped together and produce the least satisfying results
(see Figure 6). The main difference, as expected, is that cropping
was almost always the preferred choice: with no reference image
to intimate the loss of content, and by not introducing any artifacts,
cropping presents a clear advantage over the other methods.

In summary, except for an overall slightly better performance of CR,
we found no significant differences between the two tests, which
shows that the participants’ preferences are independent of whether
or not they are aware of the original image.

Additional Questions. Analyzing the relative frequency of the re-
sponses to our additional questions (see Table 5 and Figure 5), it
can be seen how the three main reasons for rejecting an image re-
sult are: people or faces were squeezed, geometric structures were
distorted and proportions in the image were changed. Although our
choice of proposed reasons was not meant to be exhaustive, this re-
sult suggests what kind of distortions retargeting operators should
avoid.

We further analyze this distribution of answers with respect to each
of the operators (see Figure 5). We found that users in general did
not resort to the last two reasons (that were always offered), which
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Figure 5: Percentage of times each reason for not picking an image
was selected, over the total number of times it was shown. We show
the overall distribution and the breakdown per operator. Please
refer to Table 5 for the list of reasons and their IDs.

Figure 6: No-reference version: grouping of the algorithms per
attribute.

indicates that they found a sufficiently close answer in the com-
posed list, and that they usually knew to signify what bothered them
in a result they did not select. For the SM operator, the main reason
for not choosing it was removed or cut-off content. Indeed, this op-
erator shrinks the image by gracefully removing parts of it, which
in some cases were important for the users to maintain. The reasons
for rejecting the SC operator results were dominated by the distor-
tion of lines and edges, and deformation of people and objects. This
operator is susceptible to such artifacts due to the discrete and lo-
cal nature of its carving process. SCL results that were not chosen
by the users, tend to suffer from over-squeezing, or stretching, of
content. For the CR operator, almost all responses focused, not sur-
prisingly, on removal of content. Removal of content also bothered
the users in the context of the WARP operator, which might collapse
regions in the image during its deformation if not enough areas of
homogeneous content are found. The remaining methods tend to
correlate with the global distribution of reasons. Note that SV and
especially SNS were often rejected due to distortion of proportions:
indeed, these two operators allow uniform scaling of image content
(SNS allows the scaling factor to vary and SV fixes a global scaling
factor for the entire image).



4 Objective Analysis

The main question we consider in this part of our work is whether
computational distance measures between images can predict hu-
man retargeting preferences. This is important for two reasons;
first, we could use such measures to compare new operators with
the labeled data to see whether they improve on previous results;
second, we could ideally incorporate those measures in a retarget-
ing framework, such that optimizing them would provide satisfac-
tory results.

Numerous image similarity measures were proposed to assess the
likeness of content in two images in the context of various image
processing applications, such as image compression, search, and
editing. Many of the well-established image distance metrics2 such
as signal-to-noise ratio and structure similarity, have been mostly
developed to compare a “ground truth” image with a modified ver-
sion in terms of content, and as such they work on images of the
same size or aspect ratio only. Designing a similarity metric that
compares image content under varying aspect ratio is significantly
more challenging, since the problem also demands semantical im-
age analysis and content matching.

4.1 Experiment Design

We begin with the two computational measures that were suggested
thus far for measuring retargeting quality: Bidirectional similarity
(BDS) [Simakov et al. 2008], and Bidirectional Warping (BDW)
[Rubinstein et al. 2009]3. In contrast to these methods, which
search for mid-level semantic correspondence between images, we
additionally wanted to compare to low-level measures which treat
the image as a whole. For this purpose we used two measures
from the MPEG-7 standard [MPEG-7 2002; Manjunath et al. 2001]
based on edge histogram (EH) [Manjunath et al. 2001], and color
layout (CL) [Kasutani and Yamada 2001]. Both these measures
are widely incorporated in content-based image retrieval systems,
and can be used for retargeting analysis as they use fixed length
signatures regardless of the image size.

Using these image distance measures, we compared each retargeted
image to the original one. We used the same image sizes as shown
on screen in the user study to adhere to the labeled stimuli. We used
the original authors’ implementations, as well as their suggested
parameter settings, and performed basic parameter optimization to
achieve the best result for each measure (i.e., best correlation with
the subjective results, see Section 4.2). We refer the reader to the
supplemental material for more details on the methods and the pa-
rameter settings we used.

4.2 Evaluation

We wish to estimate how well the objective metrics agree with the
users’ subjective preferences. In this work, we choose to formu-
late the rate of agreement as the correlation between the rankings
induced by the subjective and objective measures. For every image
I , we define the subjective similarity vector s = 〈s1, . . . , sn〉 for
n = 8 methods, where si is the number of times the retargeting
result Ti using method i was favored over another result (i.e. the

2We use the terms “measure” and “metric” interchangeably, as com-

monly done in the related literature. We do not imply, nor rely on, metric

properties for any of the distance measures we discuss.
3Dong et al. [2009] also defined an image retargeting metric that com-

bines BDS, dominant color and a so-called “seam carving distance”; since

the latter is specifically tailored to their retargeting operator, it was difficult

to use their measure in this experiment. We do experiment with BDS, as

well as a color descriptor, both of which are prominent ingredients in their

measure.

higher si the better method i is). We also define o = 〈o1, . . . , on〉
as the respective objective distance vector for the same image I
calculated by one of the objective measures. For a given objective
measure D, the entry oi = D(I, Ti) is the distance between I and
Ti with respect to measure D (in this case, the lower oi the better
the method i is). Note that our balanced design (Section 3) guar-
antees that each result is used equally often over all experiments.
Figure 7 (top) shows an example of the vectors s and o for one im-
age and distance measure. Results for all images and measures can
be found in the supplemental material.

Correlation. To compare between s and o we first sort them and
then rank the retargeting measures according to the sorted order.
The subjective vector s is sorted in descending order since it is a
similarity measure, while the objective vector o is sorted in ascend-
ing order as it is a distance measure. This reduces the problem
of comparing s and o to statistically determining the correlation be-
tween two rankings, rankdesc(s) and rankasc(o) induced by these
vectors (Figure 7, middle). We use the Kendall τ distance [Kendall
1938] to measure the degree of correlation between the two rank-
ings:

τ =
nc − nd

1

2
n(n − 1)

(3)

where n is the length of the rankings, nc is the number of concor-
dant pairs and nd is the number of discordant pairs over all pairs of
entries in the ranking. It is easy to see that −1 ≤ τ ≤ 1 with in-
creasing value indicating increasing rate of agreement. Notice that
τ = 1 in case of perfect agreement (equal rankings), and τ = −1
is case of perfect disagreement. In case τ = 0, the rankings are
considered independent.

Significance Test. To measure the significance of a correlation es-
timate, we need to consider the distribution of the τ coefficient.
It turns out that the distribution of τ tends to normality for large
n [Kendall 1938]. In our case, we can easily estimate the distribu-
tion of τ for n = 8 by considering the rank correlation of all pos-
sible permutations of 8 elements with regards to an objective order
1, 2, . . . , 8. We find that the distribution has normal characteristics,
with zero-mean and σ = 0.2887. For a given set of observed τ
coefficients, we use χ2 test against the null hypothesis that the ob-
served coefficients are randomly sampled from the τ distribution.

4.3 Analysis and Discussion

We gather the distribution of τ scores over all images for each
measure (see Figure 7, bottom), and take the mean and vari-
ance of this distribution to represent the score of the metric in
this experiment. Table 6 presents these scores, with breakdown
according to image attribute, and the total score over the en-
tire dataset. The results are shown for the full rank-vectors,
and also with respect to the k = 3 results ranked highest
by each measure. For the latter, we modify Eq. (3) such that
only pairs (i, j) for which (rank1(i) ≤ k ∨ rank1(j) ≤ k) ∧
(rank2(i) ≤ k ∨ rank2(j) ≤ k) are considered, and the denomi-
nator is modified to be the total number of such pairs. For reference,
we also add in Table 6(a) the results for a random metric, RAND
(will be similar for Table 6(b)). For a given pair of images, this
measure simply returns a uniformly random number in (0, 1).

As expected, the low-level metrics show smaller overall correspon-
dence with the users, although EH achieves higher scores for im-
ages classified as containing apparent geometric structures or sym-
metries. However, both BDS and BDW show low agreement with
the user data as well. The near-zero correlation for nearly all im-
age classes suggests they cannot predict well the users’ retargeting
preferences. Our claim is that their unsatisfying performance has
to do with both the way they construct correspondence between the



Metric Attribute Total

Lines/Edges Faces/People Texture Foreground Objects Geometric Structures Symmetry Mean std p-value

BDS 0.040 0.190 0.060 0.167 -0.004 -0.012 0.083 0.268 0.017

BDW 0.031 0.048 -0.048 0.060 0.004 0.119 0.046 0.181 0.869

EH 0.043 -0.076 -0.060 -0.079 0.103 0.298 0.004 0.334 0.641

CL -0.023 -0.181 -0.071 -0.183 -0.009 0.214 -0.068 0.301 0.384

RAND -0.046 -0.014 0.048 -0.032 -0.040 0.143 -0.031 0.284 0.693

SIFTflow 0.097 0.252 0.119 0.218 0.085 0.071 0.145 0.262 0.031

EMD 0.220 0.262 0.107 0.226 0.237 0.500 0.251 0.272 1e-5

(a) Complete rank correlation (k =∞)

Metric Attribute Total

Lines/Edges Faces/People Texture Foreground Objects Geometric Structures Symmetry Mean std p-value

BDS 0.062 0.280 0.134 0.249 -0.025 -0.247 0.108 0.532 0.005

BDW 0.213 0.141 0.123 0.115 0.212 0.439 0.200 0.395 0.002

EH -0.036 -0.207 -0.331 -0.177 0.111 0.294 -0.071 0.593 0.013

CL -0.307 -0.336 -0.433 -0.519 -0.366 0.088 -0.320 0.543 1e-6

SIFTflow 0.241 0.428 0.312 0.442 0.303 0.002 0.298 0.483 1e-6

EMD 0.301 0.416 0.216 0.295 0.226 0.534 0.326 0.496 1e-6

(b) Rank correlation with respect to the three highest rank results (k = 3).

Table 6: Correlation of objective and subjective measures for the complete rank (top) and for the three highest ranked results (bottom). In
each column the mean τ correlation coefficient is shown (−1 ≤ τ ≤ 1), calculated over all images in the dataset with the corresponding
attribute. The last three columns show the mean score, standard deviation, and respective p-value over all image types. Highest score in each
column appears in bold.
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Figure 7: Correlating the subjective and objective measures. Top
left: collected user votes for the butterfly image. Top right:
objective results, in this case using the BDS measure, on the same
image. Middle: we measure the similarity between the two by com-
paring their induced rankings. Bottom: distribution of the τ rank
coefficient for the BDS metric over the entire dataset. Subjective
and objective measures for all images and metrics can be found in
the supplemental material.

images, and with the image features they use for measuring the dis-
tance.

Both measures use intensity-related distance between correspond-
ing patches as indication of differences between the images. Those
are strict measures which assign high penalties to patch variations
caused by small local deformations (e.g small scale or rotation).
Such deformations might be acceptable by human viewers, and so
may be reasonable to use for retargeting purposes. As for the cor-
respondence, since BDS uses global patch comparison, a deformed
region in the result might be matched to a different part of the orig-
inal image that has similar appearance. Thus, record of specific
changes in content might not be reflected in the distance. BDW
does constrain the correspondence such that regions in the result
will be matched to approximately the same regions in the original
image. However due to its one-dimensional design, it will have
difficulty dealing with results produced by some of the operators.

It seems that for measuring retargeting quality, it is crucial to align
the images as accurately as possible in order to capture the true
modifications the image has undergone. Suggesting a novel solu-
tion for constructing better correspondence between the images (or
a better descriptor) is beyond the scope of this work. Instead, we
demonstrate our claim using two existing image distance measures
which were not previously applied in retargeting context: SIFT-flow
(SIFTflow) [Liu et al. 2008], and Earth-Mover’s Distance (EMD)
[Pele and Werman 2009]. Both measures use a dense SIFT descrip-
tor [Lowe 2004], which is known for its ability to robustly capture
structural properties of the image, while EMD also uses a state of
the art color descriptor (ciede2000). Although the two measures
take somewhat different approaches to align the images, they both
encourage their solutions to small and smooth local displacements
(see formulations in the supplemental material), which seem to re-
late well to deformations humans are tolerant to, and to operations
applied by retargeting operators.

The results using these measures are more encouraging (Table 6).
It is evident that EMD and SIFTflow produce rankings which gen-
erally better agree with the user labeling in comparison to the other
objective measures. EMD shows somewhat better results for the
full ranking, while the two are on par with respect to the top-ranked
results. In general, we noticed that the measures have stronger cor-
relation with the subjective results on images with faces or people,
and evident foreground objects. Table 6 also shows the calculated
p-values for this analysis. BDS, SIFTflow and EMD show signif-
icant results for p < 0.01, and so we can support the fact that
EMD and SIFTflow have better correlation with the users with high
statistics confidence. The distribution of scores for BDW and the
low-level measures (available in the accompanying material) do not
allow us to conclude with sufficient confidence that their results do
not merely pertain to chance. For k = 3, the calculated correlations
for all metrics are significant at α = 0.01 confidence level.

It is therefore our belief that image descriptors such as SIFT and
ciede2000 are more suitable than patch-based distances for convey-
ing local permissible changes in content. Moreover, the constrained
alignment produced by these methods also appears to model better
the deformations made by retargeting operators, and so provides
more reliable content matching for retargeting measures. Note that
we do not claim EMD nor SIFTflow are the “correct” solution for
an objective retargeting metric. They only unveil the problems in



current retargeting measures and suggest a possible direction for
future solution and research.

5 Using and Extending the Dataset

Our retargeting dataset, which we name RetargetMe, is freely avail-
able online at http://people.csail.mit.edu/mrub/retargetme. It con-
tains all images and retargeted results used in this study, as well
as the collected subjective and objective data. We encourage the
reader to visit this web site for further technical details on accessing
the data and submitting new results. It also provides a convenient
synopsis of the state-of-the-art in image retargeting.

Our evaluation framework can be used in different ways. A new
retargeting measure can be evaluated by comparing its rankings on
the benchmark images with the ground truth user rankings we col-
lected (Section 4). This favors the “measure-based” approach for
retargeting, where one would first model the quality of a retargeted
result by a measure that can be evaluated on the result directly; com-
pare (and tune) it against the viewers’ preferences, and then develop
an operator that optimizes the result with respect to this measure.
The work of Simakov et al. [2008] is one example that follows this
approach 4.

Since the ground truth data we collected is on the comparisons be-
tween the results and not the results themselves, a perceptual evalu-
ation of a new retargeting operator requires a new user study. We re-
iterate that this design decision is motivated mainly by the fact that
it is difficult to gather large-scale user feedback on “how should this
image be resized?” (as opposed to, say, “what are the segments in
this image?” or “where should the lines pass?”, see Section 1). On
the other hand, deciding between two retargeted results is a much
more feasible task to give to a human viewer. To this end we make
our (web-based) survey system available, which we hope will ease
conducting such studies in the future. Furthermore, depending on
the reason for evaluation, a study of a new retargeting operator need
not necessarily involve the full all-pair operator comparison as done
in this work. For example, to show improvement of the new oper-
ator over another requires comparing between those two operators
only. To show a new operator advances the current state of the art,
it should suffice demonstrating that it improves upon SV, CR and
MULTIOP, which significantly and consistently outperformed the
rest of the methods in our experiment.

Finally, adding additional images to the dataset will require per-
forming a study comparing all retargeting operators on the new im-
ages. We note that given different numbers of images, or different
numbers of comparisons per image, other linked-paired compari-
son designs might serve better than the one we used here (Table 1).
Designs corresponding to different parameters can be found in the
literature, or derived manually [David 1963].

6 Conclusions

We have presented the first thorough study on image retargeting
methods. We gathered a set of images as a benchmark and con-
ducted a large scale user study comparing eight state-of-the-art re-
targeting algorithms. We further presented an analysis of the cor-
relation between various image distance measures to user resizing
preferences.

4At the time we constructed the benchmark, running [Simakov et al.

2008] on all our images turned out to be infeasible due to its high compu-

tational cost, and so it did not take part in our experiment. In the future

it would be desirable to add their results, which can now be approximated

efficiently following [Barnes et al. 2009]. Note that we did consider their

measure for computational analysis (Section 4).

Authors of a newly suggested retargeting operator (or retargeting
measure) will now be able to: (i) use our survey system to perform
an extensive user study that compares their results and all the previ-
ous results we have gathered; (ii) analyze their collected data using
the proposed evaluation methodology; and (iii) present quantitative
results as to the performance of their algorithm relative to previous
techniques.

Several interesting insights were discovered. In general, more re-
cent algorithms such as SV and MULTIOP indeed outperform their
predecessors. Cropping, although a relatively naı̈ve operation, is
still one of the most favored methods, most often since it does not
create any artifacts. Our findings indicate that the search for an
optimal cropping window, which was somewhat abandoned by re-
searchers in the past few years, could often be favorable and should
not be overlooked. These conclusions must be tuned by remem-
bering that the images included in the study were deliberately chal-
lenging for retargeting methods and the size differences we used
were rather extreme. It seems that simple operators such as uni-
form scaling or seam carving are better suited for small amounts of
change, as suggested by the fact that when they are combined to-
gether in small amounts (MULTIOP), they produce favorable results.
it is interesting to note that the two best performing methods use
very distinct approaches: defining complex intelligent algorithms
or combining many simple ones.

In terms of objective measures for retargeting, our results show that
we are still a long way from imitating human perception. There
is a relatively large discrepancy between such measures and the
subjective data we collected, and in fact, the most preferred algo-
rithm by human viewers, SV, received low ranking by almost all
automatic distance measures. One possible explanation to this is
that although the distance measures use multiple scales, they do not
match between different resolutions – a phenomenon that may ap-
pear in retargeting when different parts of the image are scaled dif-
ferently. We showed how SIFTflow and EMD, measures not used
before for retargeting algorithms, generally agree better with users’
preferences under our evaluation criteria. Given their better perfor-
mance, it should be interesting to try and optimize retargeting with
respect to those measures. Nevertheless, it is clear that further re-
search is needed to find new measures that could better represent
human perception in a retargeting context. For example, employ-
ing machine learning techniques to factor out the contribution of
each of the retargeting objectives (Section 1) and training a met-
ric according to the observed user selections could be a promising
research direction.

There are many additional opportunities for further analyzing, or
building upon, the current data. For instance, other classes of im-
ages or specific feature types may be defined on the image set and
analyzed. This is of particular importance in retargeting, where the
objectives seem to be more content-specific (e.g. text, maps, med-
ical imaging) than in other computer vision domains. In fact, the
context/application within which an image is viewed (e.g. while
browsing photos on a computer, or reading a news article on a mo-
bile device) might also affect the viewers’ perception of the retar-
geted content. As most content-aware retargeting operators rely on
different techniques for estimating the salient regions in the media,
it is important to further study the effect of the saliency measure on
the results. Last, more data may be added on expanding image sizes
and on a more uniform sampling of the general image space (i.e. not
necessarily concentrating on difficult images). A symmetric bench-
mark on video content retargeting is likewise essential, for which
a similar methodology may apply. We believe that the benchmark
and our evaluation methodology will lead to improved retargeting
algorithms and measures, as well as better understanding of the re-
targeting problem and objectives.
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