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Digital tomosynthesis mammography �DTM� is a promising new modality for breast cancer detec-

tion. In DTM, projection-view images are acquired at a limited number of angles over a limited

angular range and the imaged volume is reconstructed from the two-dimensional projections, thus

providing three-dimensional structural information of the breast tissue. In this work, we investi-

gated three representative reconstruction methods for this limited-angle cone-beam tomographic

problem, including the backprojection �BP� method, the simultaneous algebraic reconstruction tech-

nique �SART� and the maximum likelihood method with the convex algorithm �ML-convex�. The

SART and ML-convex methods were both initialized with BP results to achieve efficient recon-

struction. A second generation GE prototype tomosynthesis mammography system with a stationary

digital detector was used for image acquisition. Projection-view images were acquired from 21

angles in 3° increments over a ±30° angular range. We used an American College of Radiology

phantom and designed three additional phantoms to evaluate the image quality and reconstruction

artifacts. In addition to visual comparison of the reconstructed images of different phantom sets, we

employed the contrast-to-noise ratio �CNR�, a line profile of features, an artifact spread function

�ASF�, a relative noise power spectrum �NPS�, and a line object spread function �LOSF� to quan-

titatively evaluate the reconstruction results. It was found that for the phantoms with homogeneous

background, the BP method resulted in less noisy tomosynthesized images and higher CNR values

for masses than the SART and ML-convex methods. However, the two iterative methods provided

greater contrast enhancement for both masses and calcification, sharper LOSF, and reduced inter-

plane blurring and artifacts with better ASF behaviors for masses. For a contrast-detail phantom

with heterogeneous tissue-mimicking background, the BP method had strong blurring artifacts

along the x-ray source motion direction that obscured the contrast-detail objects, while the other

two methods can remove the superimposed breast structures and significantly improve object con-

spicuity. With a properly selected relaxation parameter, the SART method with one iteration can

provide tomosynthesized images comparable to those obtained from the ML-convex method with

seven iterations, when BP results were used as initialization for both methods. © 2006 American

Association of Physicists in Medicine. �DOI: 10.1118/1.2237543�
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I. INTRODUCTION

Mammography is the only proven method currently used for

breast cancer screening. In mammography, the x rays trans-

mitted through the compressed breast are recorded on a

screen-film system �conventional mammography� or by a

digital detector �digital mammography�. For screening mam-

mography, x-ray projection images of the breast are taken

from two views, namely, the cranial-caudal �CC� view and

the mediolateral-oblique �MLO� view. Other special views

may be obtained during diagnostic work-up.

The CC-view and MLO-view images only contain two-

dimensional �2D� projection information of three-

dimensional �3D� anatomical structures, and thus the accu-

racy of breast cancer detection based on screening

mammography is affected by both the fact that the breast

cancer is often obscured by overlapping breast tissues, which

may cause false-negative diagnoses, and the fact that the

superimposed normal tissues mimic masses, which may

cause false-positive diagnoses.

Digital tomosynthesis mammography �DTM� is a promis-

ing technique that can provide 3D structural information

by reconstructing the whole imaged volume from a se-

quence of projection-view mammograms.
1–4

It has been

demonstrated.
5,6

that DTM can reduce the camouflaging ef-

fect of the overlapping fibroglandular breast tissue, thus im-

proving the conspicuity of subtle lesions. Several manufac-

turers of digital mammography systems have developed

prototype DTM systems and are conducting pilot clinical

trials to evaluate the utility of DTM.
7,8

The concept of conventional tomosynthesis was intro-

duced by Ziedses des Plantes.
9

who published the first work

of geometric tomography. Early works of three-dimensional
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geometric tomography system include those by Garrison

et al.,
10

Richards et al.,
11

Miller et al.,
12

and Grant,
13

in

which Grant introduced the term “tomosynthesis.” In early

tomosynthesis systems, a discrete series of projection radio-

graphs were acquired by moving the tube and film simulta-

neously in opposite directions. The reconstruction process

involved simply shifting and adding the projection images

taken at different projection angles. If the amount of shift

between the projection images is chosen appropriately, a cer-

tain plane inside the imaged subject will be in focus. All

features on this focused plane will be enhanced while those

on other planes blurred. Recent advent of digital x-ray detec-

tors provides the possibility of fast acquisition of multiple

low-dose images of the subject.
14,15

and digital reconstruc-

tion of the tomosynthesized slices. Thus, improved recon-

struction quality can be achieved by using advanced digital

reconstruction algorithms. In breast tomosynthesis recon-

struction, the projection images are generally acquired at a

limited number of views in a limited angular range. The

number of images acquired is limited by the total dose which

should be comparable to that used in conventional mammog-

raphy. The reconstruction of the 3D volume of the com-

pressed breast from 2D projection images represents a

limited-angle cone-beam tomographic problem. Existing re-

construction methods for such a problem can be coarsely

divided into four categories: backprojection algorithms,

transform algorithms, algebraic reconstruction techniques,

and statistical reconstruction algorithms. A review of tomo-

synthesis reconstruction techniques can be found in Dobbins

et al.
16

To explore the feasibility of the limited-angle cone-beam

reconstruction methods for breast tomosynthesis, we selected

several representative algorithms and applied them to sets of

breast phantom data. The selected algorithms in this study

included the back-projection �BP� method, the simultaneous

algebraic reconstruction technique �SART�, and the maxi-

mum likelihood method with the convex algorithm �ML-

convex�. We will discuss these methods in Sec. II.

A second generation GE prototype tomosynthesis mam-

mography system in the breast imaging research laboratory

at the University of Michigan Hospital was used in this

study. Projection-view images were acquired from 21 angles

by automatically moving the x-ray tube in 3° increments

over a ±30° angular range in less than 8 s. In contrast, the

first generation GE prototype tomosynthesis system, devel-

oped by GE in collaboration with the Breast Imaging Group

at Massachusetts General Hospital,
2

acquired projection-

view images from 11 angles over a ±25° angular range in 5°

increments in 7 s.

We used an American College of Radiology �ACR� phan-

tom and designed three additional phantoms in this study. We

investigated the dependence of the reconstructed image qual-

ity and artifacts of the SART and ML-convex methods on the

number of iterations. To quantitatively evaluate the contrast,

sharpness, and artifacts we employed the contrast-to-noise

ratio �CNR�, a line profile of features, and an artifact spread

function �ASF�. The noise behavior and the relative sharp-

ness of these reconstruction algorithms were compared by

using the noise power spectrum �NPS� and line profiles of

thin wires.

II. MATERIALS AND METHODS

A. Limited-angle cone-beam reconstruction methods

As described in the Sec. I, existing reconstruction meth-

ods for digital tomosynthesis, or equivalently limited-angle

cone-beam x-ray tomography, can be classified into four cat-

egories, including backprojection algorithms, transform algo-

rithms, algebraic reconstruction techniques, and statistical re-

construction algorithms. We will discuss the principle of

methods in each category in this section and introduce the

methods investigated in this study.

Let the whole image volume be subdivided into J voxels,

and the linear attenuation coefficient for the jth voxel be

denoted by x j, 1� j�J; the digital area detector contains I

elements, and the ith ray, 1� i� I, is defined as a line seg-

ment starting from the point x-ray source location to the

center of the ith detector element. The number of rays is

equal to the number of detector elements assuming one ray is

traced for each element. The path length of the ith ray going

through the jth voxel in the nth x-ray tube location �projec-

tion view� is denoted by aij,n, resulting in a matrix-vector

form of the projection model as

Anx = yn, �1�

where An is the projection matrix for the nth projection view

with aij,n as its �i , j�th element; yn is the corresponding vec-

tor of the projection data, which can be derived from the

pixel values of the detected image, 1�n�N, where N is the

total number of projection views. The ith projection value,

yi,n, is proportional to the logarithmic transform of the ratio

of the incident intensity �Io,n� and the transmitted intensity

�Ii,n� of the ith ray

yi,n = k ln
Io,n

Ii,n

. �2�

We stack the projection model in Eq. �1� for all projection

views together as

�
A1

]

AN

�x = �
y1

]

yN

� → Ax = y . �3�

This is the linear system model for the breast tomosynthe-

sis reconstruction, and it is the basis for the backprojection

method and algebraic reconstruction techniques.

1. Backprojection methods

In the BP method, the linear attenuation coefficient of a

given voxel is estimated by averaging all pixel values corre-

sponding to x rays traveling through this voxel. Specifically,

assuming that there are a total of M rays going through the

jth voxel over all projection views, the linear attenuation

coefficient is estimated by
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x̂ j =

�
m=1

M

amj�ym/lm�

�
m=1

M

amj

, �4�

where the normalization factor lm is the total path-length of

the mth ray intersecting with the whole imaged volume, i.e.,

the sum of the corresponding row in the projection matrix.

We choose the backprojection method in this comparative

study as it is easy to implement and its result can be used as

initial values for more sophisticated iterative methods to

achieve efficient reconstruction. The shift-and-add method

used in the original tomosynthesis.
1,13 �or referred to as the

multiple projection method�17
is a simplified version of the

BP method. Some additional strategies have been employed

with the BP method, including the order statistics

operator
18,19

and reproduction of artifact image,
20

to reduce

the interplane artifacts, which are typically very strong in BP

reconstructed images, especially those from high-contrast

features.

2. Transform algorithms

Transform algorithms include the filtered backprojection

�FBP� method and other transfer function methods. In the

FBP method,
21,22

the Fourier slice theorem plays a funda-

mental role and projection images are transformed to the

spatial frequency domain. With a parallel-beam approxima-

tion, the 2D Fourier transform of each projection image cor-

responds to one slice sample in the spatial frequency domain

at this angle and thus multiple projection images can be com-

bined to obtain a discrete sampling of the whole imaged

volume. Wedge filters, combining with other low-pass filters,

are used in the spatial frequency domain to weight each pro-

jection in order to compensate for incomplete and/or non-

uniform sampling in the spatial frequency domain and to

suppress high frequency components. 2D FBP has been ex-

tensively used in computed tomography �CT� reconstruction

in which a large number of projection images are acquired

over a full angular range, so the corresponding spatial fre-

quency domain is well sampled. For 3D cone-beam breast

tomosynthesis, the Feldkamp or FDK algorithm,
23

an ap-

proximation of the cone-beam FBP algorithm, had been in-

vestigated but the reconstruction results were found to be

very noisy and the structure details were not visible.
24

Nev-

ertheless it provided good-quality reconstruction in volumet-

ric CT breast imaging.
25

A modified FBP method has been

used in a prototype breast DTM system for tomosynthesis

reconstruction but no details of the method has been

reported.
26

In other transfer function methods, impulse response

functions or point spread functions are specially designed

based on the imaging geometry and the application. The con-

volution process again becomes a simple multiplication as

the Fourier transform is applied to each imaged slice or the

whole imaged volume. Inversion filtering is employed to re-

store the whole imaged volume and to suppress the inter-

plane blurring either in a continuous function form;
27,28

or in

a matrix-vector form if discrete voxel arrays are

reconstructed.
16,29

Promising results have been obtained for

breast tomosynthesis with the former approach using some

specially designed inverse filters.
28,30

The latter is also re-

ferred to as matrix inversion tomosynthesis �MITS� and has

been successfully applied to hand joint and chest

radiographs.
16,29,31

We did not choose the FBP algorithm in

this study since FBP is restricted by the imaging geometry,

and for a very limited-angle 3D reconstruction problem as in

breast tomosynthesis where the spatial frequency domain is

far from completely sampled, the image quality of the recon-

structed DTMs depends strongly on the filter design.

3. Algebraic reconstruction techniques

In algebraic reconstruction techniques,
21,32,33

the tomogra-

phic inverse problem is formulated as solving a large-scale

system of linear equations, as shown in Eq. �3�, where each

element of the coefficient matrix A contains the intersection

path length of one x ray within one specific voxel. The re-

construction is accomplished by iteratively updating the un-

known linear attenuation coefficients by minimizing the error

between the measured and the calculated projection data. For

clarity and without loss of generality, we define a complete

iteration of algebraic reconstruction methods as when all

projection data over all projection views have been pro-

cessed exactly once.

The original method in this family of algebraic recon-

struction techniques is known by the same name—ART. In

ART, the linear attenuation coefficients are updated in a “ray-

by-ray” manner, i.e., updated after each “ray” equation �one

row� of Eq. �3� is processed. All voxels along the ray under

consideration are updated by the difference between the de-

tected and computed pixel value. This difference is back-

projected along the ray and contributes to each voxel in pro-

portion to the path length of the ray inside this voxel.

Since only a single projection value is used to update the

linear attenuation coefficients at a time, ART has fast conver-

gence speed but will converge to a least squares solution

which can be very noisy for severely ill-posed inverse prob-

lems such as limited-angle tomosynthesis reconstruction. To

improve the ART method, variations on its implementation

have been proposed. Depending on the different amount of

projection data and the method used to update the current

estimation, ART has been modified to other methods such as

the SART
34,35

and the simultaneous iterative reconstruction

technique �SIRT�.21,32
In SART, the linear attenuation coef-

ficient of each voxel will not be updated until after all rays in

one projection view have been processed once; while in

SIRT, the update is performed after all projection views have

been processed. Algebraic reconstruction techniques are flex-

ible in regard to the measurement geometry and thus well

suited for tomosynthesis reconstruction. Some studies have

been conducted on applying the algebraic reconstruction

techniques to tomosynthesis problem,
36,37

but no application

has been published on breast imaging to date.
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In this study, we chose the SART method because this

block-action strategy is a good trade-off between ART and

SIRT. In ART, the measurement noise could be strongly am-

plified due to the frequent updating of the unknowns and the

intrinsic ill-posed attribute of the inverse problem; whereas

in SIRT, the convergence speed will be slow because the

update is averaged over all rays in all projection views and

the reconstruction could be overly smoothed. Breast tomo-

synthesis deals with a very large-scale linear system. To re-

construct efficiently, the chosen algorithm should converge

to an acceptable solution within a small number of iterations.

As discussed above, for SART method, an update is per-

formed after all rays in one projection view have been pro-

cessed. The number of updates in one complete iteration of

SART is equal to the number of projection views N. Let the

linear attenuation coefficient in the jth voxel of the imaged

volume at the completion of the kth iteration be denoted as

x̂ j
k. For the �k+1�th iteration, we first define the initial linear

attenuation coefficient values as x̂ j
k+1,0= x̂ j

k. Assume that there

are a total of Mn rays in the nth projection view going

through the jth voxel. The index of this subset of the I rays in

the nth projection view is denoted by m, where 1�m�Mn.

The update of the linear attenuation coefficient at the jth

voxel during processing of the nth projection view is defined

as

x̂ j
k+1,n = x̂ j

k+1,n−1 + � ·

�
m=1

Mn

amj,n� ym,n − �
j=1

J

amj,nx̂ j
k+1,n−1

�
j=1

J

amj,n
	

�
m=1

Mn

amj,n

�5�

for 1� j�J. After all N projection views have been pro-

cessed, the resulting estimate is given by x̂ j
k+1= x̂ j

k+1,N for 1

� j�J.

For iterative algebraic reconstruction techniques like

SART, several important aspects need to be considered for

practical implementation. First, the initial values for the it-

erative process should be chosen properly. Different choices

have been suggested, including constant distribution of zero

�or very small positive� values, constant distribution of aver-

aged attenuation coefficient,
33

or reconstruction results from

other methods such as the backprojection method.
33

In this

study, we chose the voxel values from the BP reconstruction

as initial distributions for both the SART and ML methods.

Second, one needs to select an appropriate step size or relax-

ation parameter �. Although some previous works have sug-

gested using eigenvalues of the forward matrix A and the

expected number of iterations together to set the � value,
33

it

is not feasible to estimate the eigenvalues for a very large-

scale linear system such as that used in DTM. We therefore

used a simple strategy in which � is set to decrease over a

very limited number of iterations. Third, it has been reported

that the access order of projection views has a strong effect

on the practical performance of algebraic reconstruction

techniques in case of a full, or almost full, range of

projections,
38–40

except for SIRT method which uses the

whole set of projection views once in each iteration. It has

been suggested that the order of processed projections should

be arranged such that successive projections are well “sepa-

rated,” i.e., having least correlation in term of information.

For DTM, generally only a limited number of projection

views are acquired in a limited angular range, changing the

access order of the projection views thus may not have

strong effects on the reconstruction quality. We use a sequen-

tial access order in this study and leave the investigation of

different access strategies to future studies. Last but not least,

an appropriate stopping criterion of the iterative process has

to be chosen. Previous studies have shown that early stop-

ping can regularize ill-posed inverse problems. In practice, it

is difficult to establish a specific criterion to stop the iteration

automatically for a given tomosynthesis case. The number of

iterations and the relaxation parameter are often predeter-

mined based on both quantitative analysis of image quality

measures, such as those investigated in this study, and visual

comparison of reconstructed image quality for a given type

of cases. The chosen parameters are then fixed and applied to

this type of cases in future reconstructions.

4. Statistical reconstruction methods

All reconstruction algorithms discussed thus far are deter-

ministic methods. On the other hand, statistical reconstruc-

tion methods tackle the inverse problem from a statistical

point of view, assuming the unknown x j as a random variable

following some specific probability distribution functions.

Statistical reconstruction methods explicitly take into ac-

count the measurement statistics and noise model. In addi-

tion, similar to algebraic reconstruction techniques, statistical

methods are suitable for any geometrical model.

Assume that the incident and transmitted x-ray intensities

follow Poisson statistics and the measured intensity at differ-

ent detector elements are statistically independent, the likeli-

hood function or the conditional probability distribution of

the measured intensities given the distribution of linear at-

tenuation coefficients in the imaged volume, P�I 
x�, will

have the computed detected intensity as the expectation

value, as

L = P�I
x� = �
n=1

N

�
i=1

I

P�Ii,n
x� = �
n=1

N

�
i=1

I
e−Īi,n · Ī i,n

Ii,n

�Ii,n�!
, �6�

where Īi,n is the computed detected intensity at the ith detec-

tor element for the nth projection view

Īi,n = I0,ne−�a,x
i,n �7�

and �a ,x
i,n=� j=1
J aij,nx j is the total attenuation along the ith

ray in the nth projection view or the ith component in the

vector Anx. The likelihood function is defined over all pro-

jection views. The ML method is then used to estimate the

unknown linear attenuation coefficients by searching for val-

ues such that the measured data has the largest probability to
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be obtained. When the components independent of the un-

knowns are ignored, the logarithm likelihood function can be

written as

ln L = �
n=1

N

�
i=1

I

�− I0,ne−�a,x
i,n − Ii,n�a,x
i,n� . �8�

Due to the fact that there is no analytic solution for Eq.

�8� in transmission tomography,
41

it is difficult to search the

entire space of unknown sets to find the ML solution. Various

algorithms have been investigated to maximize the log-

likelihood function iteratively, such as the expectation-

maximization �EM� algorithm, convex algorithm, and gradi-

ent algorithm.
42

Among them, the EM algorithm for

transmission tomography involves calculation of the expo-

nential components many times and thus is not efficient to

implement. It has also been reported that the EM algorithm

has a very slow convergence speed. In this work, we em-

ployed the convex algorithm �referred to as ML-convex

method in this paper� to update the unknowns. The ML-

convex method has been applied to breast tomosynthesis re-

construction by Wu et al.
2,24

Using the ML-convex method, it can be derived that the

update is given by

x̂ j
k+1 = x̂ j

k + �

x̂ j
k · �

n=1

N

�
i=1

I

aij,n�I0,ne−�a,x
i,n − Ii,n�

�
n=1

N

�
i=1

I

aij,n�a,x
i,nI0,ne−�a,x
i,n

�9�

for 1� j�J. Precisely, for each voxel, the update is propor-

tional to the difference between the measured and computed

intensities of the ith ray, weighted by the path length and

normalized by the corresponding factors. More details about

the convex algorithm for the ML method can be found in the

work of Lange and Fessler
42

and references therein.

Similar to the algebraic reconstruction techniques, the ini-

tial values and the step size are two important factors for the

ML-convex algorithm, especially in practical implementa-

tion where an acceptable reconstruction result is expected to

be accomplished within a small number of iterations. In this

work, we used BP results as initial values, the same as those

we used in the SART method, and kept the step size a con-

stant value.

B. Breast tomosynthesis system and phantom design

The imaging geometry of the second generation GE pro-

totype digital tomosynthesis system for breast imaging re-

search is shown in Fig. 1. The system has a

CsI phosphor/a :Si active matrix flat panel digital detector

with a pixel size of 0.1 mm�0.1 mm and the raw image

data are 16 bits. For tomosynthesis imaging, the x-ray tube is

automatically rotated in 3° increments to acquire projection

images at 21 different angles over a ±30° angular range in

less than 8 s. The digital detector is stationary during image

acquisition. The DTM system uses an Rh-target/Rh-filter

x-ray source for all breast thicknesses. The kilovoltage set-

ting ranges from 26 to 33 kVp and the total mA s of the 21

projection views ranges from 44 to 150 mA s. The imaging

technique used depends on the breast thickness. No antiscat-

ter grid is used. A single-projection image can be taken sepa-

rately with the x-ray source fixed at 0° when the system is

operated as a regular digital mammography system. For the

ACR phantom, this system acquires a DTM using an expo-

sure technique of Rh/Rh at 29 kV, the mean glandular dose

of which is estimated to be about 250 mrad. Since the mean

glandular dose limit for an ACR phantom imaged with a

conventional mammography system is 200 mrad in the State

of Michigan, the total glandular dose for the DTM is about

1.5 times of that for a conventional film mammogram. The

output projection-view images are corrected for detector ar-

tifacts before being used for image reconstruction.

As shown in Fig. 1, the distance from the x-ray focal spot

to the center of rotation is 64 cm and the plane along which

the x-ray source rotates is perpendicular to the detector sur-

face at the chest wall edge. The focal-spot-to-detector dis-

tance is 66 cm. The predefined imaged volume is 14.00 cm

�23.04 cm in area and 5 cm in thickness. The imaged vol-

ume thickness was set to be the maximum phantom thickness

of 5 cm used in this study. Note that the actual detector size

is 19.20 cm�23.04 cm. We trim the output images to a

smaller size that is slightly larger than the phantom dimen-

sions to reduce reconstruction time. The imaged volume con-

tains the whole breast phantoms. We subdivided the imaged

volume into a set of voxels, of which the X and Y dimensions

were set to be the same as the pixel size of the detector

�0.1 mm�0.1 mm� while the Z dimension �the slice thick-

ness� was set to 1 mm.

FIG. 1. Geometry of the digital tomosynthesis mammography system used

in this study.
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For the projection model, we have developed an algo-

rithm to calculate the path length of a primary x-ray inter-

secting each voxel within the breast volume. For a given

comparison, all reconstruction algorithms used the same set

of projection view images as the input so that the image

quality can be compared relatively. Logarithmic transforma-

tion is applied to the raw pixel intensities of the detected

image before reconstruction in the BP and SART methods.

We assume a monoenergetic x-ray source and ignore the ef-

fects of scattering and beam hardening in this study, similar

to the approach by Wu et al.
2,24

We used four different phantoms to evaluate the recon-

struction methods. The first phantom contains simulated mi-

crocalcification clusters and masses at different depths over-

lapping each other in a homogeneous background. This

phantom is designed to evaluate image reconstruction quality

for in-plane �X-Y� images and for off-plane �Z axis� blurring.

As schematically shown in Fig. 2, the phantom consists of

five 1-cm-thick breast shaped Lucite slabs. On top of the

second, third, fourth, and fifth slabs, we placed different con-

trast objects including layers of thin circular aluminum foils

to simulate masses �denoted as M*�, calcium carbonate par-

ticles to simulate microcalcification clusters �denoted as C*�,
and high-contrast steel wires �denoted as W*�. The objects on

the same slab are distributed on a plane. The thicknesses of

these objects are less than 0.3 mm, which is much thinner

than the reconstruction slice thickness of 1 mm used in this

study, and the objects can thus be considered to be located at

the same depth. Two simulated masses �M1 and M3� and

two groups of microcalcification clusters �C2 and C3�, re-

spectively, are overlapped along the Z-axis direction and

separated by 1 cm.

The second phantom is the ACR mammography accredi-

tation phantom which contains different simulated mammo-

graphic objects: nylon fibers, simulated calcification clusters,

and simulated tumor-like masses. All objects are embedded

in a wax block at about the same depth.

The third phantom was designed by us and custom-built

by Computerized Imaging Reference Systems �CIRS�, Inc.,

using breast-tissue-equivalent materials described in their

website. It is composed of four 1-cm-thick breast-shaped

slabs. The first and the fourth slabs are heterogeneous mix-

ture of fibroglandular-tissue-mimicking material in a 80%

fatty/20% glandular background. The second and the third

slabs contain a homogeneous mixture of 50% fibroglandular

and 50% fatty material. Several simulated spiculated masses

are embedded in the second slab. On the upper surface of the

third slab is a 6�5 array of drilled contrast-detail disk-

shaped holes having diameters of 5, 4, 3, 2, 1, and 0.48 mm,

and depths of 1, 0.8, 0.6, 0.4, and 0.2 mm. We will refer to

this phantom as the breast C-D phantom in the following

discussion.

A wire phantom is used to measure the relative sharpness

of the reconstruction algorithms. A 220-�m-diameter steel

wire in a thin plastic case is placed at about 2.5 cm above the

surface of the breast support plate. Since the in-plane blur-

ring artifacts of tomosynthesis occurs mainly along the tube-

motion direction, the wire is oriented perpendicular to this

direction. We will compare the normalized line profiles of

the reconstructed wire images obtained with different

methods.

C. Figures of merit

To quantitatively evaluate the reconstructed image quality,

we calculated the contrast, the root-mean-square �RMS�
noise, and derived the CNR of selected features such as a

mass or microcalcification at its in-focus plane. The CNR

value is defined by

CNR =
Īfeature − ĪBG

�BG

, �10�

where Īfeature and ĪBG are the average pixel intensity of the

feature and image background, respectively; and �BG is the

RMS value of pixel intensity in the image background. The

image background region for noise estimation is chosen as a

35�35-pixel region being far from all features and the

boundaries of the imaged volume, and at the same slice as

the feature under consideration. The average pixel intensity

of a mass is calculated in a 35�35-pixel area enclosed

within the relatively uniform central region of the mass,

while that of a microcalcification in a 3�3-pixel area lo-

cated approximately at the center of the microcalcification.

To evaluate image blur in the Z direction �perpendicular

to the X-Y detector plane� of the reconstructed images and

the artifact effect of features in the adjacent off-focus planes,

FIG. 2. Different layers of phantom 1 for evaluation of breast tomosynthesis.

The first layer is a uniform 1-cm-thick Lucite plate of the same shape and is

not shown.
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we calculated an ASF, which is defined as the ratio of the

CNR values between the off-focus layer and the feature

layer:

ASF�z� =
CNR�z�
CNR�z0�

, �11�

where z0 is the slice location of the in-focus plane of the

feature and z is the location of a plane of interest. The re-

gions of interest �ROI� for analysis of mass and microcalci-

fication, and the image background are the same as those

described above for the calculation of CNR. A similar ASF

has been used to describe the artifacts along the Z direction

in a breast tomosynthesis study by the MGH research

group,
24

where the ASF was calculated as the ratio of con-

trasts only. Since the noise levels are expected to be different

on the reconstructed images at different depths and the de-

tectability of a feature is dependent more on the CNR than

on the contrast alone, we choose to use the CNR rather than

contrast alone in the ASF definition. The increase in noise

with increasing depth of the image slice is caused by the

cone-beam geometry of breast tomosynthesis which results

in a decreasing x-ray intensity and fewer number of rays

passing through a voxel as the depth increases. The reduced

x-ray intensity increases quantum noise and the fewer num-

ber of rays makes the voxel updating more sensitive to the

measurement noise.

To quantify the noise behavior of the reconstructed im-

ages as a function of spatial frequency, we calculate the rela-

tive NPS. NPS is an important measure to quantify the

spatial-frequency-dependent noise level of x-ray imaging

systems which are contributed by various noise sources such

as the quantum noise, electronic noise, and Swank noise.
43–46

In this study, we calculate one-dimensional �1D� NPS along

both the X and Y directions on the reconstructed slices. The

ROI for NPS determination is chosen as a 512�512-pixel

homogeneous area on one tomosynthesized layer. Along

each direction, we divide the region into multiple

512�16-pixel strips and the adjacent strips are overlapped

by eight pixels, resulting in 63 samples. For each sample, the

average pixel value is calculated along the sample to obtain a

pixel intensity profile. No window function �implying a rect-

angular window� is used. To correct for the low frequency

nonuniformities in the profile, a least-squares fit of a second-

order polynomial is used to estimate the spatial profile of the

pixel intensity and then the smoothed fit is subtracted from

the original profile. A one-dimensional fast Fourier transform

�FFT� is applied to the background-corrected noise profile.

These fitting and FFT processes are performed separately for

each sample. Finally, the 1D NPS is estimated by averaging

the squared magnitude of the 1D FFT of all samples. The

noise will depend on the exposure conditions and the phan-

tom image chosen. However, since we are only interested in

the relative noise performance from different reconstruction

techniques in this study, we chose one phantom slice for this

comparison and no normalization of the NPS was performed.

We define a line object spread function �LOSF� to com-

pare the relative sharpness of high contrast linear objects in

the tomosynthesized images using different reconstruction

algorithms. The LOSF is conceptually similar to the line

spread function �LSF� that is used to quantify the spatial

resolution of an imaging system. However, since we do not

use a very thin wire to simulate a delta function input and the

wire image contains geometric unsharpness, the LOSF is dif-

ferent from an LSF. In this study, we are interested in mea-

suring the relative blur of the reconstruction algorithms so

the LOSF will be sufficient to serve the purpose.

III. RESULTS

For both the SART and ML-convex methods, we used the

BP reconstruction results as initial values. In addition, a non-

negative constraint was applied to the reconstructions during

the iterative process. For SART, three iterations were per-

formed with decreasing step sizes of 0.3, 0.2, and 0.1 while a

constant step size of 1.0 and up to eight iterations were

evaluated for the ML-convex method. We determined these

values experimentally to be representative ranges of step

sizes and iterations that would provide reasonable recon-

structed image quality in our applications.

A. Phantom 1

ROIs from the reconstruction images containing the six

simulated masses, four groups of microcalcification, and

three steel wires, by the BP, SART, and ML-convex methods

are shown in Figs. 3–5, respectively. For all features, the

SART images shown were obtained after the first iteration

with a step size of 0.3 and the ML-convex images were

obtained after seven iterations with a step size of 1.0. For

comparison, the single-projection image of phantom 1 and

the ROIs containing the overlapping masses M1 and M3,

and microcalcification groups C2 and C3 are shown in

Fig. 6.

FIG. 3. Tomosynthesized images of six low-contrast objects simulating

masses in phantom 1 reconstructed with the BP, SART, and ML-convex

methods. The layers of thin aluminum foils in one mass are placed offset by

various amount with respect to one another to simulate the blurred edges of

a mass. The slices where the objects are in focus are shown. The SART and

ML-convex images for the corresponding mass are displayed with the same

window width and window level, whereas the BP image of the same mass is

displayed with narrower window width and different window level to

achieve visually comparable contrast and background gray level. The x-ray

source moved in the vertical direction relative to the images shown. M1 and

M3 are overlapped in the single-projection image �see Figs. 2 and 6� but are

well separated in the reconstructed slices.
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The results showed that all three methods can reconstruct

the features at their correct layers. The superimposed fea-

tures along the Z direction, i.e., masses M1 and M3, and

microcalcification clusters C2 and C3, were well separated.

There were no obvious artifacts caused by overlapping struc-

tures, as can be seen by comparing the tomosynthesized

slices of M1 and M3 in Fig. 3 with the single-projection

image in Fig. 6�b�, and those of C2 and C3 in Figs. 4 and

6�c�. The effect of artifacts depends on the distance between

the feature layers in the Z direction and the contrast of the

features. In these examples, the feature layers are separated

by 1 cm. Further analysis of the artifacts in the Z direction

based on the ASF is presented below.

The BP method resulted in low-contrast features with

smoothed edges while both the SART and ML-convex meth-

ods improved the conspicuity by enhancing the edge and the

contrast. On the other hand, BP results produced smoothed

image background with very low noise level, but both the

SART and ML-convex methods, iterating from the BP re-

sults, strongly amplified the noise. This is due to the ill-posed

nature of the inverse problem in tomosynthesis and no regu-

larization has been explicitly applied to the algorithms. For

high-attenuation features such as microcalcifications and

wires, both iterative methods resulted in shadow regions ex-

tending from the object in the direction of the x-ray source

motion.

To examine the effect of the iterative process on recon-

struction image quality, we calculated the corresponding con-

trast, RMS noise and CNR values as the number of iterations

increased. The phantom was imaged three times and the re-

peated measurements were averaged and their standard de-

viations estimated. The results for one of the masses, M5,

and one microcalcification in group C3 �denoted by the same

group name� are shown in Fig. 7. The values for the first

three iterations of SART and the first eight iterations for

ML-convex were included.

Figure 7 shows that the features reconstructed by the BP

method are very low contrast but have relatively high CNR

values because of the very low noise level. The SART

method, with only one iteration, can significantly increase

the contrast values, but simultaneously amplified the back-

ground noise to a high level, resulting in a low CNR value.

Similar observations can be made for the ML-convex

FIG. 4. Tomosynthesized images of four groups of simulated microcalcifi-

cations in phantom 1 reconstructed with the BP, SART, and ML-convex

methods. The slices where the objects are in focus are shown. The SART

and ML-convex images for the corresponding cluster are displayed with the

same window width and window level, whereas the BP image of the same

cluster is displayed with narrower window width and different window level

to achieve visually comparable contrast and background gray level. The

x-ray source moved in the vertical direction relative to the images shown.

C2 and C3 are overlapped in the single-projection image �see Figs. 2 and 6�
but are well separated in the reconstructed slices.

FIG. 5. Tomosynthesized images of three steel wires of phantom 1 recon-

structed with the BP, SART, and ML-convex methods. W3 is a thicker wire

than W1 and W2. The slices where the objects are in focus are shown. The

SART and ML-convex images for the corresponding wire are displayed with

the same window width and window level, whereas the BP image of the

same wire is displayed with narrower window width and different window

level to achieve visually comparable contrast and background gray level.

The x-ray source moved in the vertical direction relative to the images

shown.

FIG. 6. �a� Single-projection image of phantom 1, �b� ROIs containing the

overlapping masses M1 and M3, and �c� two groups of overlapping simu-

lated microcalcifications C2 and C3. Refer to Fig. 2 for their locations in

phantom 1.
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method, but the latter improved the contrast with a slower

speed. The results in Fig. 7 suggested that SART with one

iteration ��=0.3� can reach a similar CNR level to that of the

ML-convex method with six or seven iterations. Similar con-

clusions can be obtained for both mass and microcalcifica-

tion features. For this reason, we used the results from the

SART method with one iteration ��=0.3� and the ML-

convex method with seven iterations ��=1.0� in the follow-

ing discussions.

Figure 8 shows the line profiles of both M5 and C3 for the

BP, SART, and ML-convex methods. To get the line profile

of the mass, five consecutive columns �161 pixels per col-

umn� were averaged with the central column passing through

approximately the center of the mass. Similarly, for the mi-

crocalcification, three consecutive columns �21 pixels per

column� were averaged with the central column passing

through approximately the center of the microcalcification.

The line profiles shown in Fig. 8 were mean removed and

averaged over three repeated measurements. For both M5

and C3, the BP method resulted in a relatively smoother line

profile while the SART and ML-convex methods gave

sharper edges. This agrees with our observations from the

reconstructed images. In addition, the SART and ML-convex

methods gave very similar results for the selected features, as

evident from their almost identical line profiles. Similar re-

sults were observed from analysis of other masses and mi-

crocalcifications although only one example of each is

shown here.

Figure 9 shows the ASF curves of the selected mass and

microcalcification. The layers with positive distance denote

the image slices below the feature layer and vice versa. It is

seen that the BP results have strong interplane blurring effect

for the mass object, represented by a slowly decreasing ASF

curve. Both the SART and ML-convex methods were supe-

rior in suppressing interplane blurring and the corresponding

ASF curves dropped very quickly as the distance from the

feature increased. For microcalcifications, all three methods

have comparable ASF behaviors while BP gave a slightly

better mean ASF curve.

B. Phantom 2

The regular single-projection image of the ACR phantom

is shown in Fig. 10�a�. The tomosynthesized images of the

FIG. 7. Comparison of contrast ��a�, �b��, RMS noise ��c�, �d��, and CNR

values ��e�, �f�� of the selected mass �M5� and microcalcification �C3� for

the SART method �open circles�, and the ML-convex method �open

squares�, as a function of iteration numbers. The contrast, noise and CNR

values of BP results are shown �open triangles� in corresponding panels as a

reference value. All values were obtained by averaging three repeated mea-

surements and the error bars indicated the standard deviation of the

measurements.

FIG. 8. Comparison of line profiles of the selected �a� mass �M5� and �b�
microcalcification �C3� reconstructed with the BP �dotted line�, SART �solid

line�, and ML-convex �dashed line� methods. The pixel intensity was nor-

malized by removing the mean of each line profile. The line profiles were

obtained by averaging three repeated measurements. In both the M5 and C3

results, the dash line is almost fully overlapped with the solid line.

3789 Zhang et al.: Limited-angle cone-beam reconstruction for breast tomosynthesis 3789

Medical Physics, Vol. 33, No. 10, October 2006



ACR phantom feature layer �6 mm below the phantom sur-

face� by the BP, SART, and ML-convex methods are shown

in Figs. 10�b�, 10�c�, and 10�d�, respectively. Similar to the

results of phantom 1, the BP method produced images with

low contrast features and low noise background. In the BP

image, five fibrils, three groups of specks plus three specks

in the fourth group, and three masses and part of the fourth

mass may be seen on a good quality display monitor but it is

difficult to see on the printed image. In the SART and ML-

convex images, the same features are much more conspicu-

ous with sharper edges and higher contrast. In addition, one

more fibril and the whole fourth mass can be observed on

both images while two more specks and the whole fourth

group of specks can be observed for SART and ML-convex

images, respectively.

We used the reconstructed ACR phantom images to cal-

culate the 1D NPS along both X and Y directions. The tomo-

synthesized layer containing the homogeneous ROI for NPS

estimation is 15 mm below the feature layer as shown in Fig.

10 �or 21 mm below the phantom surface�. On this layer, the

interplane artifacts from the feature layer were not observ-

able. The choice of this phantom slice for the NPS compari-

son was somewhat arbitrary except that the slice should be

far enough from the feature layer to avoid interplane arti-

facts. The measurement of the 1D NPS was repeated on three

DTM samples of the ACR phantom at the same layer and the

averages of the repeated measurement were compared.

The average 1D NPS for both X and Y directions in the

same selected homogeneous area are shown in Fig. 11 for the

three reconstruction methods. Since the digital detector has a

pixel pitch of 0.1 mm, the Nyquist frequency occurs at

5 cycles/mm. The BP method produced much lower NPS

level in the tomosynthesized slice, as also evident from the

RMS noise estimate shown in Fig. 7. Both the SART �with

one iteration� and the ML-convex �with seven iterations�
methods significantly amplified the noise at all frequencies.

The latter two have very similar NPS behaviors and the two

curves in either direction are essentially indistinguishable.

C. Phantom 3

The single-projection image of the breast C-D phantom is

shown in Fig. 12�a�. For comparison, we selected four recon-

structed slices which are 6, 16, 20, and 34 mm below the

breast C-D phantom surface that contain heterogeneous

fibroglandular-tissue-mimicking material with different pat-

terns �slices 1 and 4�, several simulated spiculated masses on

a homogeneous mixture �slice 2�, and six columns of

contrast-detail disk-shaped holes drilled in a homogeneous

mixture �slice 3�, respectively. The reconstruction results of

FIG. 9. Comparison of ASF curves of the selected �a� mass �M5� and �b�
microcalcification �C3� reconstructed with the BP �open triangles�, SART

�open circles�, and ML-convex �open squares�. Slices with positive distance

are below the feature layer. The ASFs were obtained by averaging three

repeated measurements and the error bars indicated the standard deviation of

the measurements.

FIG. 10. Comparison of �a� the regular single-projection image, and tomo-

synthesized images of the ACR phantom obtained from the �b� BP, �c�
SART, and �d� ML-convex methods. This reconstructed slice is 6 mm below

the phantom surface. The SART and ML images are displayed with the same

window width and window level. The single-projection image is displayed

with a narrower window while the BP image with a wider window and their

window levels are adjusted individually to proper background darkness. The

BP image cannot be displayed with a narrower window because the image

background is not as flat and the chest wall side of the image becomes too

white while the upper and lower sides too dark at narrow windows. The

x-ray source moved in the vertical direction relative to the images shown.
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the BP, SART, and ML-convex methods of the four slices are

shown in Figs. 12�b�–12�d�, 12�e�–12�g�, 12�h�–12�j�, and

12�k�–12�m�, respectively. In the single-projection image,

the contrast-detail disk array was obscured by the back-

ground structures and most of the disks were not visible

except for a few large and high contrast ones. The simulated

spiculated masses were almost totally invisible due to their

low contrast and overlap with tissue structures. In the BP

images, it is still very difficult to observe the spiculated

masses, while three rows of the drilled disks become visible.

All disks on the first three rows except the smallest ones can

be seen with strong windowing on the monitor. The homo-

geneous mixture background of these two feature slices

�slices 2 and 3� were superimposed with severe streak arti-

facts along the x-ray source motion direction resulting from

the tissue structure patterns both above and below. In con-

trast, both the SART and ML-convex methods can separate

the overlapping tissue structures and the objects very well. It

is much easier to observe the five spiculated masses and all

disks in the first four rows including even the smallest ones

in the first two rows. The objects have much sharper edges

and higher contrast than those in the BP images. In slice 2,

interplane artifacts from the higher contrast disks in the first

row of the C-D array �slice 3� were visible. The background

in both slices 2 and 3 also included some faint shadows from

the heterogeneous tissue structures but the structured noise

was much lower than the noise in the single-projection image

and the BP images.

D. Wire phantom

To compare the relative sharpness of high contrast line

objects �edges� in the tomosynthesized images, we used the

three methods to reconstruct images of a 220-�m-diameter

steel wire that was placed about 2.5 cm above the surface of

the breast support plate. The reconstructed layer in which the

wire was in-focus was chosen as the feature layer. The wire

was oriented perpendicular to x-ray source motion direction

and the line profiles were taken in the direction perpendicular

to the wire. Each line profile was derived from the average of

four adjacent line profiles chosen from the same in-plane

position for all three reconstruction methods. To determine

the LOSF, we removed the background pixel intensity from

the average line profile, and normalized its maximum inten-

sity to 1. The wire phantom was imaged and the measure-

ment of the LOSFs was repeated three times.

The resulting LOSF curves for one measurement are

shown in Fig. 13. It is seen that the LOSFs of the SART and

ML-convex methods had a similar level of broadening and

both were narrower than that from the BP method. Similar

trends of the LOSFs were observed for the repeated measure-

ments. The mean and standard deviation of the full-width-at-

half-maximum �FWHM� of the LOSFs for the BP, SART,

and ML-convex methods estimated from the three measure-

ments were 362±36, 342±27, and 279±19 �m, respec-

tively. The undershoot lobes of the LOSFs for the SART and

ML-convex methods are caused by the estimation of the av-

erage differences in the linear attenuation coefficients in the

backprojection process which creates an effect similar to un-

sharp masked filtering around edges. This may be one of the

major factors contributing to the edge enhancement effects in

the reconstructed DTM slices by the SART and ML-convex

methods.

IV. DISCUSSION

We have investigated three reconstruction algorithms, BP,

SART, and ML-convex for DTMs using several phantoms.

Preliminary results show that all methods can reconstruct the

features in their correct layers and separate superimposed

phantom structures along the Z direction. The two iterative

methods chosen in this study, SART and ML-convex, are

more effective in improving the conspicuity of object details

and suppressing interplane blurring, as demonstrated in the

reconstructed DTM images of the breast C-D phantom and

by the improved ASF for masses measured with phantom 1.

For the phantoms with homogeneous background as in phan-

toms 1 and 2, the BP method resulted in less noisy recon-

struction and higher CNR values for low contrast objects

than either the SART or the ML-convex method, but the

latter methods provided stronger enhancement of the contrast

of microcalcifications and edge sharpness of both masses and

fibrils. Image noise for the SART and ML-convex methods

FIG. 11. Comparison of 1D-NPS for �a� X direction and �b� Y direction in a

homogeneous region of a DTM slice, 21 mm below the ACR phantom sur-

face, reconstructed with the BP �dotted line�, SART �solid line�, and ML-

convex �dashed line� methods. The x-ray source motion was parallel to the

Y direction. For 1D-NPS at both directions, the dashed line is almost fully

overlapped with the solid line.
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FIG. 12. Comparison of the regular single-projection image and four tomosynthesized images reconstructed with the BP ��b�, �e�, �h�, �k��, SART ��c�, �f�, �i�,
�l��, and ML-convex ��d�, �g�, �j�, �m�� methods for the breast C-D phantom. These four reconstructed slices are located at 6, 16, 20, and 34 mm below the

phantom surface, respectively. The SART and ML images for the corresponding slice are displayed with the same window width and window level whereas

the window widths of the BP images are larger because the background of the BP images are not as flat and the gray levels of larger parts of the images will

be out of scale at narrower windows.
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increased as the number of iterations increased. With the

breast C-D phantom, it was found that the BP method is

inferior to the SART and ML-convex methods in terms of

structured noise suppression and interplane blurring. Al-

though the measured CNRs of low contrast objects for the

BP method is higher than the CNRs for the two iterative

methods using a phantom with a homogeneous background

as shown in Fig. 7, the performance of the BP method in

clinical images will be poor in the presence of structured

background, as demonstrated in the breast C-D phantom im-

ages.

The selection of the relaxation parameter � was experi-

mentally determined in this study. To our knowledge, there is

no general rule for choosing this parameter, and the most

appropriate way is to determine it experimentally for a given

application. For the ML-convex method, the use of constant

step size, i.e., �=1.0, has been shown to provide satisfactory

results in previous breast tomosynthesis reconstructions.
2,47

In our study, we used the same strategy. For the SART

method, the relaxation parameter �or step size� usually plays

an important role. For all three phantom data investigated in

this study, �=0.3 gave acceptable results after only one it-

eration. As the iterative process continued, the tomosynthe-

sized slices quickly became too noisy. Thus, very few itera-

tions in combination with adaptive relaxation parameters

having fast decreasing values may be desirable in practical

applications. The optimal strategy to choose relaxation pa-

rameters in SART for clinical cases remains to be investi-

gated.

The computational burden of one iteration �all projection-

view images have been processed exactly once� is the same

order of magnitude for both SART and ML-convex methods,

and most of the computation time is spent in the calculation

of the simulated data �i.e., forward projection�. The reason

that the SART method has faster convergence speed than the

ML-convex method can be attributed to, without considering

the relaxation parameter, the update strategy of the un-

knowns. In the SART method, the linear attenuation coeffi-

cients are updated at each projection view; while for the

ML-convex method, the update is performed after all views

have been processed. The update information is over-

smoothed in the ML-convex approach. It should be noted

that some researchers have suggested using a block-iterative

strategy in the ML-type methods to accelerate the conver-

gence speed, which makes it close to the update strategy of

SART.
48,49

In this study, we chose the ordinary ML-convex

implementation because it was used in previous investiga-

tions of breast tomosynthesis
2,24

that might provide a refer-

ence for comparison, although a different imaging geometry

and a different number of projection views were used in the

previous studies.

The inverse problem of breast tomosynthesis reconstruc-

tion is an ill-posed problem due to the limited number of

available projection views, the limited angular range of pro-

jection, and the large number of unknowns, which lead to

serious amplification of noise in the data during the recon-

struction. Regularization techniques may be useful for ad-

dressing this problem. We did not implement specific regu-

larization methods. However, in our experiments, a degree of

regularization was achieved through “early stopping,” i.e.,

the iteration was stopped before the solution became too

noisy for both the SART and ML-convex methods, and

through a non-negative constraint imposed on the unknown

values. Further investigation on regularization methods may

be needed to improve the image quality for breast tomosyn-

thesis mammography.

The implementations of both the SART and ML-convex

methods can be adapted to parallel computation algorithms.

In both the forward projection and backprojection computa-

tion, the detector area can be divided into any reasonable

number of subregions and the simulated measurements

within each subregion can be calculated independently. The

reconstruction of the entire volume can then be retrieved by

stitching all the subregions together. This method has been

used in breast tomosynthesis with the parallel ML-convex

method,
47

and chest tomosynthesis with algebraic recon-

struction techniques.
36

V. CONCLUSION

In this study, we have applied three representative recon-

struction algorithms for the tomosynthesis of breast phantom

data. Preliminary results show that for phantoms with homo-

geneous background, all methods can reconstruct the fea-

tures in their correct layers and separate overlapping fea-

tures. The BP method provided very smooth reconstructed

images with low background noise, while the SART and

ML-convex methods considerably enhanced the contrast and

edges of the features but simultaneously amplified the image

noise. The CNR values of simulated low-contrast objects for

the BP method were higher than those for the SART and

ML-convex methods. However, the two iterative methods

can reduce the interplane blurring and artifacts with better

ASF behaviors. For a contrast-detail phantom with heteroge-

neous tissue-mimicking background, the BP method had

blurring artifacts in the x-ray source motion direction that

FIG. 13. Line object spread functions of the reconstructed wire image with

BP �dotted line�, SART �solid line�, and ML-convex �dashed line� methods

for one measurement. Repeating measurements gave slightly different

LOSFs for all methods but with same relative behaviors.
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obscured the contrast-detail objects, while the other two

methods can significantly improve object conspicuity by re-

moving the overlapping structures. With a properly selected

relaxation parameter, the SART method with one iteration

can provide tomosynthesized images comparable to those

obtained by using the ML-convex method with seven itera-

tions, when the BP results were used as initialization in both

methods. Future work will be conducted to evaluate the ef-

fects of various parameters including initialization, step size,

number of projection views, angular increments and ranges,

and regularization on the quality of DTM images. In addi-

tion, studies will be performed to compare the image quality

of patient DTM images using different reconstruction

methods.
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