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Abstract
Medical imaging can help doctors in better diagnosis of several conditions. During the present COVID-19 pandemic, timely
detection of novel coronavirus is crucial, which can help in curing the disease at an early stage. Image enhancement techniques
can improve the visual appearance of COVID-19 CT scans and speed-up the process of diagnosis. In this study, we analyze
some state-of-the-art image enhancement techniques for their suitability in enhancing the CT scans of COVID-19 patients.
Six quantitative metrics, Entropy, SSIM, AMBE, PSNR, EME, and EMEE, are used to evaluate the enhanced images. Two
experienced radiologists were involved in the study to evaluate the performance of the enhancement techniques and the
quantitative metrics used to assess them.

Keywords Coronavirus · COVID-19 · CT · Medical image enhancement · Histogram equalization · Medical image quality
assessment

1 Introduction

COVID-19 (coronavirus disease 2019) is a contagious dis-
ease caused by SARS-CoV-2 virus that mostly affects the
respiratory system as pneumonia and acute respiratory dis-
tress syndrome [1]. The COVID-19 outbreak is supposed to
continue inflicting significant health issues and causing high
fatality while drastically affecting society and economies
around the world [2]. There are over 268 million COVID-
19 cases and over 5.2 million deaths reported in the world
as of December 2021 according to the world health organi-
zation [3]. COVID-19 is commonly diagnosed by Reverse
Transcription Polymerase Chain Reaction (RT-PCR), which
has low accuracy, slow response time, and is less sensitive
[4]. Early infection detection improves the likelihood of suc-
cessful treatment for affected patients while also reducing
the spread of an infectious disease like COVID-19 in the
community.
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In a recent work, COVID-19 patients were classified using
medical monitoring sensors and efficient artificial neural net-
works based on physiological and psychological inputs [5].
Various learning-based prediction models were used to esti-
mate the infection rate, the possibility of the second and
third waves of the pandemic, and the risk of an outbreak
linked with travelling. Radiography techniques, such as a
chest X-ray or computed tomography (CT), are commonly
used to diagnose lung disorders such as pneumonia [6] and
COVID-19 [7]. Many studies have recently been conducted
to detect COVID-19 utilizing X-ray and CT images using
various AI-based approaches. To increase network perfor-
mance in classifying an image into COVID-19, normal, or
other lung disorders, various transfer learning approaches,
unique network designs, and ensemble solutions have been
proposed [8].

Medical images, especially CT scans, are difficult to visu-
alize due to low contrast [9]. This can affect the performance
of the AI-based techniques as well as the quality of the diag-
nostic outcomes [10]. Adequate local contrast can improve
diagnostic accuracy [11] and drastically decrease the pro-
cessing time [12]. Compared to magnetic resonance imaging
(MRI), CT images have low soft-tissue contrast, relatively
high noise level, and a high dynamic range [13]. These factors
along with the advancements in medical imaging technology
have raised the curiosity of image processing community
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to develop enhancement algorithms for these images [14].
Contrast enhancement to improve the visual appearance of
an image is a crucial preprocessing step in the field of medi-
cal image processing. Techniques such as reducing blur and
noise can increase contrast and offer more information that
can be extracted from the image. This is an important phase
especially now, as with the extensive number of CT scans
obtained every day in hospitals for COVID-19 patients, the
quality of the acquired images can fluctuate due to numerous
factors, such as the patients’ condition, breathing state, and
human error [8].

Theprimaryobjective of image enhancement is to increase
the interpretability of information contained in the image for
human viewers or to extract useful features accurately for the
machine learning-based algorithms. The enhanced images
obtained by modifying the pixel intensity of the input image
through nonlinear transformations are qualitatively better
than the original images. However, the applied transforma-
tion must preserve the information and not alter it during the
enhancing process [8]. Different image enhancement tech-
niques have been developed over the years for the betterment
of the image quality, improvement in contrast and preserva-
tion of the details in the images. Among those, histogram-
based image enhancement techniques arewidely used as they
offer simplicity in their execution and produce good results
[9, 15]. The best aspect of histogram-based approaches is
the ease with which separate processing methods can be
integrated. Real-time processing of histogram-based meth-
ods make them more compelling toward the diagnosis of
COVID-19 through CT scans.

In this paper, we apply several existing histogram-based
enhancement techniques to a variety of COVID-19 CT
images acquired in DICOM format. We have carried out a
detailed evaluation of the techniques, through visual com-
parisons and using several quantitative metrics, in terms of
enhancing the details for more accurate and fast diagno-
sis. The comparative study aims at helping frontline health
workers, as there is an urgent need to assist healthcare pro-
fessionals and radiologist in making accurate COVID-19
diagnoses in a short time. A summary of the techniques
included in this study and their performance on the existing
medical image datasets is given in Table 1. It can be noted
that these techniques have been evaluated on different image
datasets using different evaluation methods. Therefore, it is
not easy to draw reliable conclusions on their performance.
Our study will evaluate them all on the same COVID-19
image dataset. Therefore, besides determining their appropri-
ateness for COVID-19 images, it will measure their relative
performance as well. There are several quantitative measures
used in the literature to indicate the quality ofmedical images,
as can be seen in Table 1. We will use some most common
metrics for our study and evaluate their performance as well.

Table 1 Performance of the histogram-based enhancement techniques
on existing medical image datasets

Methods Dataset Scores of quantitative
metrics

BBHE CT [47] PSNR: [18.1,19];
SSIM: [0.24, 0.3];
EMEE: [0.15, 0.16]

DSIHE CT [47] PSNR: [29,33.9];
SSIM: [0.88,0.9];
EMEE: [0.56,0.67]

MMBEBHE MRI [48] E: [2.7,6.2]; *AMBE:
[7.2,17.7]; PSNR:
[18.2,22.7]; SSIM:
[0.2,0.85]; FSIM:
[0.97,0.99]; *NIQE:
[4.1,8.2]

RMSHE Mammogram [49] EME: [3.8,7.2];
PSNR: [15.6,34.4];
*MSE: [49.2,116.8];
AMBE: [2.8,17.2]

RSIHE CT [50] E: [3.5,4.75]; PSNR:
[19.6,26.8]; SSIM:
[0.69,0.83]

RSWHE MRI [51] DE: [3.9,5]; *NIQE:
[7.7,13.2]

AGCWD CT [47] PSNR: [18.4,20.6];
SSIM: [0.94,0.97];
EMEE: [2.5,3.0]

ESIHE MRI and retinal
fundus [52]

E: [5.5,6.3]; PSNR:
[23.5,29.5]; CII:
[0.75,3.6]; MC: 0.46;
WC: 0.57; EME:
6.85; EMEE: 0.025

R-ESIHE X-ray [53] E: [6.15,7.4]; CII:
[0.88,1.3]

RS-ESIHE MRI [54] E: [5.0,5.7]; PSNR:
[24.2,24.5]; Contrast:
[0.16,0.41]; *AMBE:
[44.7,63.53]; EME:
[1.4,3.2]; SSIM:
[0.3,0.52]; FSIM:
[0.75,0.93]

BHE X-ray images [30] TMQI-S: [0.76,0.90];
Entropy: [6.9,7.78]

The rest of this paper is organized as follows. Section 2
describes commonly used histogram-based image enhance-
ment techniques. Section 3 gives a summary of commonly
used quantitative metrics used for medical images. Section 4
presents the results of our experimental evaluation, while
some conclusions drawn from the study are stated in Sect. 5.
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Table 1 (continued)

Methods Dataset Scores of quantitative
metrics

cl-BHE X-ray [30] TMQI-S: [0.6,0.93];
Entropy: [6.1,7.84]

NLQ CT [55] Visual Assessment
Median scores:
[7.3,8.83]

The range of reported scores on the used datasets is mentioned in the
[min, max] notation. If only one value is given, it indicates the average
score on the entire dataset. Theworks fromwhere these results are taken
are cited in the second column. In general, a high score indicates a better
quality, except for the metrics marked with an asterisk which assign low
score for better quality

2 Histogram-basedmedical image
enhancement techniques

Histograms serve as the foundation for many spatial domain
image processing techniques. In the existing literature,
histogram-based enhancement techniques are among the old-
est as well as the most recent and the most effective ones.
Histograms are easy to calculate and manipulate in soft-
ware, and they also adapt themselveswell to limited hardware
implementations, making them popular for real-time image
processing and enhancement [16]. In this section, we briefly
describe some popular histogram-based image enhancement
techniques that are used is our study.

2.1 Histogram equalization

Histogram equalization (HE) [17] is one of the simplest con-
trast improvement methods, being used on medical images
since the mid-1980s [18, 19, 31]. Although HE is simple,
it can produce visual artefacts, noise intensification, level
saturation impact, washed-out effect, and under- and over-
enhancement [20]. These unwanted visual degradations are
inevitable due to considerable shift inmeanbrightness caused
by HE [32]. Many improved HE variants has been proposed
to overcome these problems.

2.2 Brightness preserving bi-histogram equalization
(BBHE)

Several solutions have been presented in recent years to
address the shortcomings of histogram equalization [15] and
to resolve the mean shift and brightness preserving issue
in the resultant image [14]. A method known as bright-
ness preserving bi-histogram equalization (BBHE) [21] was
proposed to conserve the mean brightness and improve the
contrast of an input image. The BBHE initially divides an
input image into two sub-images based on the input image’s

mean. The sub-images are equalized independently based
on the transformation function, and the result of BBHE is a
combination of equalized sub-images.

2.3 Dualistic sub-image histogram equalization
(DSIHE)

DSIHE divides the input image histogram using the gray
levels with the cumulative distribution function (CDF) value
based on the median [22]. DSIHE decomposes the image
aiming at the preservation and maximization of entropy [33]
of the resultant image. The two sub-images, one dark and
one bright, are processed using the HE and combined into a
single enhanced image.

2.4 Minimummean brightness error bi-histogram
equalization (MMBEBHE)

MMBEBHE is an extension to the BBHE, which separates
the histogram based on the threshold level that yields the
smallest absolute mean brightness error [23]. The input his-
togram is divided using the threshold while the remaining
enhancement method remains the same as in BBHE.

2.5 Recursivemean separate histogram
equalization (RMSHE)

RMSHE performs histogram decomposition recursively,
where each new histogram is separated further based on
its individual mean value [24]. RMSHE provides scalable
brightness preservation to overcome the disadvantages of the
previous techniques.

2.6 Recursive sub-image histogram equalization
(RSIHE)

RSIHE is a generalization of the DSIHE technique. It divides
the input histogram by using a cumulative probability density
of 0.5 [25]. This procedure is repeated for a set number of
recursion levels to evenly divide the image into sub-images.
The segmented histograms are independently equalized and
combined to give the enhanced image. This technique also
provides scalable brightness because of its recursive nature.

2.7 Recursively separated and weighted histogram
equalization (RSWHE)

RSWHE is similar to RMSHE and RSIHE but it adds a
histogram weighting step before equalization [26]. The his-
togram segmentation step generates 2r sub-histograms at
recursion level r . Using the normalized power-law func-
tion, the histogram weighting step alters the probability
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density function of each sub histogram. Each of the 2r sub-
histograms is equalized separately and finally all sub-images
are combined to yield the enhanced image.

2.8 Adaptive gamma correction with weighting
distribution (AGCWD)

AGCWD replaces the transformation function of HE by
a new function based on adaptive gamma correction [27].
The technique can prevent abrupt changes in high intensities
while enhancing the low intensities. Furthermore, AGCWD
utilizes a weighting distribution function to smoothen
enhancement. An imagewith a high probability density func-
tion (PDF) will not be overly enhanced, whereas an image
with a low PDF will not be under-enhanced [47].

2.9 Exposure-based sub-Image histogram
equalization (ESIHE)

ESIHE is particularly effective for low exposure grayscale
images and preserves entropy while providing control over
the enhancement. The algorithm involves calculating the
exposure threshold, histogram clipping, and histogram sub-
division and equalization [28, 34]. The threshold parame-
ter divides the image into underexposed and overexposed
sub-images. Histogram clipping is done to prevent over-
enhancement, by computing a clipping threshold and clip-
ping the histogram bins with larger counts.

2.10 Recursive exposure based sub-image
histogram equalization (R-ESIHE)
and (RS-ESIHE)

R-ESIHE is an extension of the ESIHE method, which per-
forms ESIHE on the image iteratively until the difference in
exposure levels between subsequent iterations is smaller than
a certain threshold [29]. R-ESIHE has the same implemen-
tation steps as ESIHE, and only difference is the recursive
implementation. In the other variant, RS-ESIHE, the his-
togram is first divided based on the individual exposure
threshold, and histogram equalization is applied on all the
sub-histograms. The clipping process is done in both algo-
rithms to avoid over enhancement.

2.11 Bilateral histogram equalization (BHE)

In BHE, several slices of the input image are obtained by
dividing its dynamic range into uniform bins [30]. Each bin
is stretched to enhance the contrast and a cross bilateral
filter is used to overcome the artefacts. To overcome over-
enhancement, a variant of BHE referred as contrast limited
BHE (cl-BHE) is also proposed, which clips the bin counts

at some specified threshold and re-distributes the overhead
pixels to other nonzero weights.

2.12 PQ-TMO

Tone-mapping is a process used to transform high dynamic
range (HDR) images for visualization on standard screens.
The medical images stored in the DICOM format are HDR,
therefore, existing tone-mappingoperators (TMOs) have also
been used to enhance the CT scans. We include a recently
proposed histogram based TMO, which uses pixel intensities
in a perceptual domain defined by the well-known perceptual
quantizer (PQ) function. This TMO has not been used for the
medical images so far in the existing literature.

2.13 Nonlinear quantization (NLQ)

A recent technique designed for medical image enhancement
used a novel iterative method for histogram construction.
Initially, all pixel values are assumed to be in a single bin,
which is split into two such that the clustering error is nearly
equal in each new bin. This process continues iteratively until
256 bins are obtained, and in each iteration the bin with the
largest clustering error is split into two. The pixel contained
in a bin bi , 0 ≤ i ≤ 255, are assigned the new value equal
to i. The resultant image is visually enhanced and good for
display on the standard screens.

3 Medical image quality assessment metrics

Several quantitative metrics have been proposed in the liter-
ature to quantify the image quality, as can be noted in Table
1. We provide a brief description of the most popular ones
below.

3.1 Entropy (E)

Entropy measures the level of details present in the image
[14] and is often used as an assessment parameter of the
medical images. Shannon entropy is commonly used for this
purpose, which is a blind metric, i.e., it does not require the
reference image to determine its value [32].

3.2 Enhancementmeasure (EME)

EMEcomputes the contrast in the reference and the enhanced
images, to determine the level of improvement [41]. To mea-
sure the contrast, the image is divided into smaller blocks.
The difference of the maximum and minimum intensity lev-
els in each block in log domain is measured as the local
contrast, and all values are summed to calculate the value
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of EME. The measure is suitable for images with uniform
backgrounds [42].

3.3 Enhancement measure of entropy (EMEE)

EMEE measures the enhancement by entropy of the local
contrast values of the image blocks used in EME [43].

3.4 PSNR

Enhancement of contrast and detail can lead to increase in the
noise level present in the medical images. The peak signal
to-noise ratio (PSNR) [39] is a good measure of noise in
an image and it measures the degree of deterioration of the
enhanced image in comparison with the input image [40].

3.5 Structural similarity (SSIM)

Human visual perception system is extremely capable of
extracting structural information froma scene (image) and, as
a result, it can distinguish the structural differences between
a reference image and a processed image [37]. SSIM index
compares three features, structure, luminance, and contrast
of the reference and the test images, to give a single score of
similarity. SSIM value ranges from 0 to 1 and a higher value
is considered better.

3.6 Absolute mean brightness error (AMBE)

AMBE represents the difference of mean brightness between
the original the enhanced image. This metric computes the
degree of brightness distortion produced by enhancement.
The lower the AMBE value the better the preservation of
brightness in the image [38, 39].

Abovementioned sixmetrics aremost commonly used for
medical images. However, certain other metrics also exist as
can be seen in Table 1. For completeness, we briefly describe
those metrics also for the interested readers. Feature Similar-
ity (FSIM) computes local similarity map between original
and enhanced images and aggregates the local similarities to
a single score.Natural ImageQuality Evaluator (NIQE) uses
a set of statistical features derived from a dataset of natural,
undistorted images, to compute the difference between the
original and the enhanced image.MeanSquaredError (MSE)
calculates the sum of the squared errors between enhanced
and original images. Discrete Entropy (DE) assess the rich-
ness of details in an image after enhancement. Contrast is a
second-order statistical measure that gives the intensity dif-
ference between a pixel and its neighbor across the entire
image. Contrast Improvement Index (CII) is calculated as
ratio of the contrast values of the enhanced and original
images. Michelson Contrast (MC) is calculated by dividing
the difference of maximum and minimum intensity values

of the image by the sum of maximum and minimum inten-
sity values. Weber Contrast (WC) is calculated by dividing
the difference of maximum and minimum luminance of the
image by the maximum luminance. Structure Similarity of
Tone-mapped Image Quality Index (TMQI-S) is a commonly
used measure to determine the structural fidelity of the tone-
mapped HDR images. Recently, it has been used in some
works to measure the quality of enhanced medical images.

4 Evaluation

For this study, we used 50 CT images with confirmed
COVID-19 diagnosis at different levels of infection. These
images were taken from the public dataset Harvard Data-
verse [35] which contains 1013 images in DICOM format
[36]. They were enhanced using 14 histogram-based tech-
niques discussed in Sect. 2, thus giving a total of 700 images.
All images were evaluated using six quantitative metrics
(entropy, EME,EMEE, SSIM,AMBE, andPSNR), aswell as
by two experienced radiologists, to assess the performance
of the enhancement techniques. Furthermore, we calculate
correlation between the evaluation done by the radiologist
and the metrics to assess the relative performance of metrics.
Details are given below in this section.

While professional radiologists are trained to read the
standard CT scans, the accuracy of diagnosis and the time
taken for it can be optimized by using the images of better
visual quality. Typical examples of enhanced images using 14
techniques used in this study are shown in Fig. 1. We applied
the six above-mentioned metrics to all 50 sets of enhanced
images and calculated the average scores of each technique
as shown in Table 2. Based on these average scores a rank
between 1 and 14 is assigned to each technique by each met-
ric as shown in Table 3.

We showed the enhanced results to two most senior radi-
ologists in the country. For this, we prepared 50 sheets of
images, each containing 14 enhanced images generated by
the techniques being evaluated. The images on each sheet
were only numbered as 1 to 14withoutmentioning the names
of the technique, to avoid any bias. For the same reason, the
location of images generated by different techniques were
also randomized on each sheet. Figure 1 is one example
of those sheets. Each radiologist was asked to mark three
best images on each sheet based on the visibility of infected
regions in the image which could help in better diagnosis. To
minimize the judgement error, we consider the total number
of events in which a technique remained at any of the first
three positions as the score of the technique. These scores
and the rankings of the enhancement techniques based on
them are also shown in Table 3.
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Fig. 1 Experimental results of
different Image enhancement
techniques a BBHE b DSIHE
c MMBEBHE d RMSHE
e RSIHE f RSWHE g AGCWD
h ESIHE i R-ESIHE j RS-ESIHE
k BHE l cl-BHE m PQ n NLQ

original a b c d

e f g h i

j k l m n

Table 2 Average scored of 50
enhanced images assigned by the
quality assessment metrics

Technique Metric

Entropy EME EMEE SSIM AMBE PSNR

Original image 11.22837 5.160185 – – –

(a) BBHE 5.081202 31.94168 9.457133 0.504142 33.98483 13.26234

(b) DSIHE 5.106667 42.2347 20.21942 0.454603 45.05604 11.38862

(c) MMBEBHE 5.084623 37.13259 13.71136 0.531044 39.00554 12.25849

(d) RMSHE 4.402703 35.90697 12.97667 0.900589 3.030934 29.84332

(e) RSIHE 4.464937 40.56246 18.53984 0.87376 3.770466 28.54897

(f) RSWHE 4.901565 21.11102 4.962463 0.168555 115.4839 6.29218

(g) AGCWD 5.343632 50.06877 46.56809 0.613889 38.0514 12.79779

(h) ESIHE 5.323192 41.15775 19.51397 0.497917 38.97651 13.48288

(i) R-ESIHE 5.308788 44.54052 26.12391 0.560577 36.72041 13.35319

(j) RS-ESIHE 5.189115 21.03791 5.05397 0.263516 78.87339 9.991406

(k) BHE 7.300016 62.23098 102.3879 0.195851 85.70393 7.998395

(l) cl-BHE 6.948765 56.46655 62.53966 0.303929 59.87531 11.20919

(m) TMO-PQ 7.067735 5.901825 1.564038 0.24605 81.40261 8.534669

(n) NLQ 6.74173 53.64712 52.18378 0.416907 43.25627 13.17442

Bold values indicate the best values among the image quality assessment metrics

Comparing the rankings given by the metrics with those
given by the radiologists, we did not observe a good corre-
lation between the two. Three metrics, Entropy, EME, and
EMEE, rank technique (k) BHE as the best, whereas it was
at the last position in radiologist’s ranking. In fact, out of
50 images, each enhanced by 14 techniques, not even one
enhanced by BHE was picked as the best by the radiolo-
gists. The other three metrics SSIM, PSNR, and AMBE kept
(d) RMSHE at the first position which stood at 5th position
in radiologist’s ranking. We discussed these results with the
radiologists and based on their feedback, the ground-glass

opacities are soft tissues, which are the regions of their inter-
est forCOVID-diagnosis.Wehavemarked these regionswith
white and red boxes in the original image shown in Fig. 1. The
methods that enhance these regions are ranked high by the
radiologists. Looking at the example of RMSHE discussed
above, it enhances the details in some parts at the expense of
other regions. In case of COVID-19 images, the suppressed
regions by RMSHE happen to be of radiologist’s interest.
Therefore, neither this technique, not the three metrics that
prefer it are a good choice for the COVID-19 CT images.
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Table 3 The techniques’ ranks determined based on the evaluations by the radiologist and average scores assigned by six quality assessment metrics

Enhancement Methods Visual Assessment
by Radiologists

Ranks based on Quantitative Assessment

Scores Rank Entropy EME EMEE SSIM AMBE PSNR Total Overall Rank

(a) BBHE 3 9 11 11 11 6 3 5 47 8

(b) DSIHE 15 3 9 6 6 8 9 9 47 8

(c) MMBEBHE 12 4 10 9 9 5 7 8 48 9

(d) RMSHE 11 5 14 10 10 1 1 1 37 6

(e) RSIHE 7 7 13 8 8 2 2 2 35 4

(f) RSWHE 11 5 12 12 13 14 14 14 79 12

(g) AGCWD 20 2 5 4 4 3 5 7 28 1

(h) ESIHE 10 6 6 7 7 7 6 3 36 5

(i) R-ESIHE 21 1 7 5 5 4 4 4 29 2

(j) RS-ESIHE 6 8 8 13 12 11 11 11 66 10

(k) BHE 1 10 1 1 1 13 13 13 42 7

(l) cl-BHE 7 7 3 2 2 10 10 10 37 6

(m) TMO-PQ 11 5 2 14 14 12 12 12 71 11

(n) NLQ 15 3 4 3 3 9 8 6 33 3

Bold values indicate the ranks attained by each technique from quantitative and subjective evaluation scores

Table 4 Overall SRCC Values of
metrics Metric Entropy EME EMEE SSIM AMBE PSNR Combined

SRCC 0.038 0.128 0.108 0.358 0.212 0.226 0.409

The existing metrics are mostly designed for natural
images, and they consider several factors which are not
important for medical images. For example, entropy-based
features rank those images high which have more details, but
in many cases, noise is the cause of high entropy. Here we
evaluate the performance of six metrics used in our study
in truly predicting the quality of the enhanced images as
desired by the radiologists. For this, in Table 4, we show
the correlation between the rankings given to the enhance-
ment techniques by each matric and the rankings given by
the radiologists, using the Spearman rank-order correlation
coefficient (SRCC). SRCC is a nonparametric variation of
the Pearson correlation coefficient that calculates the level
of relationship between two variables based on their ranks.
The SRCC values of the metrics listed in Table 4 are very
low showing a poor correlation. However, we found a better
correlation when we used the combined evaluation of the six
metrics for ranking, as shown in the last column of the table.

Based on the evaluations by the radiologist, technique (i)
R-ESIHE stood the winner being picked 21 times among
the top 3. Technique (g) AGCWD remained at the second
position with a score of 20, while (b) DSIHE and (n) NLQ
shared the third position with 15 votes each. The other tech-
niques which made to top-5 remained (c) MMBEBHE with

12 votes, and (d) RMSHE, (f) RSWHE and (m) TMO-PQ
with 11 votes each. In Table 5, we show these techniques
and the rankings given by the radiologist (indicated by R)
along with the rankings given to them collectively by the six
metrics (indicated by M). For techniques (i), (g), (n) and (d),
we see a good correlation between the two, but for the rest it
is poor. The overall SRCC value remained 0.815.

Next, we reverse the order of picking the top-5. We pick
the best five determined by the combined scores of the met-
rics and check their ranks given by the radiologist. These are
shown in Table 6. In this case, the correlation seems high and
SRCC obtained a high value equal to 0.855. From Table 6,
we can conclude that the combined scores of the six metrics
remain high for well-enhanced images. However, the oppo-
site cannot be guaranteed, and some good images get poor
scores as shown in Table 5.

Top 3 techniques ranked by the radiologist as well as the
combined evaluation by the metrics are techniques (i) R-
ESIHE, (g) AGCWD, and (n) NLQ. We can observe good
uniform enhancement in each region of the resultant images
generated by these techniques, including the regions of inter-
est marked by the red and white rectangles in the original
image in Fig. 1. Technique (b), which was among top 3 picks
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Table 5 Eight techniques that made to top-5 in radiologist’s opinion and their rankings by the metrics

i g b n c d f m SRCC

R 1 2 3 3 4 5 5 5 0.815

M 2 1 8 3 9 6 12 11

Table 6 Five best techniques
determined by the combined
scored of six metrics and their
rankings by the radiologist

Technique g i n e h SRCC

M 1 2 3 4 5 0.855

R 2 1 3 7 6

of the radiologist butwas not picked by themetric, also shows
very good enhancement.

The worst performing techniques, as per the radiologist
were (k) BHE, (a) BBHE, and (j) RS-ESIHE. If we look at
the sample images produced by these techniques in Fig. 1,
we can note that (k) BHE shows less enhancement in the
regions of interest marked by the radiologists but enhances
the noise in other parts. This is the reason it was picked as the
best by the metrics that rely on the enhancement of details
and contrast – entropy, EME, and EMEE. This shows that
the higher values of detail and contrast metrics in medical
imaging may be due to higher noise presence, and therefore
they should be used with caution. In Fig. 1 if we look at the
sample image of (a) BBHE, we can see that the enhancement
in the region of ground-glass opacities is less as compared
to other images and the region surrounding the soft tissues is
also suppressed. The technique (j) RS-ESIHE does not seem
to lose details; however, the enhancement in all regions is
mediocre.

5 Conclusion

Acomparative analysis of different image enhancement tech-
nique’s effect on the COVID-19 CT scans was presented.
Fourteen enhancement techniques and six quantitative met-
rics and 50 COVID-19 CT scans were used in this study.
The results were thoroughly evaluated by an experienced
radiologist. A number of observations were made in this
study. First, the evaluation metrics did not rank the enhanced
images very well; however, the combined scores of six met-
rics showed a better correlation with the true quality of the
images determined by an experienced radiologist. Second,
some images which were ranked high by the radiologists got
poor evaluation by the combined scores of six metrics, and
the vice versa. This highlights the shortcomings of the exist-
ing metrics and need for a new metric specifically designed
formedical images. Finally, certain regions inCOVID-19CT
scans are important for diagnosis. Some image enhancement

techniques achieve good overall contrast but suppress these
regions. Overall, R-ESIHE and AGCWD were evaluated
the best and the second best performing techniques, while
DSIHE and NLQ shared the third position. These obser-
vations and recommendations can help the researchers and
the medical equipment manufacturers develop more suitable
algorithms and hardware for accurate and efficient diagnosis
of COVID-19.
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