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’ INTRODUCTION

Three-dimensional (3D) MoS2, a well-known transition-
metal dichalcogenide, has two different stable structures: 3R-
MoS2 polytype

1 and layered 2H-MoS2. The latter consists of
the stacking of MoS2 layers and is the subject matter of the
present study. Various properties of 2H-MoS2 (refs 2�17), in
particular lattice dynamics and electronic energy band struc-
ture, have been studied extensively. Recently 2D suspended
single layer MoS2 sheets, i.e., 1H-MoS2 having hexagonal lattice
have been produced.18�21 Single layer MoS2 nanocrystals of
∼30 Å width were also synthesized on the Au(111) surface22

and the first direct real space STM images of single layer MoS2
nanosheets have been reported. In the meantime, theoretical
studies (refs 16 and 23�30) on 1H-MoS2 have appeared.
Three-dimensional 2H-MoS2 and 2D 1H-MoS2,

30 quasi-1D
nanotubes,25 and nanoribbons16,26,29 of MoS2 share the hon-
eycomb structure and display interesting dimensionality effects.

Properties of MoS2 nanocrystals are explored in diverse
fields, such as nanotribology,31 hydrogen production,32,33

hydrodesulfurization catalyst used for removing sulfur com-
pounds from oil,34�40 solar cells,41 and photocatalysis.42

Triangular MoS2 nanocrystals of diverse sizes were investi-
gated using atom-resolved scanning tunneling microscopy.43

A superlow coefficient of sliding friction between surfaces coated
with 1H-MoS2 has been measured recently.44 A transistor
fabricated from the single layer MoS2 has heralded the features
of 1H-MoS2, which is superior to graphene.45 Studies to date
suggest that MoS2 sheets can be promising for optoelectronic
devices, solar cells, and LEDs. Most recently, the Raman spectra
of MoS2 sheets have been measured as a function of their
thickness.21,46

Despite the fact that 2H-MoS2 is a layered material, where
MoS2 layers were bound by weak interlayer interaction, sig-
nificant dimensionality effects have been observed. For exam-
ple, while 3D MoS2 is an indirect band gap semiconductor, the
band gap increases and becomes direct in 2D single layer
MoS2.

20 This dimensionality effect may lead to photolumines-
cence applications in nanoelectronics.47 While the lattice
dynamics of 2H-MoS2 have been studied actively in the past
by using inelastic neutron scattering and Raman�infrared
spectroscopy6,24 and its phonon dispersion curves, phonon
density of states, infrared and Raman active modes are calcu-
lated in terms of force constants derived from experimental
data, yet an ab initio treatment including van der Waals
interaction (vdW) is absent. Recent papers21,46 investigating
the Raman spectra of 3D and 2DMoS2 came up with conflicting
conclusions. In this paper, we present our theoretical investiga-
tion of the lattice dynamics and related properties of 2H- and
1H-MoS2. Our study is carried out from the first principles
within van der Waals (vdW) density functional theory (DFT),
where atomic structure, lattice constants, and relevant ener-
getics are obtained from structure optimization including vdW
correction. This method provides a proper treatment of the
interaction between the layers of 2H-MoS2, as well as their
spacings. Finally, calculated properties of 2H- and 1H-MoS2,
such as Raman and infrared active modes, bulk modulus,
dielectric constants, and effective charges are compared to
reveal dimensionality effects. Even though the calculated
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ABSTRACT: This paper presents a comparative study of the
lattice dynamics of three-dimensional layered MoS2 and two-
dimensional single layer MoS2 based on the density functional
theory. A comprehensive analysis of energetics and optimized
structure parameters is performed using different methods. It
is found that the van der Waals attraction between layers of
three-dimensional (3D) layered MoS2 is weak but is essential
to hold the layers together with the equilibrium interlayer
spacing. Cohesive energy, phonon dispersion curves, and
corresponding density of states and related properties, such
as Born-effective charges, dielectric constants, Raman and infrared active modes are calculated for 3D layered as well as 2D single
layer MoS2 using their optimized structures. These calculated values are compared with the experimental data to reveal
interesting dimensionality effects. The absence of a weak interlayer interaction in 2D single layer MoS2 results in the softening of
some of Raman active modes.
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interlayer interaction is a weak vdW, its effects on lattice
dynamics are significant. We showed that the calculated shifts
of the frequencies of Raman active modes as a result of phonon
softening upon lowering the dimensionality from 3D to a 2D
single layer MoS2 are sensitive to the deviation of lattice
constants from the experimental values.

’METHOD

We carried out first-principles plane wave calculations with-
in DFT and used ultrasoft pseudopotential (UP).48 The
exchange correlation potential is approximated by a general-
ized gradient approximation (GGA) using the PW9149 func-
tional for both spin-polarized and spin-unpolarized cases. The
vdW corrections50,51 are included to determine the interlayer
spacing in 2H-MoS2. While all discussions in the paper are
based on the results obtained within GGA combined with vdW
interaction, the calculations within local density approxi-
mation52 (LDA) using UP are also performed for the purpose
of comparison. All structures are treated using the periodic
boundary conditions. Kinetic energy cutoff, Brillouin zone
(BZ) sampling is determined after extensive convergence
analysis. A large spacing of ∼10 Å between 2D single layers
of MoS2 is taken to prevent interactions between them. A
plane-wave basis set with kinetic energy cutoff of 952 eV is used
for high accuracy of the results.53 In the self-consistent field
potential and total energy calculations BZ is sampled by special
k-points.54 The numbers of these k-points are (15 � 15 � 7)
for 2H-MoS2 and (25� 25� 1) for 1H-MoS2, respectively. All
atomic positions and lattice constants are optimized by using
the conjugate gradient method, where the total energy and
atomic forces are minimized. The convergence for energy is
chosen as 10�7 eV between two consecutive steps, and the
maximum Hellmann�Feynman force acting on each atom is
less than 10�5 eV/Å upon ionic relaxation. The pressure in the
unit cell is kept below 1 kbar. Numerical calculations have been
performed by using the PWSCF package.55 The phonon
dispersion curves are calculated within density functional
perturbation theory (DFPT) using plane wave methods as
implemented in the PWSCF package.

’ENERGETICS AND OPTIMIZED STRUCTURES OF 3D
AND 2D MOS2

Three dimensional bulk 2H-MoS2 is a stable layered struc-
ture and includes two MoS2 units in the unit cell. Each layer

consists of a monatomic Mo plane between two monatomic S
planes having the same 2D hexagonal lattice. Mo and S2 occupy
alternating corners of a hexagon to form a honeycomb struc-
ture. EachMo has six nearest S atoms, and each S atom has three
nearest Mo atoms. Two layers in the unit cell are displaced
relative to each other, as such that Mo atoms of one layer are
situated on top of S atoms in two adjacent layers. In this respect,
the arrangements of layers are different from that of graphite,
where three carbon atoms of one layer are located above the
hollow sites (center of the hexagon) of the adjacent layers. The
atomic configurations and relevant structural parameters of 3D
2H-MoS2 are illustrated in Figure 1a. First-principles calcula-
tions of lattice dynamics and related properties of 3D and 2D
MoS2 are obtained by using the optimized atomic structure.
Therefore, we start to investigate the energetics, minimum
energy atomic structure, and structure parameters of these
crystals.

’OPTIMIZED STRUCTURE

The interaction between 1H-MoS2 layers in 2H-MoS2 has
predominantly vdW character. Therefore, DFT calculations
within GGA but without vdW are known to overestimate the
interlayer distance and the lattice parameter c in Figure 1a. To
present a correct estimation of lattice constants, we included
vdW correction to GGA calculations using two different
methods. The first one (GGA+D) is used mainly for molecules
and corrects GGA by adding interatomic C6/R

6 interaction.
The C6 coefficient and cutoff distance are deduced from
relevant molecules.50 The second method (GGA+DF) aims
at solutions from the first principles without empiricism and
uses nonlocal exchange-correlation functional to treat vdW
interaction in GGA.51 The latter method is tested for molecules
and solids. In order to find the most appropriate method, we
carried out GGA calculations without vdW correction, as well as
GGA+D and GGA+DF calculations. For the sake of compar-
ison, we also performed LDA calculations, which is known to
include vdW interaction partially.56,57 In our analysis we con-
sider two layered 3D crystals both having honeycomb struc-
ture, namely, graphite and 2H-MoS2, in which the cohesions of
layers are known to be achieved mainly by the weak vdW
interaction. The optimized lattice constants |a| = |b| and c, and
interlayer interaction energy Ei calculated by using these
methods are presented in Table 1. For comparison the experi-
mental values are also given. The interlayer interaction energy
or cohesion of 2H-MoS2 relative to individual MoS2 layers can
be deduced by calculating the total energy of 2H-MoS2 as a
function of interlayer spacing z in the direction perpendicular to
the MoS2 layer, i.e., ET(z) and by setting ET(zf∞) = 0. Then
the absolute value of half of the minimum of ET(z = c) is taken
as Ei (interlayer interaction energy per layer).

For graphite, GGA without vdW attains the experimental a,
but overestimates c by 25% relative to the experimental
value.58�62 Expectantly, the calculated interlayer interaction
energy Ei = 5 meV per layer is much smaller than the
experimental value.58�62 On the other hand, the values of c
and Ei calculated for graphite are improved significantly when
vdW correction is included. While GGA+DF overestimates c
by 6.6%, GGA+D underestimates it by 4.2%. However, both
methods result overestimate Ei by 14% relative to experimen-
tal value. Interestingly, LDA yield almost the experimental
value of c, even if it underestimates the experimental Ei by 8%.

Figure 1. (a) Side and top views of atomic structure of 2H-MoS2 with
hexagonal lattice. The unit cell is delineated, lattice constants |a| = |b|, c
and internal structure parameters are indicated. Honeycomb structure
consisting of Mo (red ball) and S2 (gray balls) located at the corners of
hexagons is seen in the top view. (b) Corresponding Brillouin zone with
symmetry directions.
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An analysis made for 2H-MoS2 reveals similar trends and
indicates vdW interaction as the dominant interaction between
its layers. While interlayer interaction calculated with GGA is
only 6 meV per MoS2 unit, c is badly overestimated to be
15.54 Å. This is 26.4% longer relative to the experimental value
of the lattice constant c measured10,63,64 to be c = 12.29�12.30 Å.
While GGA optimizes lateral lattice constants at |a| = |b| =
3.215 Å, the measured lateral lattice constants |a| = |b| =
3.16 Å.10,63,64 In contrast, GGA+D and GGA+DF methods
estimate Ei to be 160 and 176 meV, respectively. Accordingly, c
values calculated by these vdW corrections are 12.41 Å (i.e.,
overestimated by 0.9%) and 13.15 Å (overestimated by 7.0%),
respectively. The lateral lattice constant a is optimized by GGA
+D to be ∼3.22 Å (3.258 Å by GGA+DF). On the other hand,
LDA underestimates both a and c by ∼2% relative to experi-
mental value and predicts Ei = 110 meV. In view of this analysis
and comparison with measured10,63,64 lattice constants, the
GGA+D method appears to be suitable to obtain optimized
structure and related properties of 2H-MoS2 and 1H-MoS2. For
the rest of the paper, we will use results obtained from this
method unless it is stated otherwise.

’COHESIVE ENERGY AND OTHER PROPERTIES

The cohesive energy per MoS2 unit relative to the free Mo
and S atoms, EC = �ET[Crystal] + ET[Mo] + 2ET[S], is
calculated from the structure optimized total energies of the
3D crystal, ET[2H-MoS2]/2 or 2D crystal ET[1H-MoS2] and
the free atom total energies of Mo and S, ET[Mo] and ET[S],
respectively. The calculated values of EC for 2H-MoS2 and 1H-
MoS2 are 15.316 and 15.156 eV per MoS2 unit, respectively.
Their difference is exactly the interlayer interaction energy of
3D MoS2, which was calculated to be 160 meV. This indicates
that the cohesion of the layers in 2H-MoS2 is the same as the
cohesion of 1H-MoS2. In addition to cohesive energy, the zero
pressure bulk modulus B0, is an important mechanical property
of 3D crystals. Here we calculated the bulk modulus of

2H-MoS2 by fitting the Murnaghan equation68 as 44 GPa.
The experimental value69 is given as 43 GPa. Using van der
Waals included DFT Rydberg et al.11 calculated B0 as 39 GPa.
Our value calculated for the bulk modulus of B0 is in good
agreement with the experimental value.

Single layer, 1H-MoS2 has high planar strength but trans-
versal flexibility. While Young’s modulus normally characterizes
the mechanical strength of bulk materials, owing to the ambi-
guities in defining the Young’s modulus for the 2D honeycomb
structure, one can use in-plane stiffness C = (1/A0)(∂

2ES/∂εs
2)

in terms of the equilibrium area of the 2D cell, A0.
70,71 We focused

our attention on the harmonic range of the elastic deformation,
where the structure responded to strain ε linearly. Here εs is the
elongation per unit length. The strain energy is defined as ES =
ET(εs) � ET(εs = 0); namely, the total energy at a given strain εs

minus the total energy at zero strain. The calculated in-plane
stiffness of 1H-MoS2 is 145.82 N/m. This value can be compared
with the experimental value of graphene, i.e., 340 ( 50 N/m.72

Sun et al.17 obtained high-frequency dielectric constants, ε, and
Born effective charge, ZB*, of 2H-MoS2 by fitting to the experi-
mental data. They found Born effective charges, ZB*[Mo] = 1.11
electrons (positive charge) for Mo and ZB*[S] =�0.52 electrons
(negative charge) for each S atom and dielectric constants ε ) =
15.2 and ε^ = 6.2 in the intralayer and interlayer directions,
respectively. Here we calculate Born effective charges and high-
frequency dielectric constant of 2H-MoS2 to be ZB*[Mo] = 1.23
electrons and ZB*[S] = �0.57 electrons.73 High-frequency di-
electric constants are calculated to be, ε ) = 15.60 and ε^ = 6.34 in
the intralayer and interlayer directions, respectively. The values
calculated from the first principles are in good agreement with
those determined by Sun et al.17 from experimental data. We note
that contour plots of the calculated charge density, F(r) indicate
that MoS2 layers have directional bonds. These bonds are formed
by Mo-d and S-p orbital hybridization and have a significant ionic
component. The charge transfer estimated byMulliken74 analysis
indicates an excess electronic charge of 0.215 electrons on each S

Table 1. Lattice Constants |a| = |b| and c, and Interlayer Interaction Energy Ei (per graphene (C2) or MoS2 unit) of Graphite and
2H-MoS2 Calculated Using GGA, GGA+D and GGA+DF, and LDA Methods.a

graphite (graphene) 2H-MoS2 (1H-MoS2)

a (Å) c (Å) Ei (eV/C2, kcal/mol) a (Å) c (Å) Ei (meV/MoS2, kcal/mol)

GGA 2.461 (2.463) 8.407 5, 0.115 3.215 (3.214) 15.540 6, 0.138

GGA+D 2.461 (2.463) 6.425 122, 2.816 3.220 (3.220) 12.411 160, 3.693

GGA+DF 2.463 (2.463) 7.157 116, 2.678 3.258 (3.254) 13.152 176, 4.063

LDA+UP 2.441 (2.441) 6.669 96, 2.216 3.125 (3.118) 12.137 110, 2.539

experiment 2.461�2.46358�62 (2.455) 6.708�6.71258�62 104 ( 10,58,62

2.401( 0.231

3.1610,63,64

(3.20,65 3.2766)

12.29,10,63

12.3064
140 ( 22,67

3.239 ( 0.498
aThe corresponding values calculated for graphene and single layer MoS2 are given in parentheses. Experimental values are given for the sake of
comparison. Experimental values of lattice constant a of 1H-MoS2 given by refs 65 and 66 appear to be too large and not confirmed.

Table 2. Lattice Constants |a| = |b| and c, Internal Structure Parameters, Such as Bond Lengths dMo�S and dS�S, S�Mo�S Bond
Angles θ (S�Mo�S), Bulk Modulus B0, in-Plane Stiffness C for 2D Single Layer, Cohesive Energy per MoS2 Unit EC, Born
Effective Charges of Constituent Atoms ZB*[Mo] and ZB*[S], High Frequency Intralayer and Interlayer Dielectric Constants,
ε and ε^ Calculated for 2H-MoS2 and 1H-MoS2 Using the GGA+D Method

a (Å) c (Å) dMo�S (Å) dS�S (Å) Θ B0 (GPa)/C (N/m) EC (eV) ZB*(Mo) ZB*(S) ε ) ε^

2H-MoS2 3.220 12.411 2.436 3.150 80.564 44 15.316 1.23 �0.57 15.60 6.34

1H-MoS2 3.220 2.437 3.153 80.617 145.82 15.156 1.21 �0.57 4.58 1.26
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atom and depletion of electrons on each Mo atom amounting to
0.430 electrons. Negatively charged S atoms form negative charge
layers on both sides of 2D MoS2. We note the direction of
calculated charge transfer is in compliance with the Pauling’s
electronegativity scale,75 as well as with Born effective charges. On
the basis of the charge density analysis, MoS2 layers can be viewed
as a positively chargedMo atomic plane sandwiched between two
negatively charged S-atomic planes. As for 1H-MoS2, Born
effective charges are calculated to be ZB*[Mo] = 1.21 electrons
forMo andZB*[S] =�0.57 electrons for S. These values are close
to those of 2H-MoS2. However, high-frequency dielectric con-
stants of 1H-MoS2, which differ dramatically from 3D MoS2 due
to dimensionality effect, are ε ) = 4.58 and ε^ = 1.26 in the
intralayer and interlayer directions, respectively.

In Table 2 we present structure parameters and related
properties calculated for 2H-MoS2 and 1H-MoS2 using GGA
+D. These are lattice constants a, c, internal structural para-
meters, bulk modulus B0 (in-plane stiffness C for 1H-MoS2),
cohesive energy EC, Born effective charges, and high-frequency
dielectric constants.

’ LATTICE DYNAMICS

Previously, the lattice dynamics of 2H-MoS2 has been inves-
tigated both experimentally and theoretically. The phonon
dispersion curves and density of states have been obtained by
fitting the force constants to experimental data.6,24 Meanwhile
2D sheets of MoS2 including the single layer 1H-MoS2 were
synthesized.18�20,22 Our objective is (i) to calculate phonon
dispersion curves and total density of states of both 2H-MoS2
and 1H-MoS2 from the first principles including vdW correction;
(ii) to reveal the dimensionality effects between 3D and 2D
MoS2; (iii) to provide understanding of phonon anomalies
observed in Raman spectra.21,46

While Mo atoms in 2H-MoS2 occupy sites ofD3h symmetry, S
atoms obey C3v symmetry. The overall symmetry of the crystal is
D6h, having 24 symmetry elements and 12 irreducible represen-
tations. Four second-order representations involve the lateral
(in-plane) displacements of Mo and S atoms, as indicated in
Figure 2. First-order representations are coupled with the
displacements perpendicular to the layers of atoms or parallel
to z axis. Similar observations are also valid for monolayer 1H-
MoS2 having D3h symmetry, 12 symmetry elements and 6
irreducible representations. In order for an irreducible represen-
tation to be infrared active mode, it must create a dipole moment
in the system. For 2H-MoS2, E1u and A2u modes are infrared
active. Similarly, E0 and A2

00 modes are infrared active modes of
1H-MoS2. Raman active modes induce polarization or quadruple
moment in the lattice. A1g, E1g and E2g modes are Raman active
modes for 2H-MoS2, so as A1

0, E0, and E00 modes for 1H-MoS2.
Verble and Wieting2,3 related the interlayer interaction in 2H-

MoS2 with the splitting of the frequencies of E2g and E1umodes.
In both modes the first layer atoms have similar displacements,
but the displacements of the second layer atoms are in opposite
direction as indicated in Figure 2. Theminute difference between
the frequencies of E2g and E1u shows that the interlayer vdW
interaction in 2H-MoS2 is small. Wakabayashi et al.6 first
reported the phonon dispersion of 2H-MoS2 by neutron scatter-
ing. Because of experimental limitations, they only reported 12
phonon branches along Γ � M and Γ � A directions out of 18
available ones. The error term in their experiments is (%5.
Bertrand23 reported that surface phonons have frequencies lower

Figure 2. (a) Calculated phonon dispersion curves of 2H-MoS2, Ω(k)
versusk along symmetry directions ofBZ, and corresponding density of states
(b). (c) and (d) are the same as (a) and (b) for 1H-MoS2. (e) Difference of
the densities of states of 2H-MoS2 and1H-MoS2 (see text). Phononbranches
derived fromneutron scattering data6 and branches calculated by using a local
basis set46,77 are indicated in (a) and (c) by green (light) squares, respectively.
Infrared (IR) and Raman (R) active modes with symmetry representations
and frequencies (cm�1) at the Γ-point are indicated.



16358 dx.doi.org/10.1021/jp205116x |J. Phys. Chem. C 2011, 115, 16354–16361

The Journal of Physical Chemistry C ARTICLE

than those of bulkMoS2 phonons. There is a softening of phonon
modes upon going to the edges of nanocrystal 2H-MoS2. Recent
experimental study by Livneh and Sterer76 revealed the effect of
pressure and temperature on the Raman active modes of 2H-
MoS2. They reported that upon increase of the temperature of
the system, the frequencies of Raman active modes decrease.
Whereas the frequencies of Raman active modes increase with
increasing pressure.

Phonon dispersion curves of 3D and 2D MoS2 and their total
densities of states calculated within DFPT55 using structure
optimized GGA+D are presented in Figure 2. Specific experi-
mental data and earlier calculations are also indicated for the sake
of comparison. The phonon branches calculated from the first-
principles for 3D MoS2 are in overall agreement with experi-
mental data as well as with that calculated using valence force
field method.6 The calculated acoustical and optical branches of
1H-MoS2,Ω(k) are positive for any k in BZ. This indicates that
the suspended, single layer 1H-MoS2 structure is stable.

Phonon dispersion curves and corresponding density of states
for 2H-MoS2 and 1H-MoS2 are similar, except that the number
of branches in the former are doubled. Owing to the weak vdW

interaction some branches are slightly split. The difference
between 2H- and 1H-MoS2 is substantiated by the difference
of total density of states, i.e., ΔD(Ω) = D3D(Ω) � 2D2D(Ω).
The plot of ΔD(Ω) in Figure 2e indicates an overall shift of
critical point frequencies of 3D MoS2 to slightly higher values,
while some modes show a reverse trend. The out of plane
acoustical (ZA) mode of 1H-MoS2 has parabolic dispersion,
since the transverse forces decay exponentially. Also the
LO�TO splitting is properly predicted. We also determined
the infrared (IR) and Raman (R) active modes at the Γ-point of
BZ. Our results presented in Table 3.

Earlier, Raman2,3,9,23,24,78 and infrared spectra2,3,17 of 2H-
MoS2 were studied experimentally. Wieting and Verble2,3 re-
ported three Raman active modes at 287, 383, and 409 cm�1. On
the other hand, Chen and Wang78 have observed four Raman
active modes in bulk at E2g

2 = 32 cm�1, E1g = 286 cm�1, E2g
1 =

383 cm�1, and A1g = 408 cm�1. The small E2g
2 mode is not

observed byWieting and Verble2,3 because of the spectral limit of
the Raman measurements between 20 and 1000 cm�1. Also
experimentally, at the zone center, IR active modes are observed
at 384 cm�12,3,17 and 470 cm�12,3 (468 cm�117). For the case of

Table 3. Calculated Frequencies of Raman (R) and Infrared (IR) ActiveModes (in cm�1) of 2H- and 1H-MoS2 at the Γ-Point and
Their Symmetry Analysisa

aThe subscripts u and g represent antisymmetric and symmetric vibrations, respectively. The other subscript i (i = 1, 2, 3) indicates the stretchingmodes.
IR and R frequencies of 2H- and 1H-MoS2 are calculated for the fully optimized lattice constants and internal structural parameters. Entries of IR and R
frequencies of 2H- and 1H-MoS2 indicated by (*) are calculated using the experimental lattice constants a and c of 2H-MoS2, but optimizing other
internal structural parameters. The entry with (**) is calculated with a = 3.14 Å and corresponds to a, which is smaller than the experimental lattice
constant a of 2H-MoS2.
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1H-MoS2, Lee et al.21 investigated the Raman spectra of 2D
MoS2 sheets as a function of thickness down to a single layer 1H-
MoS2. They reported that the frequency of the Raman active A1g

mode of 2H-MoS2 (i.e., thick sheet) decreases gradually from
408 to∼403 cm�1 corresponding to the frequency of A1

0 of 1H-
MoS2 indicating the phonon softening. As for the Raman active
mode of 1H-MoS2 E0 displays a reverse behavior and hence its
frequency decreases from 383.4 to 382 cm�1 corresponding to
the frequency of E2g mode of 2H-MoS2. Even if the lateral
displacements of atoms in E2gmode are not affected significantly,
one nevertheless expects that all modes of 3D bulk MoS2 slightly
soften in single layer MoS2 due to the absence of interlayer
interaction. The observation by Lee et al.21was surprising. In fact,
a recent study by Ramakrishna et al.46 ended up with a different
trend; they observed that both A1g and E2g0 modes of 2H-MoS2
sheets become softer as their thickness decreases.

In this work we attempted to clarify the controversial results
reported for the above crucial dimensionality effect. To this end,
we calculated the frequencies of Raman activemodes of 2H-MoS2
and 1H-MoS2 and compared our results with available experi-
mental data.2,3,17,21,46 Present GGA+D calculations predict
Raman active modes E1g = 286.6 cm

�1, E2g
1 = 378.5 cm�1 and A1g =

400.2 cm�1 using the optimized lattice constants of a = 3.22 Å
and c = 12.41 Å. The optimized lattice constant of 1H-MoS2 did
not alter from the optimized value of 3D bulk despite the
absence of interlayer interaction. Using the optimized lateral
lattice constant a = 3.22 Å, we obtained the frequencies of the
Raman active modes as E0 = 380.2 cm�1 and A1

0 = 406.1 cm�1.
(See Table 3.) According to these results of the ab initio GGA
+D method, the frequencies of both modes should increase as
one goes from 3D to 2D single layer, which disagree with
experimental results, except the behavior of E2gf E0 reported
by Lee et al.21

The source of this disagreement between ab initio calculations
and experimental data is sought in the lattice constants, which are
overestimated by GGA+D calculations. We repeated the same
GGA+D calculations using experimental lattice constants,10,63,64

namely, a = 3.16 Å and c = 12.30 Å for 2H-MoS2 and a = 3.16 Å
for 1H-MoS2 by assuming that the lateral lattice constant, a, did
not change by going from 3D to single layer. We find that A1g =
407.7, E2g = 381.3 cm�1, and E1g = 277.8 cm�1 for 2H-MoS2,
while for 1H-MoS2 A1

0 = 397.8 cm�1, E0 = 381.2 cm�1 and E00 =
274.5. Apparently, Raman active modes of 2H-MoS2 calculated
with experimental lattice constants are in good agrement with
observed Raman frequencies.2,78 Moreover, we are able to
reproduce the experimental trend that frequency of the Raman
active mode A1g softens for A1gfA0, i.e., as the dimensionality is
reduced from 3D to 2D. The change in the frequency is negligibly
small for E2g f E0. Noting the fact that the lattice constant of
graphene, a, gets slightly smaller than that of 3D graphite, despite
GGA+D optimizes a of 3D and 2D almost at the same value.
Considering the possibility that the lattice constant of 1H-MoS2
a can get smaller than the lateral lattice constant of 3D MoS2 a =
3.16 Å, we repeated our calculations for 1H-MoS2 using a = 3.14 Å
and found that the frequency of E0 increases from 381.2 to
385 cm�1 confirming the anomalous effect reported by Lee
et al. (See Table 3.) This is, however, a hypothetical situation
and will be clarified when experimental data on the lattice
constant a of free-standing 1H-MoS2 will be available. We also
note that Raman active modes of 2H-MoS2 calculated by LDA,
which underestimates the lattice constants was able to repro-
duce the same dimensionality effect between 3D and 2D MoS2

as reported by Lee et al.,21 namely, that while A0 softens, E0

becomes harder by going from 3D to 2D. To address the question,
whether the Raman active modes of the slabs of 2D MoS2 comply
with the above trends, we calculated the frequencies of two-layer and
three-layerMoS2 using the experimental value of lattice constant, aof
2H-MoS2. Since there are no data available for the spacings of layers
in slabs, we used again the experimental lattice constant c of 2H-
MoS2 and set the spacings equal to c/2. We found that A10 increases
with increasing number of layers (namely, A10 f 404.9 cm�1 for
bilayer MoS2 and A10 f 405.9 cm�1 for three layer MoS2, and
approaches to A10 of 2H-MoS2. Nevertheless, the absence of
experimental data on the structure of bilayer and three layer MoS2
slabs prevents us from drawing more definite conclusions regarding
phonon softening or phonon hardening with dimensionality.

Finally, in Table 3 we present the frequencies of the IR active
modes calculated using optimized as well as experimental lattice
constants. For 2H-MoS2, the present GGA+D calculations using
experimental lattice constants can give values in good agreement
with experimental data, namely, A2u = 467.6 cm�1 (as compared
to experimental value of 468 cm�1) and E1u = 381.6 cm�1 (as
compared to experimental value of 384 cm�1).2,17

’DISCUSSION AND CONCLUSIONS

In this paper we investigated lattice dynamics of 3D layered
MoS2 and 2D single layer MoS2. We revealed that weak vdW
interaction between layers is critical to hold the layers together
and to calculate the interlayer spacing within 0.8% of the
experimental value. Therefore, the inclusion of the vdW interac-
tion between the layers of MoS2 is found to be essential for ab
initio calculations of energetics and optimized structures, cohe-
sion, and phonon dispersions. We examined two different
approaches to include vdW interaction in DFT calculations
within GGA approximation. The spacings between MoS2 layers
or perpendicular lattice constant, which are critically overesti-
mated by GGA alone, are improved after the inclusion of vdW
interaction. As for the lateral lattice constant a, it is almost
independent of vdW interaction. Lattice dynamics and related
properties, such as phonon dispersions, effective charges, di-
electric constants, etc., calculated within GGA combined with
vdW are found to be in overall agreement with various experi-
mental data and with the empirical values derived therefrom.
However, the shifts of the frequencies of Raman active modes by
going from 3D to 2D single layer are found to be very sensitive to
the values of lattice constants used in the calculations. For
example, the shifts of Raman active modes predicted by using
the lattice constants optimized through GGA with vdW correc-
tion disagree with experimental data. We showed that by using
experimental lattice constants one can reproduce the experimen-
tally observed shifts. In a similar manner, one can obtain the
frequencies of infrared active modes, which agree better with
experimental data, if the experimental lattice constants are used
in the calculations.
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