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ABSTRACT

In L.-distortion limited compression each single
pixel value is only changed by maximal =7 grey val-
ues. In this paper we present a theoretical framework
for L -distortion limited compression that covers sev-
eral recently proposed methods. The basics of each of
these methods are described. We give a comparison
of coding results for the Lenna test image, a coronary
angiogram, and a Landsat image. Results are reported
for various tolerances. Standard DPCM is used as a
reference. While this paper gives an overview over
various algorithms, the main purpose is to indicate
what level of compression can be expected when limit-
ing the error in L,-distortion sense.

1. AL,-DISTORTIONLIMITED
COMPRESSION FRAMEWORK

In many applications, for example medical imagery,
SAR imagery, or numerical weather simulations, the
large amount of data to be stored or transmitted asks
for data compression. Since lossless coding usually
gives a compression ratio of at most 4:1, lossy cod-
ing methods have to be employed when higher com-
pression ratios are needed. Most lossy compression
schemes operate by minimizing some average error
measure such as the root mean square error. However,
in error critical applications such as medical imagery
or target recognition, such average error measures are
inappropriate. Instead, there is usually a need for a
guarantee that a single pixel has not been changed by
more than a certain tolerance (which may depend on
the pixel location). Thus, the error in each pixel has to
be controlled.

In this paper we consider a L, -distortion limited
compression scheme with global tolerance 7. For such
an encoding method the code for a one-dimensional
signal s € Z™ represents a reconstruction signal § €
N (s), where

N(8):={t€Z" It — sl]leo < T},

t— = ti — sil.
It — sllo ier?ﬁa;;}lz 84

For 7 = 0 this leads to lossless compression. If 7
is small, the term "near-lossless coding" appears to be
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Figure 1: Each left-to-right path is an element of N, (s)
with s = (3,3,2,1,3,5,7,6,5,4).

justified. A, (s) can be seen as the set of all left-to-
right paths in a trellis as depicted in Figure 1.

Which of the (27 + 1)™ elements of \V-(s) can be
coded most efficiently? All coding methods described
below use a lossless coding strategy C' and try to de-
termine, at least approximately or heuristically, the el-
ement of A/ (s) that can be coded most efficiently us-
ing C. Mathematically, let C be the set of lossless cod-
ing methods. For example, C' € C could be a 0-order
entropy coder. Then the coding problem for this par-
ticular C is:

find ¢* € N,(s) such that

. , (%)
Le@)) = i L))

where £ (-) gives the length of the code or some esti-

mate thereof.

In the following sections we give short descrip-
tions of several L,-based compression methods. Most
of these methods were implemented and tested with
the images given in Figure 2.

2. QUANTIZATION VSPRECONDITIONING

In the problem formulation of the previous section the
signal to be coded can be modified in each component
independently of the other components. Thus, for a
signal s and ¢ # j it is possible that s(i) = s(j) but
5(4) # 8(j). In other words, § is in general not simply



the result of using a quantizer ¢ for the values of s. We
refer to § as a preconditioned version of s in contrast
to a quantized version. The emphasis in this paper is
on preconditioning.

Nevertheless, the problem of finding the quantiza-
tion function such that the quantized version of s has
minimal 0-order entropy can be solved in O(n) time
using dynamic programming [1]. It is also shown that
for a tolerance 7 > 0 the entropy savings are at most
log, (27 + 1) per pixel.

3. ENTROPY-CODED DPCM BASED
METHODS

The entropy coding of the prediction residuals of a
DPCM scheme is a standard method for lossless com-
pression. It can easily be modified to serve as an L,
distortion based compression method.

DPCM1. The signal is uniformly quantized with
quantization bin size 27+ 1. Thus, a quantized version
of the original signal is computed. Then the residuals
of a linear predictor are entropy coded. The disadvan-
tage of this method is that for larger 7 there are only a
few different grey levels leading to "plateau effects’.

DPCM2. No a priori grey value reduction is per-
formed, but the prediction error of the DPCM scheme
is uniformly quantized to match the desired tolerance
7. When the predictor coefficients are not integer val-
ues, this method does not coincide with the method
DPCML1 and does not show the plateau effects. Re-
sults for several medical images are reported in [2].

In the above mentioned methods, there is actually
no mechanism to minimize the entropy of the error se-
quence. When we use a lossless predictive coder fol-
lowed by an entropy coder, the optimization problem
(x) asks for the path in the trellis whose corresponding
residual sequence has minimum entropy. We conjec-
ture that this optimization problem is NP-hard. Note
that the complexity depends on the signal length n and
the tolerance 7.

We applied genetic algorithms (GA) [3, 4] to solve
this optimization problem for a signal s € Z™ and a
tolerance 7.

GA. In our setting a chromosome ¢ is a word of
length n over the alphabet {—7,---,0,---, 7} and rep-
resents the signal s + ¢ € N (s). The genetic op-
erations are 2-point crossover and mutation. We use
roulette wheel parent selection. The evaluation of a
chromosome is given by the entropy of the distribu-
tion of prediction residuals of § = s + ¢. For the fit-
ness function we use exponential ranking. Large tests
for the determination of suitable parameters were per-
formed.

The results obtained with the GA approach are
rather disappointing. For example, as a signal s a line
of the image Lenna was taken. The entropy of that
signal is 7.0, after quantization with tolerance = = 2,
and after prediction the sequence can be coded with an

entropy of 3.1. The solution found with the GA only
gave an entropy of 3.9. Thus, the GA is not even able
to beat the method DPCM1.

The minimum-entropy constrained-error DPCM
(MECE) of [5] is another method that tries to mini-
mizes the entropy of the prediction residual sequence.
It uses an iterative optimization method that arrives at
a local optimum.

MECE. Assume that an ideal entropy coder is given
for a fixed residual distribution. To find the optimal el-
ement of A/, (s) for this coder one has to solve a short-
est path problem. This can easily be done via Dynamic
Programming. Now, using an entropy coder that is op-
timal for the actual residual distribution will give a de-
crease in entropy. These two steps are performed iter-
atively until a stopping criterion is matched.

For images a two dimensional 3-tap predictor is
used and the images are coded row by row. The results
can be further improved by using a 1-order entropy
coder with a certain number of contexts.

In the above mentioned methods the predictor and
the contexts are fixed. Of course, it would be advan-
tageous to include the choice of predictor coefficients
and context into the optimization problem; clearly, this
makes the problem even more complicated. A sophis-
ticated method that uses adaptive context modeling to
correct prediction biases is the L,-constrained CALIC
[6]. The converse problem of determining a predictor
such that the prediction residuals have minimum en-
tropy was investigated for lossless coding in [7].

4. PIECEWISE LINEAR CODING

Piecewise linear coding (PCL) is a generalization of
Run Length Encoding. It is also called fan-based cod-
ing; for an extensive overview see [8]. In piecewise
linear coding a signal is split into segments each of
which can be described by a linear function. Each seg-
ment then is coded by the length of the segment and
the slope parameter. The constant additive part of the
function is implicitly given by the previous segment;
only for the first segment the initial signal value has
to be coded. For example, the signal in Figure 1 is
represented as 3(1,0)(2,-1)(3,2)(3,-1).

In the case that £(-) counts the number of segments
the optimization () can be solved in O(n?)-time via
Dynamic Programming [9]. In [10, 11] a suboptimal
greedy method that works in linear time is proposed
for the same optimization problem. Essentially, it
works as follows. The image is transformed into a
1-dimensional signal, e.g., by a Hilbert-Peano scan.
Then the linear segments are successively determined:
starting at the endpoint of the last determined segment,
the new segment is chosen to be the one of greatest
possible length. Finally, an O-order entropy coder is
applied to the list of segment lengths and segment
slopes. Better results can be obtained when the length
of the 0-order entropy code is minimized in place of



Figure 2: The 512 x 512 8-bit test images Lenna, Angio, Landsat.

7=0 T=1 T=2 T=3 T=4 T=25 T=10 T=15

bpp [ bpp rms | bpp rms | bpp rms |bpp rms |bpp rms | bpp rms | bpp rms
DPCM1 | 46 |30 08|23 14|19 20|16 26|14 32|09 61|07 89
ppCM2 | 45 |30 08|23 14|19 20|17 26|15 32|10 59 |08 87
MECE 46 |31 08|25 14|20 19|17 25|14 30|07 53|05 76
PLC 50 [ 42 08|35 15|30 22|25 28|22 33|13 59|09 85
DLVQ 4.7 32 08|25 14|20 20|17 25|13 29|07 49|06 638
SPIHT 45 |30 08|23 14|19 18|15 21|12 23|06 32|04 39

Table 1: Compression results for the Lenna image (bpp = bits per pixel, rms = root mean square error).

7=0 T=1 T=2 T=3 T=4 T=25 7=10 T=15
bpp | bpp rms | bpp rms | bpp rms |bpp rms |bpp rms | bpp rms | bpp rms
DpCM1| 39 |25 08|19 14|15 19|13 25|12 31|08 60|06 90
DPCM2 | 39 |26 09|20 14|17 20|15 26|13 31|10 6.0 |09 89
MECE 39 (26 08|20 13|17 19|15 25|12 30|05 52|03 70
PLC 45 |39 08|33 15|28 23|23 29|20 35|09 59|05 79
DLVQ 4.2 26 08|19 14|15 20|13 25|10 30|05 48|04 65
SPIHT 40 |25 08|19 14|16 17|12 19|10 22|03 42|01 49
Table 2: Compression results for the Angio image.
T= T=1 T=2 T=3 T=4 T=5 7=10 T=15
bpp | bpp rms | bpp rms | bpp rms |bpp rms | bpp rms | bpp rms | bpp rms
DPCM1 | 48 |46 08|41 14|33 19|32 25|30 31|21 58|17 88
DPCM2 | 57 |45 08|38 14|33 20|30 26|27 31|19 60|14 87
MECE 48 |41 07|40 14|35 21|31 27|30 32|20 58|14 87
PLC 46 |51 08|51 14|47 23|46 29|44 35|32 71|23 101
DLVQ 60 |44 08|37 14|32 20|29 25|26 31|17 60|12 86
SPIHT 590 |46 08|39 14|34 20|30 25|27 31|19 59|14 72

Table 3: Compression results for the Landsat image.

the number of segments [9]. However, in this case the
global optimum can no longer be achieved by linear
programming alone. Instead, an iterative procedure
similar to that in [5] can be applied leading to a locally
optimal solution.

5. DISTORTION-LIMITED VQ

The DLVQ method proposed by [12] is a multistage
vector quantization approach. The image is partitioned,

e.g., in 4 x 4 blocks. A block is coded by a predictive
vector quantizer. If there is a component with a distor-
tion above the threshold 7, the error residual block is
coded with another codebook and a second index has
to be sent. If the error tolerance is still not satisfied,
a scalar quantizer is applied to the second-order resid-
uals which finally guarantees that the error tolerance
criterion is satisfied.

The special feature of [12] is a codebook design
algorithm that reduces the number of large distortion
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Figure 3: Error images for Lennaand = = 10. The absolute values of the errors are scaled such that white indicates

an error of 10, black stands for exact pixel coding.

occurrences. It is based on a modified L,-distortion:
It = sllmoa =

0 max |s; — ;| <7
1<i<n

max |s; —t;| — 7 otherwise

1<i<n
The centroid computation in the Generalized Lloyd
Algorithm for the L..- distortion and for the above
modification is done using a specially designed itera-
tive optimization.

6. OTHER METHODS

Any lossy compression method can be turned into a
lossless scheme by adding a stage of lossless error resid-
ual coding [13]. Thus, likewise a lossy method can
also be extended to a near-lossless coding method. The
problem is to efficiently encode the positions where a
refinement to the lossy scheme has to be done. The
DLVQ can be viewed as a method of this type.

We have tested the *lossy plus near-lossless resid-
ual® option using the SPIHT scheme of [14]. The im-
ages are coded with the SPIHT method for various bit
rates; then, the residual images are coded via DPCM

(for a fixed tolerance 7). That combination is chosen
which has minimized the total bit rate. Of course, bet-
ter adapted predictors and context selectors will im-
prove the performance.

When using transform coding without near-lossless
residual coding for L, -distortion based compression,
the problem is to determine how the transformed coef-
ficients can be modified such that after the application
of the inverse transform the tolerance criterion is not
violated. In [15] this is studied in the context of the
wavelet transform. The maximal quantization step size
is determined for a uniform quantizer in the wavelet
domain, given a tolerance 7.

7. RESULTS & CONCLUSIONS

For our empirical tests we have implemented the two
basic DPCM methods, the minimum-entropy
constrained-error (MECE) approach, the optimal piece-
wise linear coding (PLC) that minimizes the number
of runs, the distortion-limited VQ (DLVQ), and the
SPIHT plus DPCM scheme. The programs were ap-
plied to the three test images shown in Figure 2 for
various L,-tolerances 7 > 0. The results are given
in Tables 1-3. All bit per pixel (bpp) numbers are en-
tropy estimates. Besides the bpp value the error dis-



tribution (Figure 3) is another criterion for compari-
son. The DPCM1 and DPCM2 methods give almost
the same results, but the DPCM2 coded images give
better visual impression. The entropy minimization of
MECE shows little effect for small error tolerances.
For high tolerances, we see some significant gains,
but these gains come with high computing times. For
the DPCM1 and the MECE schemes the simple planar
predictor was employed. For the DPCM2 method the
coefficients of the 3-tap predictor were chosen to min-
imize the squared error of the residuals. The contexts
were selected as in [5].

The PLC strategy gives good results only for the
relatively smooth angiogram at high tolerances. For
the Landsat image increasing the tolerance actually
can increase the bpp. This is because the optimization
criterion is not the entropy of the resulting parameters.

The results for the DLVQ approach look very prom-
ising. The best results are obtained with a first code-
book of size 64 or 128 and a second one of size 512.

The SPIHT plus DPCM scheme shows a very good
performance for the images Lenna and Angio; espe-
cially for larger 7 there is the additional advantage that
the root mean square error is much smaller compared
to the other methods. For lossless coding the DPCM
alone is as good as the combination with the SPIHT
scheme. But using the lossless coding method of [16]
one gets an improvement of about 0.3 bpp.

What compression is gained by allowing a small
per pixel tolerance compared to lossless coding? For
the Landsat image a small tolerance does not signifi-
cantly improve coding results. Even large tolerances
lead to only small compression ratios. For the other
images allowing a grey value tolerance of +1 results
in an additional 33% size reduction over lossless en-
coding, a tolerance of +5 leads to an additional 66%
size reduction.
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