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Abstract

Szeliski et al. published an influential study in 2006 on energy

minimization methods for Markov Random Fields (MRF).

This study provided valuable insights in choosing the best op-

timization technique for certain classes of problems.

While these insights remain generally useful today, the phe-

nomenal success of random field models means that the kinds

of inference problems that have to be solved changed signif-

icantly. Specifically, the models today often include higher

order interactions, flexible connectivity structures, large label-

spaces of different cardinalities, or learned energy tables. To

reflect these changes, we provide a modernized and enlarged

study. We present an empirical comparison of 32 state-of-

the-art optimization techniques on a corpus of 2,453 energy

minimization instances from diverse applications in computer

vision. To ensure reproducibility, we evaluate all methods in

the OpenGM 2 framework and report extensive results regard-

ing runtime and solution quality. Key insights from our study

agree with the results of Szeliski et al. for the types of models

they studied. However, on new and challenging types of mod-

els our findings disagree and suggest that polyhedral meth-

ods and integer programming solvers are competitive in terms

of runtime and solution quality over a large range of model

types.

1 Introduction

Discrete energy minimization problems, in the form of fac-

tor graphs, or equivalently Markov or Conditional Random

Field models (MRF/CRF) are a mainstay of computer vision

research. Their applications are diverse and range from image

denoising, segmentation, motion estimation, and stereo, to ob-

ject recognition and image editing. To give researchers some

guidance as to which optimization method is best suited for

their MRF models, Szeliski et al. [66] conducted a compara-

tive study on 4-connected MRF models. Along with the study,

they provided a unifying software framework that facilitated

a fair comparison of optimization techniques. The study was

well-received in computer vision community and has till date

been cited more than 700 times.

Since 2006 when the study was published, the field has

made rapid progress. Modern vision problems involve more

complex models, larger datasets and use machine learning

techniques to train model parameters.

To summarize, these changes gave rise to challenging en-

ergy minimization problems that fundamentally differ from

those considered by Szeliski et al. In particular, in [66] the

models were restricted to 4-connected grid graphs with unary

and pairwise factors only, whereas modern ones include arbi-

trary structured graphs and higher order potentials.

It is time to revisit the study [66]. We provide a modernized

comparison, updating both the problem instances and the in-

ference techniques. Our models are different in the following

four aspects:

1. Higher order models, e.g. factors of order up to 300;

2. Models on ”regular” graphs with a denser connectivity

structure, e.g. 27-pixel neighborhood, or models on ”ir-

regular” graphs with spatially non-uniform connectivity

structure;

3. Models based on superpixels with smaller number of

variables;

4. Image partitioning models without unary terms and un-

known number of classes.

Inference methods have changed since 2006 as well, often

as a response to the development of challenging models. The

study [66] compared the performance of the state of the art at

that time, represented by primal move-making methods, loopy

belief propagation, a tree-reweighted message passing, and a

set of more traditional local optimization heuristics like iter-

ated conditional modes (ICM).

We augment this set with recent updates of the move-

making and local optimization methods, methods addressing

higher order models, and polyhedral methods considering the

energy minimization as an (Integer) Linear Program.

Contributions We provide a modernized experimental

study of energy minimization methods. Our study includes the

cases and algorithms studied by [66], but significantly expand

it in the scope of both used inference methods and considered

models. Both the methods and the considered models are im-

plemented and stored within a single uniform multi-platform

software framework, OpenGM 2 [4]. Together with results of
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our evaluation they are available on-line on the project web-

page [4].

Such a unification provides researchers with an easy access

to the considered wide spectrum of modern inference tech-

niques. Our study suggests which techniques are suited for

which models. The unification boosts development of novel

inference methods by providing a set of models for their com-

prehensive evaluation.

Related Inference Studies Apart from the study [66], a

number of recent articles in CV have compared inference

techniques for a small specialized class of models, such

as [3, 45, 43]. Unfortunately, the models and/or inference

techniques are often not publicly available. Even if they were

available, the lack of a flexible software-framework which in-

cludes these models and optimization techniques makes a fair

comparison difficult. Closely related is the smaller study [8]

that uses the first and now deprecated version of OpenGM 2. It

compares several variants of message passing and move mak-

ing algorithms for higher order models on mainly synthetic

models. In contrast to [8], we consider a broader range of

inference methods, including polyhedral ones, and a bigger

number of non-synthetic models.

Outside computer vision, the Probabilistic Inference Chal-

lenge (PIC) [20] covers a broad class of models used in ma-

chine learning. We include the leading optimization tech-

niques and some challenging problems of PIC in our study.

Key Insights and Suggested Future Research In compar-

ison with [66], perhaps the most important new insight is that

recent, advanced polyhedral LP and ILP solvers are compet-

itive for a wide range of problems in computer vision. For

a considerable number of instances, they are able to achieve

global optimality. For some problems they are even superior

or on a par with approximative methods in terms of overall

runtime. This is true for problems with a small number of

labels, variables and factors of low order that have a sim-

ple form. But even for some problems with a large number

of variables or complex factor form, specialized ILP and LP

solvers can be applied successfully and provide globally opti-

mal solutions. For problems with many variables and cases in

which the LP relaxation is not tight, polyhedral methods are

often not competitive. In this regime, primal move-making

methods typically achieve the best results, which is consistent

with the findings of [66].

Our new insights suggest two major areas for future re-

search. Firstly, in order to capitalize on existing ILP solvers,

small but expressive models, e.g. superpixels, coarse-to-fine

approaches, or reduction of the model size by partial optimal-

ity, should be explored and employed. Secondly, our findings

suggest that improving the efficiency and applicability of ILP

and LP solvers should and will remain an ongoing active area

of research.

A more detailed synopsis and discussion of our insights will

be given in Section 7.

The present study is solely devoted to MRF-based energy

minimization, that is to MAP estimation from a Bayesian

viewpoint. From a statistical viewpoint, inference methods

that explore posterior distributions beyond mere point estima-

tion would be preferable, but are too expensive for most large-

scale applications of current research in computer vision. Re-

cent work [58, 55] exploits multiple MAP inference in order to

get closer to this objective in a computationally feasible way.

This development underlines too the importance of research

on energy minimization as assessed in this paper.

2 Graphical Models

We assume that our discrete energy minimization problem is

specified on a factor graph G = (V,F,E), a bipartite graph

with finite sets of variable nodes V and factors F , and a set of

edges E ⊂ V ×F that defines the relation between those [41,

53]. The variable xa assigned to the variable node a ∈V lives

in a discrete label-space Xa and notation XA, A ⊂ V , stands

for a Cartesian product ⊗a∈AXa. Each factor f ∈ F has an

associated function ϕ f : Xne( f ) → R, where ne( f ) := {v ∈V :

(v, f ) ∈ E} defines the variable nodes connected to the factor

f . The functions ϕ f will also be called potentials.

We define the order of a factor by its degree |ne( f )|, e.g.

pairwise factors have order 2, and the order of a model by the

maximal degree among all factors.

The energy function of the discrete labeling problem is then

given as

J(x) = ∑
f∈F

ϕ f (xne( f )), (1)

where the assignment of the variable x is also known as the

labeling. For many applications the aim is to find a labeling

with minimal energy, i.e. x̂ ∈ argminxJ(x). This labeling is a

maximum-a-posteriori (MAP) solution of a Gibbs distribution

p(x) = exp{−J(x)}/Z defined by the energy J(x). Here, Z

normalizes the distribution.

It is worth to note that we use factor graph models instead of

Markov Random Field models (MRFs), also known as undi-

rected graphical models. The reason is that factor graphs rep-

resent the structure of the underlying problem in a more pre-

cise and explicit way than MRFs can, cf. [41].

2.1 Categorization of Models

One of the main attributes we use for our categorization is the

meaning of a variable, i.e. if the variable is associated with a

pixel, superpixel or something else. The number of variables

is typically related to this categorization.

Another modeling aspect is the number of labels the vari-

able can take. Note that the size of the label-space restricts

the number of methods that are applicable, e.g. QPBO or

MCBC can be used when each variable takes no more than

two values. We also classify models by properties of the fac-

tor graph, e.g. average number of factors per node, mean de-

gree of factors, or structure of the graph, e.g. grid structure.

Finally, the properties/type of the functions embodied by the

factors are of interest, since for some subclasses specialized

optimization methods exists, e.g. metric energies [66] or Potts

functions [33].
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Figure 1: Toy-model constructed by Algorithm 1. The model

include 3 variables with 2,3, and 2 labels. The unary factors

of variable 0 and 2 share the same function.

2.2 OpenGM 2: A General Modeling Frame-

work

For this comparison we use OpenGM 2 [4] a C++ library for

discrete graphical models. It provides support for models of

arbitrary order, allows the use of arbitrary functions and shar-

ing of functions between factors. OpenGM decouples opti-

mization from the modeling process and allows to store mod-

els in the scientific HDF5 format. That is, all model instances

stored into a single file and no application specific code has

to be released/used to make models available or do evaluation

on those. Within OpenGM 2 we provide several own imple-

mentations of inference methods in native C++ code as well

as wrappers for several existing implementations, and making

those available in a unified framework.

Making new model instances or optimization methods

available within this framework is rather simple: Fig. 1 illus-

trates a toy problem with 3 variables having 2,3, and 2 states

respectively. The two first order factors represent the same

function mapped to different variables. Alg. 1 shows how this

is constructed in OpenGM 2. In the first step (lines 1-2) a

Algorithm 1 Creating a model in OpenGM 2

1: statespace = [ 2 3 2 ]

2: gm = createModel<+>(statespace)

3: fid1 = gm.addFunction( [2], [1.4 0] )

4: fid2 = gm.addFunction( [2 3], [1 3 0; 4 2 5.1] )

5: fid3 = gm.addFunction( [2 2], Potts(0,3.2) )

6: gm.addFactor( [0] , fid1 )

7: gm.addFactor( [2] , fid1 )

8: gm.addFactor( [0,1] , fid2 )

9: gm.addFactor( [0,2] , fid3 )

10: storeModel( gm ,"model.h5")

graphical model with the variables and corresponding label

space is set up. When constructing a model we also fix the

operation, in this case addition (+), which couples the single

terms to a global objective. Then (line 3-5) the three func-

tions are added. Note that OpenGM 2 allows special imple-

mentations for functions, e.g. for Potts functions. In the last

step (line 6-9) factors are added to the model and connected to

variables (first parameter) and functions (second parameter).

Finally the model is stored to file (line 10). OpenGM 2 al-

lows to reuse functions for different factors, which saves a lot

of memory if e.g. the same regularizers are used everywhere.

We call this concept extended factor graphs.

Given a problem defined on an (extended) factor graph one

can find the labeling with the (approximately) lowest / high-

est energy. Alg. 2 illustrates how to approach this within

OpenGM 2. After loading a model (line 1), one initializes an

Algorithm 2 Inference with OpenGM 2

1: gm = loadModel("model.h5")

2: InferenceMethod<min,+>::Parameter para

3: InferenceMethod<min,+> inf( gm , para )

4: Visitor vis

5: inf.infer(vis)

6: x = inf.arg()

7: vis.journalize("log.h5")

inference object (lines 2-3). Inference is always done with re-

spect to an accumulative operation such as minimum (min)

or maximum. Optionally, one can set up a visitor object (line

4), which will take care of logging useful information during

optimization. The core inference is done within the method

”infer” (line 5). After that one can get the inferred labeling

(line 6). Additionally, the visitor can give informations about

the progress the method has made over time.

For a new inference method, one needs to implement only

constructor and methods infer() and arg(). Tutorials for the

supported languages can be found on the project website [4].

3 Benchmark Models

Table 1 gives an overview of the models summarized in this

study. Note that, some models have a single instance, while

others have a larger set of instances which allows to derive

some statistics. We now give a brief overview of all mod-

els. Further specifics in connection with inference will be

discussed in Sec. 6. A detailed description of all models is

available online.

3.1 Pixel-Based Models

For many low-level vision problems it is desirable to make

each pixel a variable in the model. A typical property of such

models is that the number of variables is large. For 2D im-

ages, where variables are associated to pixels in a 2D lattice, a

simple form of a factor graph model connects each pixel with

its four nearest neighbors (Fig. 2a) using a pairwise energy.

This simple form is popular and was the sole subject of the

study [66]. In our study we incorporated the models mrf-

stereo, mrf-inpainting, and mrf-photomontage from [66]

with three, two and two instances, respectively. The pairwise

terms of this models are truncated convex functions on the

label space for mrf-stereo and mrf-inpainting and a general

pairwise term for mrf-photomontage.

Additionally, we used three models which have the same

4-connected structure. For inpainting problems [49] inpaint-

ing-N4 and color segmentation problems [49] color-seg-N41

1The inpainting-N4/8 and color-seg-N4/8-models were originally used in

variational approaches together with total variation regularizers [49]. A com-

parison with variational models is beyond the scope of this study.
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modelname # variables labels order structure functiontype loss-function references
P

ix
el

mrf-stereo 3 ∼100000 16-60 2 grid-N4 TL1, TL2 PA2 [66]

mrf-inpainting 2 ∼50000 256 2 grid-N4 TL2 CE [66]

mrf-photomontage 2 ∼500000 5,7 2 grid-N4 explicit - [66]

color-seg-N4/N8 2x9 76800 3,12 2 grid-N4/N8 potts+ - [49]

inpainting-N4/N8 2x2 14400 4 2 grid-N4/N8 potts+ - [49]

object-seg 5 68160 4–8 2 grid-N4 potts+ PA [3]

color-seg 3 21000,424720 3,4 2 grid-N8 potts+ - [3]

dtf-chinese-char 100 ∼ 8000 2 2 sparse explicit PA [54]

brain-3/5/9mm 3x4 400000-2000000 5 2 grid-3D-N6 potts+ - [17]

inclusion 1 1024 4 4 grid-N4 + X g-potts PA [34]

S
u

p
er

p
ix

el scene-decomp 715 ∼ 300 8 2 sparse explicit PA [26]

geo-surf-seg-3 300 ∼ 1000 3 3 sparse explicit PA [23, 28]

geo-surf-seg-7 300 ∼ 1000 7 3 sparse explicit PA [23, 28]

P
a

rt
it

io
n

correlation-clustering* 715 ∼ 300 ∼300 ∼300 sparse potts∗ VOI [38]

image-seg* 100 500-3000 500-3000 2 sparse potts∗ VOI [6]

image-seg-o3* 100 500-3000 500-3000 3 sparse potts∗ VOI [6]

knott-3d-seg-150/300/450* 3x8 ∼ 800,5000,16000 ∼ 800–16000 2 sparse potts∗ VOI [10]

modularity-clustering* 6 34-115 34-115 2 full potts∗ - [16]

O
th

er

matching 4 ∼ 20 ∼20 2 full or sparse explicit MPE [45]

cell-tracking 1 41134 2 9 sparse explicit - [36]

protein-folding 21 33-1972 81-503 2 full explicit - [72, 20]

protein-prediction 8 14258-14441 2 3 sparse explicit - [30, 20]

Table 1: List of datasets used in the benchmark. Listed properties are number of instances (#), variables and labels, the order and

the underlying structure. Furthermore, special properties of the functions are listed; truncated linear and squared (TL1/2), Potts

function with positive (potts+) and arbitrary (potts∗) coupling strength, its generalization to higher order (g-potts) and functions

without special properties (explicit). For some models we have an additional loss function commonly used for this applica-

tion, namely: 2pixel-accuracy (PA2), color-error (C-E), pixel-accuracy (PA), variation of information (VOI), and geometric error

(MPE). For the other models no ground truth or loss function was available.

the task is to assign each pixel one color out of a preselected

finite set. For the object segmentation problems [3] object-seg

labels correspond to predefined object classes. Each single in-

stance has the same small set of labels for all its variables and

Potts terms are used to penalize the boundary length between

different classes. In inpainting-N4 and color-seg-N4 this reg-

ularizer is the same for all factors. In object-seg, it depends on

the image-gradient. The unary terms measure the similarity to

predefined class-specific color models.

From a modeling point the 4-neighborhood is quite re-

stricted, important relations cannot be modeled by a simple

grid structure in many applications. Therefore, models with

denser structures (Fig. 2b) as well as higher order models

(Fig. 2c) have been introduced in the last decade. For instance,

better approximations of the boundary regularization were ob-

tained by increasing the neighborhood [14]. The datasets

inpainting-N8 and color-seg-N8 [49] include the same data-

term as inpainting-N4 and color-seg-N4 but approximate the

boundary length using an 8-neighborhood (Fig. 2b). Another

dataset with an 8-neighborhood and Potts terms depending on

the image-gradient is color-seg by Alahari et al. [3].

We also use a model with a 6-neighborhood connectivity

structure in a 3D-grid. It is based on simulated 3D MRI-brain

data [17], where each of the 5 labels represent color modes

(a) Grid N4 (b) Grid N8 (c) Grid HO

Figure 2: Common pixel based models are grid structured

with respect to a four (a) or eight (b) neighborhood-structure.

Some models also use couplings to remoter variables. Also

higher order structures (c) have been successfully used for

modeling.

of the underlying histogram and boundary length regulariza-

tion [14]. We let the simulator generate 4 scans for 3 different

slice-thickness. These models are denoted by brain-9mm,

brain-5mm, and brain-3mm. These replace the brain dataset

used in [31].

We also consider the task of inpainting in binary images of

Chinese characters, dtf-chinesechar [54]. Potentials, related

to the factors of these models, are learned from a decision

tree field. Although each variable has only two labels, it is
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(a) pixel based (b) superpixel based

Figure 3: While in pixel based models (a) each variable/node

is assigned to one pixel, in superpixel based models (b) each

variable/node is assigned to a set of pixels forming the su-

perpixel. As a consequence the number of variables becomes

smaller and the graph-structure is usually no longer regular.

connected via pairwise factors to 27 other variables selected

during learning from a 17× 17 window. Such an increased

connectivity and discriminative learned potential make the re-

sulting inference problem highly non-sub-modular and there-

fore challenging.

Pixel based models that include higher-order terms are re-

ally rare. The main reason for this is that pixel based models

usually have a large number of variables, such that a system-

atical enrichment of the model with higher-order terms often

becomes intractable. To cope with this, higher order models

in computer vision often include terms that can be reduced

linearly to a second order model by including a small num-

ber of auxiliary variables and additional factors, e.g. label-

ing costs [19] and Pn-Potts [40] terms. Our benchmark in-

cludes one model called inclusion that has a fourth-order term

(Fig. 2c) for each junction of four pixels that penalizes a split-

ting of the boundary, as suggested in [34].

3.2 Superpixel-Based Models

In superpixel-based models, all pixels belonging to the same

superpixel are constrained to have the same label, as shown

in Fig. 3. This reduces the number of variables in the model

and allows for efficient inference even with more complex,

higher order factors. However, the grouping of pixels is an

irreversible decision and it is hard to treat grouped pixels dif-

ferently later on.

The models we consider in this regime are used for se-

mantic image segmentation. The number of superpixels vary

between 29 and 1133 between the instances. In the scene-

decomposition-dataset [26] every superpixel has to be as-

signed to one of 8 scene classes. Pairwise factors between

neighboring superpixels penalize unlikely label-pairs. The

datasets geo-surf-3 and geo-surf-7 [23, 28] are similar but

have additional third-order factors that enforce consistency of

labels for three vertically neighboring superpixels.

3.3 Partition Models

Beyond classical superpixel models, this study also considers

a recent class of superpixel models which aim at partitioning

an image without any class-specific knowledge [38, 6, 9, 10].

These use only similarity measures between neighbored re-

gions encoded by (generalized) Potts functions with positive

and negative coupling strength. Since the partition into iso-

lated superpixels is a feasible solution, the label space of each

variable is equal to the number of variables of the model, and

therefore typically very large, cf. Tab. 1.

For unsupervised image segmentation we consider the

probabilistic image partition dataset image-seg [6], which

contains factors between pairs of superpixels, and its exten-

sion image-seg-o3 [6] that also uses a learned third-order

prior on junctions. The 3d neuron segmentation model 3d-

neuron-seg used in [31] are replaced by 3 datasets knott-3d-

seg-150, knott-3d-seg-300, and knott-3d-seg-450 with 8 in-

stances each. The number denotes the edge length of the 3D

volume. These datasets allow a better evaluation of the scala-

bility of methods and are generated from sub-volumes of the

model described in [9, 10].

The hyper-graph image segmentation dataset correlation-

clustering [38] includes higher order terms that favor equal

labels for sets of superpixels in their scope if those are vi-

sually similar. These sets are pre-selected and incorporate

higher level proposals in the objective. The partition models

are completed by some network clustering problems modu-

larity-clustering [16] from outside the computer vision com-

munity. Contrary to the previous ones, these instances include

a fully connected structure.

3.4 Other Models

We also consider computer vision applications that assign

variables to keypoints in the image-data.

The first model deals with the non-rigid point matching

problem [45] matching. Given two sets of keypoints the task

is to match these such that the geometric relations are kept.

The model instances include no unary terms, whereas the pair-

wise terms penalize the geometric distortion between pairs of

points in both point-sets.

The second application is cell-tracking [36]. Variables cor-

respond to the assignments of cells in a video sequence, which

need to be consistent over time. Since a track can either be ac-

tive or dormant, the variables are binary. Higher-order factors

are used to model the likelihood of a ”splitting” and ”dying”

event of a cell.

Finally, we include models from outside computer vision,

taken from the Probabilistic Inference Challenge (PIC) [20]

into the corpus. The protein-folding instances [72] have a

moderate number of variables, but are fully connected and

have for some variables huge label spaces. The protein-pre-

diction instances [30] include sparse third-order binary mod-

els. For both dataset we include only the hardest ones, which

were used also in [20].
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Combinatorial

Methods

CombiLP

AD3-BB

ILP

MCI

MCBC

AStar

BRAOBB

Linear Program-

ming Relaxations

DD-Bundle

DD-SG

TRWS

QPBO

MCR

LP-LP

AD3

MPLP

ADSAL

Message PassingLBP

BPS

TRBP

Move Mak-

ing Methods

Kerninghan

Lin FastPD

α-Exp

αβ -Swap

α-Fusion

Lazy Flipper

ICM

Max-Flow

Based Methods

Figure 4: The inference methods used in this benchmark can be roughly grouped into four classes. These are (1) methods

based on linear programming, (2) methods based on combinatorial optimization, which are often strongly related to linear

programming, (3) methods based on move-making procedures which iteratively improves the labeling, and (4) methods based

on message passing – often motivated by linear programming and variational optimization. Some methods make use of max-

flow methods for fast optimization of binary (sub-)problems, which is also sketched in the diagram. A fifth class of methods are

methods based on sampling, which are not covered in this study since they are rarely used in computer vision. For hard models

they might perform reasonable, with a certain amount of tuning of involved hyper-parameters and sampling procedures, as shown

for the dtf-chinesechar model.

For some of the inference algorithms we use different implementations. Even when algorithmically identical, they often vary in

speed because of implementation differences and specialized algorithms. We always try to use the fastest one and use the prefix

ogm- and mrf- to state that the used implementation was [5] or [66], respectively. For other methods the core of the implementation

has been provided by the original authors of the methods and we wrapped them within OpenGM 2.
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4 Inference Methods

We evaluate a large number of different inference methods.

The selection of methods is representative of the state of the

art in the field. As shown in Fig. 4, we can cluster the methods

into four groups: (i) combinatorial methods that provide op-

timal solution if no time-constraints are given, (ii) methods

solving linear programming relaxations, providing a lower

bound, (iii) move-making methods that iteratively improve a

feasible labeling, and (iv) message passing methods that per-

form local calculations between nodes. Furthermore, a subset

of methods leverage max-flow problems; we call these meth-

ods max-flow-based methods. In this study we do not con-

sider inference algorithms based on Monte Carlo simulation;

only in one data set (dtf-chinesechar) we report results ob-

tained from simulated annealing. In general these methods

converge slowly and may not be practical for most computer

vision applications. In addition they often require careful tun-

ing of parameters such as the temperature schedule. Because

Monte Carlo methods are not very popular in computer vision,

we are not able to give a fair comparison and skip them in our

current study. We now give a brief overview of the considered

methods.

4.1 Polyhedral Methods

A large class of algorithms solve a linear programming relax-

ation (LP) of the discrete energy minimization problem. An

advantage of these methods is that they also provide a lower

bound for the optimum, but on the other hand can converge to

non-integer solutions, which need to be rounded to an integer

solution.

Perhaps the most commonly used relaxation is the LP relax-

ation over the local polytope [69, 64, 70]. We can solve small

instances using off-the-shelf LP-solvers e.g. CPLEX [18] as

used in LP-LP [5]. For large problems this is no longer pos-

sible and special solvers have been proposed that optimize a

dual formulation of the problem. A famous example is the

block-coordinate-ascent method TRWS [42], which, how-

ever, can get stuck in suboptimal fix points.

In contrast, subgradient methods [46, 32] based on dual de-

composition (DD) [46, 27] with adaptive stepsize DD-SG-

A and bundle methods [32] with adaptive DD-Bundle-A or

heuristic DD-Bundle-H stepsize are guaranteed to converge

to the optimum of the relaxed dual2. In both cases primal

integer solutions are reconstructed from the subgradients. Be-

cause dual decomposition methods can be sensitive to the

stepsize, we evaluate different stepsize-rules. While a more

detailed evaluation is beyond the scope of this works, we con-

sider beside our base line stepsize-rule also stepsizes scaled

by 10 and 10−1, denoted with postfix + and −, respectively.

Other methods based on dual decomposition are Alter-

nating Directions Dual Decomposition AD3 [51], the Adap-

tive Diminishing Smoothing ALgorithm ADSAL [63], which

smooth the dual problem to avoid local suboptimal fix-points,

2Here we consider spanning trees as subproblems such that the relaxation

is equivalent to the local polytope relaxation.

and Max-Product Linear Programming MPLP [24]. For MP-

LP an extension MPLP-C [65] exists that iteratively adds vio-

lated constraints over cycles of length 3 and 4 to the problem.

This leads to a tighter relaxations than the local polytope re-

laxation.

Algorithm 3 Dual-Decomposition

1: Decompose problem: E(x|θ) = ∑i Ei(x
i|θ i) s.t.xi ≡ x

2: repeat

3: Solve subproblems: ∀i : xi∗ = argminxi Ei(x
i|θ i +λ i)

4: Update dual variables: ∀i : λ i = λ i +ξ i(xi∗, . . . ,xn∗)
5: Ensure by projection that: ∑i λ i ≡ 0

6: until Stopping condition is fulfilled

The idea of most dual methods is sketched in Alg. 3. Start-

ing with a decomposition of the original into several tractable

subproblems, the equality constraints xi ≡ x are dualized by

means of Lagrange multipliers. The subgradients, which can

be obtained by solving the subproblems, are used to update the

dual variables λ . If the update has moved λ to a point outside

the feasible set an additional projection onto the feasible set is

required. This step can also be understood as a re-parameteri-

zation of the problem, with the goal that the subproblems will

agree in their solutions, i.e. xi ≡ x j. The different dual meth-

ods mainly distinguish in the choice of decomposition (Alg. 3

line 1) and the used update strategy ξ i for dual variables (Alg.

3 line 4).

For binary second order problems the QPBO method [60]

can be used to find the solution of the local polytope relaxation

in low order polynomial time. It reformulates the LP as a

network flow problem, which is then solved efficiently. For

Potts models we also compare to a cutting-plane algorithm,

MCR [33], that deals with a polynomially tractable relaxation

of the multiway cut polytope and the multicut polytope. For

positive coupling strength the former polytope is equivalent to

the local polytope relaxation [56, 52]. We compare different

types of relaxations and separation procedures as described

in [35]3.

4.2 Combinatorial Methods

Related to polyhedral methods are Integer Linear Programs

(ILPs). These include additional integer constraints and guar-

antee global optimality, contrary to the methods based on LP-

relaxations which may achieve optimality in some cases. So-

lutions of ILPs are found by solving a sequence of LPs and

either adding additional constraints to the polytope (cutting

plane techniques) as sketched in Alg. 4, or branching the

polytope or discrete candidate-set into several polytopes or

candidate-sets (Branch and Bound techniques), sketched in

Alg. 5. Inside Branch and Bound methods the cutting plane

methods can be applied to get better bounds which allow to

exclude subtrees of the branch-tree earlier.

We evaluate four state-of-the-art general combinatorial

solvers. We wrapped the off-the-shelf ILP solver from IBM

3This includes terminal constraints TC, multi-terminal constraints MTC,

cycle inequalities CC and facet defining cycle inequalities CCFDB as well as

odd-wheel constraints OWC.
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Algorithm 4 Cutting-Plane

1: Initial Relaxation: minµ∈P〈θ ,µ〉
2: repeat

3: Solve current relaxation: µ∗ = argminµ∈P〈θ ,µ〉
4: Add constraints violated by µ∗ to P

5: until No violated constraints found

Algorithm 5 Branch and Bound

1: Initial Problem: minx∈X E(x), S = {X}
2: repeat

3: Select branch node: X̃ with X̃ ∈ S

4: Split selected node: X̃1, . . . , X̃n with X̃ = X̃1 ∪ . . .∪ X̃n

5: Branch: S = (S\ X̃) ∪ X̃1 ∪ . . .∪ X̃n

6: Bound: ∀i = 1, . . . ,n : BX̃ i
≤ minx∈X̃ i E(x)

7: Solution (if possible): ∀i = 1, . . . ,n : V X̃ i
=

minx∈X̃ i E(x)
8: until ∃s ∈ S : V s ≤ mins∈S Bs

CPLEX [18] by OpenGM 2 [5] and denoted by ILP. For

the best performing method in the PIC 2011, called breath-

rotating and/or branch-and-bound [57] (BRAOBB), we ob-

serve for several instances that the optimality certificate, re-

turned by the algorithm, is not correct. We reported this

to the authors, who confirmed our observations; we chose

to not report the invalid bounds returned by BRAOBB. We

evaluate three variants: BRAOBB-1 uses simple and fast pre-

processing, BRAOBB-2 uses stochastic local search [29] to

quickly find a initial solution, and BRAOBB-3 is given more

memory and running time to analyse the instances during

pre-processing. Bergtholdt et al. [12] suggested a tree-based

bounding heuristic for use within A-star search [12]; we call

this method A-Star. This Branch & Bound method does not

scale to large problems. The same is true for the Branch &

Bound extension of AD3, which uses upper and lower bounds

of AD3 for bounding; we denote this extended method by

AD3-BB [51].

The recently proposed CombiLP solver [61] utilizes the

observation that the relaxed LP solution is almost everywhere

integral in many practical computer vision problems. It con-

fines application of a combinatorial solver to the typically

small part of the graphical model corresponding to the non-

integer coordinates of the LP solution. If consistence between

the LP and ILP solution cannot be verified the non-integral

subparts grow and the procedure repeats. This allows to solve

many big problems exactly. If the combinatorial subprob-

lem becomes too large, we return bounds obtained by the LP

solver.

To reduce the large memory requirements, we also con-

sider the integer multicut-representation introduced by Kap-

pes et al. [33]. This multicut solver with integer constraints

(MCI) can only be applied for functions which include terms

that are either invariant under label permutations or of the

first-order. As for MCR similar separation-procedures are

available. Additionally, we can take advantage from integer

solutions and use more efficient shortest-path methods, noted

by an I within the separation acronym.

We also consider a max-cut branch and cut solver MCBC

for pairwise binary problems, which could not be made pub-

licly available due to license restrictions.

4.3 Message-Passing Methods

Message passing methods are simple to implement and can be

easily parallelized, making them a popular choice in practice.

The basic idea is sketched in Alg. 6. In the simplest case

messages are defined on the edges of the factor graph, better

approximations can be obtained by using messages between

regions. Messages can be understood as a re-parameterization

of the model, such that local optimization becomes glob-

ally consistent. Polyhedral methods can often be reformu-

Algorithm 6 Message Passing

1: Setup: ∀e ∈ E : initialize a message for each direction.

2: repeat

3: Update: ∀e ∈ E : update the message given the other

messages.

4: until no significant change of messages

5: Decoding: Re-parameterize the original problem by the

messages and decode the state locally or greedy.

lated as message passing where the messages represent the

re-parameterization of the models, as in TRWS and MPLP.

Its non-sequential pendant TRBP [69] is written as a message

passing algorithm. TRBP can be applied to higher order mod-

els but has no convergence guarantees. Practically it works

well if sufficient message damping [69] is used. Maybe the

most popular message passing algorithm is loopy belief prop-

agation (LBP). While LBP converges to the global optimum

for acyclic models, it is only a heuristic for general graphs,

which turns out to perform reasonably well in practice [73].

We evaluate the parallel (LBP) and sequential (BPS) versions

from [66], as well the general higher order implementation us-

ing parallel updates from [5]. For non-sequential methods we

use message damping.

Another advantage of message passing methods is that they

can be easily parallelized and further speeded up for the cal-

culation of the message updates in special cases, e.g. when

distance transform [21] is available.

4.4 Move-Making Methods

Another class of common greedy methods applies a sequence

of minimizations over subsets of the label space, iteratively

improving the current labeling. The corresponding subprob-

lems have to be tractable and the current label has to be in-

cluded into the label-subset over which the optimization is

performed, cf. Alg. 7.

The α-β -Swap-Algorithm [15, 44] (α-β -Swap) selects two

labels, α and β , and considers moves such that all variables

currently labelled α or β are allowed to either remain with

their current label or change it to the other possible label

within the set {α,β}. In each round all possible pairs of labels
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Algorithm 7 Move Making Methods

1: Setup: Select an initial labeling x∗ ∈ X

2: repeat

3: Select Move: X̃ ⊂ X s.t. x∗ ∈ X̃

4: Move/Update: x∗ = argminx∈X̃ E(x)
5: until No more progress is possible

are processed. For each label pair the corresponding auxil-

iary problems are binary and under some technical conditions

submodular, hence they can be solved efficiently by max-flow

algorithms, see [68] for a recent review.

Alternatively, the same authors [15, 44] suggested the α-

Expansion algorithm (α-Exp). This move making algorithm

selects a label α and considers moves which allows all vari-

ables to either remain with their current label or to change

their label to α . In each round α is sequentially assigned to

all possible labels. As for α-β -Swap the auxiliary problem in

7 line 3 can be reduced to a max-flow problem under some

technical conditions.

The FastPD algorithm [47] is similar to α-Expansion in

the way moves are selected and evaluated. Additionally, the

dual solution of the max-flow solver is used to re-parameterize

the objective function. This leads to significant speed up and

allows as a by-product to calculate a lower bound by using the

re-parameterized objective. However, FastPD might get stuck

in suboptimal fix-points and will not reach the optimal dual

objective.

While these three methods are based on solvable max-flow

subproblems, there are other algorithms which perform local

moves. The most prominent algorithm in this line is the it-

erated conditional modes algorithm [13] (ICM), which itera-

tively improves the labeling of a single variable by keeping the

other fixed. Andres et al. [7] extend this idea to an exhaustive

search for all sets of variables of a given size k. While this is

intractable in a naive implementation, they introduce several

data-structures to keep track of the changes and end up with

the Lazy Flipper. As with ICM this method also guarantees

to converge to a local fix-point that can only be improved by

changing more than 1 or k variables for ICM and Lazy Flipper,

respectively.

We also consider generalizations of α-Expansion for gen-

eral problems and higher order factors, which is a special case

of the class of fusion-methods [50] and therefore called α-

Fusion. As proposal oracles we use labelings with the same

label for all variables. While other proposal-oracles will per-

form better for some models, finding better oracles is appli-

cation dependent and beyond the scope of this work, but in-

deed very interesting. The auxiliary problems are solved by

QPBO, which provides partial optimality, and variables with

non-integer solutions are not changed within the move. In or-

der to deal with higher-order models we apply the reduction

techniques of Fix et al. [22] to the auxiliary problems.

Another method specialized for partition problems is the

Kernighan-Lin algorithm [37] (KL), which iteratively merges

and splits regions in order to improve the energy.

4.5 Rounding

Linear programming relaxations and message passing meth-

ods typically do not provide a feasible integer solution. They

provide either a fractional indicator vector or pseudo-min-

marginals. The procedure to transform those into a feasible

integer solution is called rounding. The final quality of the

integer solution does also depend on the used rounding proce-

dure.

The simplest rounding procedure is to round per variable

based on the first order indicator function or marginal denoted

by ba

∀v ∈V : x∗v = optxv∈Xv
bv(xv) (2)

While this is simple and can be performed efficiently it is very

brittle and might fail even for tree-structured models by mix-

ing two modes. Ideally, decisions should not be made inde-

pendently for each variable. One popular option is to condi-

tion eq. (2) on already rounded variables

∀v∈V : x∗v = optxv∈Xv ∑
f∈ne(v)

and all nodes ne( f )\{v} are fixed

b f (xv,x
∗
ne( f )\v) (3)

Different implementations use different rounding procedures,

e.g. MCR uses a de-randomization procedure [35] which gives

additional guarantees, the implementation of MPLP applies

different rounding schemes in parallel and selects the best per-

forming one. However, since the rounding problem can be as

hard as the original problem, which is NP-hard, there will al-

ways be cases in which one rounding method performs worse

than another. It is important to understand that when we com-

pare the objective value of the rounded integer solution of a

method we implicitly also evaluate the rounding method used.

4.6 Post- and Pre-Processing

By combining mentioned solvers or augmenting them with

other procedures, the further ”meta-solvers” can be generated.

The CombiLP is one example for this. It combines TRWS

with ILP.

Alahari [2] suggested a pre-processing procedure that first

computes the optimal states for a subset of variables in poly-

nomial time and then continues with the remaining smaller

problem with more involved solvers. In [2] this was proposed

in order to improve the runtime, and [35] showed that using

this preprocessing can make combinatorial methods as effi-

cient as approximate methods. In [35] the authors also suggest

to treat acyclic substructures and connected components sepa-

rately. We combine different methods with this preprocessing

denoted by the postfix -ptc. For Potts models we make use

of Kovtun’s method [48] to efficiently obtain partially optimal

solutions.

An alternative approach to reduce the problem size is to

group variables based on the energy function [39]. However,

this has two major drawbacks; first it is not invariant to model

reparameterizations, and second the reduced problem is an ap-

proximation of the original problem.

Another meta-solver we considered is InfAndFlip, which

first runs a solver to obtain a good starting point for the Lazy
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Figure 5: Logarithmically compressed value and bound plots for six different implementations of TRWS for the same instance.

Using distance transform for Potts models always leads to a speed up compared to standard updates. The mrf-TRWS which is spe-

cialized for grids is fastest, followed by the original implementation TRWS which requires the same regularizer type everywhere,

and ogm-TRWS which only restricts the model to be of second order.

Flipper. Lazy Flipping never degrades the energy, but relies

heavily on its initialization. We denote lazy flipping post-

processing by -LFk, where k specifies the search depth.

4.7 Comparability of Algorithms and their Im-

plementations

When we empirically compare algorithms, we really com-

pare specific implementations of said algorithms, which are

effected by domain-specific implementation choices. It is im-

portant to keep in mind that a general implementation will

usually be much slower than a specialized one. The reason

is that specialized efficient data structures can be used, more

efficient calculations for subproblems become feasible, inter-

faces can be simplified, compiler optimization (e.g. loop un-

rolling) becomes applicable and many more or less obvious

side-effects can show up.

Our study includes implementations that follow two differ-

ent paradigms; very fast, specialized but less flexible code,

e.g. TRWS and BPS of Vladimir Kolmogorov or FastPD of

Nikos Komodakis, and very general and flexible but less fast

code, e.g. the OpenGM 2 implementations of Dual Decompo-

sition or LBP.

While both paradigms have merit, it becomes challenging

to quantify their relative performance in a fair manner. Due to

the algorithmic complexity we expect that for some methods a

speedup of a factor of ≈ 100 for specialized implementations

may be possible.

Specialized solvers are very fast for problem classes they

support and were designed for, but often are not easily gener-

alized to other classes and at that point restrict the degrees of

freedom of modeling. On the other hand more general solvers

are able to solve a large class of models, but are often or-

ders of magnitudes slower. Specifically, some solvers are spe-

cialized implementations for a certain class of problems (e.g.

grids with Potts functions), while others make no assumptions

about the problem and tackle the general case (i.e. arbitrary

functions and order).

As one of several possible examples Fig. 5 shows six dif-

ferent implementations of TRWS. The original TRWS imple-

mentation for general graphs (TRWS) and grid graphs (mrf-

TRWS) by Vladimir Kolmogorov and the TRWS implemen-

tation provided in OpenGM 2 (ogm-TRWS). Each is imple-

mented for general functions and for Potts functions using

distance transform [21].

4.8 Algorithmic Scheduling

A number of algorithms depend on an explicit or implicit or-

dering of factors, messages, labels, etc. While the detailed

evaluation of such implementation details or implicit parame-

ters is beyond the scope of this work, we describe the choices

in our implementations and possible alternatives for the sake

of completeness.

For α-Expansion and αβ -Swap we can chose the default

order of the moves. Recently, Batra and Kohli [11] have

shown, that an optimized ordering can often improves the re-

sults. However, there are no theoretical guarantees that this

algorithm will produce an ordering strictly better than the de-

fault one. Similarly, the order of moves has a strong impact

on the quality of solutions and runtime in the case of other

move-making algorithms such as ICM and Lazy-Flipper.

Sequential message passing methods depend on the order-

ing of the messages. This ordering can be predefined or dy-

namically selected during optimization, as suggested by Tar-

low et al. [67]. Parallel message passing methods do not

require an ordering, but typically underperform compared

to asynchronous algorithms and often require damping to

achieve convergence. While empirically sequential methods

perform better, they are not as easy to parallelize.

For methods using cutting plane techniques and branch and

bound, the cutting plane management/scheduling [71] and

branching strategy [1] define an additional degree of freedom,

respectively. We always use the default option of the methods

which provide in average good choices.

For our experiments we use the alphabetical ordering on the

model or the ordering used in external code by default.

4.9 Stopping Condition

Another critical point which has to be taken into account is the

stopping condition used. Not all methods have a unique stop-

ping condition. For example move making methods stop if

no move from the considered set of moves gives an improve-

ment. This is practical only if the set of possible moves is

manageable, for example if it can be optimized over exactly.
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Figure 6: Illustration of temporal changes of the objectives

within linear programming frameworks. LP solves either the

relaxed problem (blue) or its dual problem (red). Under mild

technical condition their optimal value is identical, i.e. the du-

ality gap vanishes. Extracting a primal solution from a dual is

non-trivial and typically the solution is non-integral. Round-

ing to a feasible integer solution causes an additional integral-

ity gap.

In order to deal with the accuracy of floating-point arith-

metic [25], linear programming approaches often solve the

problem up to a certain precision, here set to 10−7. Solving

the LP to a higher precision requires more runtime, but may

not improve (or even change) the final integer solution since

LPs typically involve a rounding procedure.

For LP solvers that work on the dual problem like TRWS

or MPLP it is non-trivial to evaluate the duality gap. To over-

come this problem Savchynskyy and Schmidt [62] propose a

method to generate reasonable feasible primal estimates from

duals and so get an estimate on the primal-dual-gap.

Unfortunately, in theory even small changes in the primal-

dual-gap can have large impact on the integrality gap. More-

over, the method of Savchynskyy and Schmidt is so far not

available for all algorithms, so we use the total gap (integral-

ity + duality gap) as our stopping condition, cf. Fig. 6.

Another option is to check if the changes made by the

method are numerically relevant. If for example the largest

change of a message of LBP is smaller than 10−5 it is more

likely to run into numerical problems than to make further im-

provements. The same holds true if the improvements of the

dual within TRWS become too small.

We will use the following additional stopping conditions

for all algorithms: (1) A method is stopped after 1 hour. (2) A

method is stopped if the gap between the energy of the current

integer solution and the lower bound is smaller than 10−5. (3)

A method is stopped if the numerical changes within its data

is smaller than 10−7.

With this additional stopping condition, we obtain better

numerical runtimes for some methods, e.g. TRWS and LBP,

as reported in [31] without worsening the other results. Such

methods suffer when a large number of iterations is used as

the only stopping-condition.

5 Experimental Setup

The hardware platform for this study is the Intel Core i7-

2600K 3.40GHz CPU, equipped with 16 GB of RAM4. In

order to minimize the effect of operating system activity on

runtime measurements, experiments were conducted on only

three of the four cores of a CPU. No multi-threading and no

hyper-threading was used. An evaluation of the parallelizabil-

ity of optimization algorithms or the runtime of parallel im-

plementations is beyond the scope of this study.

The software platform for this study is Version 2.3.1 of the

C++ template library OpenGM [4, 5]. OpenGM imposes no

restrictions on the graph or functions of a graphical model and

provides state-of-the-art optimization algorithms, custom im-

plementations as well as wrappers around publicly available

code. In the tables below, prefixes indicate the origin of each

particular implementation, ogm [5] and mrf [66]. The lack of

a prefix indicates that code was provided by the corresponding

author and wrapped for use in OpenGM. All graphical models

considered in this study are available from [4] in the OpenGM

file format, a platform independent binary file format built on

top of the scientific computing standard HDF5.

To make runtime measurements comparable, we exclude

from these measurements the time for copying a graphical

model from the OpenGM data structure into a data structures

used in wrapped code, the time spent on memory allocation

in the initialization phase of algorithms, as well as the over-

head we introduce in order to keep track, during optimization,

of the current best integer solution and, where available, the

current best lower bound. To keep resources in check, every

algorithm was stopped after one hour if it had not converged.

Obviously, not every implementation of every algorithm is

applicable to all graphical models. We made our best effort

to apply as many algorithms as possible to every model. As

a consequence of this effort, the study compares implemen-

tations of algorithms which are highly optimized for and re-

stricted to certain classes of graphical models with less opti-

mized research code applicable to a wide range of graphical

models. As discussed in Section 4.7, this aspect needs to be

taken into account when comparing runtimes.

6 Evaluation

This section summarizes the experimental results. A com-

pact overview of the performance of the algorithms is given in

Fig. 14–22. Instructions for reading these figures are given in

Fig. 13. For selected graphical models and instances, proper

numbers are reported in Tables 2–22. For all models and in-

stances, proper numbers as well as graphs of upper and lower

bounds versus runtime can be found online [4].

All tables in this section as well as all tables online show

the runtime, the objective value of the final integer solution as

well as the lower bound, averaged over all instances of a par-

ticular model. In addition, we report the number of instances

4Due to the increased workload compared to the experiments in [31], we

switch to a homogeneous cluster and no longer use the Intel Xeon W3550

3.07GHz CPU equipped with 12 GB RAM.
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Figure 7: List of models used in the benchmark. The x-axis groups the model into specific classes and the y-axis reflects the size of

the models. Datasets for which we can calculate the optimal solution within 1 hour for each instances are marked green, for which

some solved to optimality within 1 hour in yellow, and those which are unsolved within 1 hour so far red. If we gave combinatorial

methods more time for optimization, say 10 hours, we would be able to solve some more models to optimality [61]. We were

able to find better solutions than reported in [66] for the models there considered, even we were not able to solve a single instance

in mrf-photomontage or mrf-inpainting within 1 hour. Non surprisingly, larger models are usually harder than smaller ones. If

special properties can be used, as for Potts models, solvers scale better. Also small models can be hard if large interactions exist,

as for dtf-chinesechar. While our study gives some indications how the "hardness" of an instance could be estimated, a principle

measure is so far not known.

for which an algorithm returned the best (not necessary opti-

mal) integer solution among all algorithms and the number of

instances for which the algorithm verified optimality, denoted

by opt5.

For some models, we are able to evaluate the output also

with respect to an application specific measurement, cf. Tab. 1.

This addresses the question whether the absolute differences

between algorithms are relevant for a particular application.

6.1 Pixel/Voxel-Based Models

Stereo Matching (mrf-stereo). We now consider three in-

stances of a graphical model for the stereo matching prob-

lem in vision. Results are shown in Tab. 2. It can be seen

5As we deal with floating-point numbers and terminate algorithms if the

gap between the current best integer solution and the lower bound is less than

10−5, we need to take the precision of floating-point operations into account

when deciding whether an algorithm performed best or verified optimality.

An output is taken to be the best and verified optimal if the difference is less

than 10−5 in terms of its absolute value or less than 10−8 in terms of its

relative value, see Fig. 13 for a formal definition.

from these results that two instances were solved to optimality.

Only for the instance teddy in which variables have 60 labels,

no integer solution could be verified as optimal. For the two

instances for which optimal solutions were obtained, subopti-

mal approximations that were obtained significantly faster are

not significant worse in terms of the two pixel accuracy (PA2),

i.e. the number of pixels whose disparity error is less than or

equal to two. On average, the solution obtained by BPS is 2%

better in terms of the two-pixel accuracy (PA2) than solutions

with smaller objective value.

Inpainting (mrf-inpainting). We now consider two in-

stances of a graphical model for image inpainting. In these

instances, every variable can attain 256 labels. Thus, efficient

implementation is essential and only some implementations of

approximative algorithms could be applied. Results are shown

in Tab. 3 and Fig. 8. It can be seen from these results that

TRWS outperforms move making methods. The best result

is obtained by taking the solution provided by TRWS as the

starting point for a local search by lazy flipping. While FastPD

and α-expansion converge faster than TRWS, their solution is
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algorithm runtime value bound best opt PA2

FastPD 3.34 sec 1614255.00 −∞ 0 0 0.6828

mrf-α-Exp-TL 10.92 sec 1616845.00 −∞ 0 0 0.6823

mrf-αβ -Swap-TL 10.14 sec 1631675.00 −∞ 0 0 0.6832

ogm-LF-2 366.02 sec 7396373.00 −∞ 0 0 0.3491

ogm-TRWS-LF2 439.75 sec 1587043.67 1584746.53 0 0 0.6803

mrf-LBP-TL 287.62 sec 1633343.00 −∞ 0 0 0.6804

mrf-BPS-TL 238.70 sec 1738696.00 −∞ 0 0 0.7051

ogm-LBP-0.95 3346.05 sec 1664620.33 −∞ 0 0 0.6720

ogm-TRBP-0.95 3605.25 sec 1669347.00 −∞ 0 0 0.6710

mrf-TRWS-TAB 1432.57 sec 1587681.33 1584725.98 0 0 0.6806

mrf-TRWS-TL 227.67 sec 1587928.67 1584746.53 0 0 0.6803

ogm-ADSAL 3600.54 sec 1590304.67 1584501.22 1 1 0.6803

ogm-BUNDLE-A+ 2180.49 sec 1648854.67 1584056.35 1 1 0.6803

ogm-CombiLP 969.33 sec 1587560.67 1584724.04 2 2 0.6809

Table 2: mrf-stereo (3 instances): On average, TRWS-LF2

and CombiLP afford the best solutions. FastPD is the fastest

algorithm. Solutions obtained by BPS are better in terms of

the two-pixel accuracy (PA2) than solutions with lower ob-

jective value. Storing the functions of a graphical model ex-

plicitly, as value tables, instead of as implicit functions, slows

algorithms down, as can be seen for TRWS.

significantly worse in terms of the objective value and also in

terms of the mean color error (CE).

algorithm runtime value bound best opt CE

FastPD 8.47 sec 32939430.00 −∞ 0 0 14.7
mrf-α-Exp-TL 54.21 sec 27346899.00 −∞ 0 0 11.3
mrf-αβ -Swap-TL 111.13 sec 27154283.50 −∞ 0 0 12.0
ogm-TRWS-LF1 736.49 sec 26464015.00 26462450.59 0 0 10.9
ogm-TRWS-LF2 3009.52 sec 26463829.00 26462450.59 1 0 10.9

mrf-LBP-TL 666.19 sec 26597364.50 −∞ 0 0 10.5
mrf-BPS-TL 644.15 sec 26612532.50 −∞ 0 0 12.0

mrf-TRWS-TL 614.05 sec 26464865.00 26462450.59 0 0 10.9
ogm-ADSAL 3765.37 sec 26487395.50 26445260.33 0 0 10.9

ogm-CombiLP 49672.26 sec 26467926.00 26461874.39 1 0 10.9

Table 3: mrf-inpainting (2 instances): The best results are ob-

tained by TRWS-LF2. α-Expansion is a faster but worse al-

ternative. The smallest color error (CE) was obtained by BPS.

Photomontage (mrf-photomontage). We now consider two

instances of graphical models for photomontage. Results

are shown in Tab. 4. It can be seen from these results that

move making algorithms outperform algorithms based on lin-

ear programming relaxations. This observation is explained

by the fact that the second-order factors are more discrimina-

tive in this problem than the first-order factors. Therefore, the

LP relaxation is loose and thus, finding good primal solutions

(rounding) is hard.

Color Segmentation (col-seg-n4/-n8). We now consider

nine instances of a graphical model for color segmentation.

These are Potts models with 76.800 variables and few labels

and a 4-connected or 8-connected grid graph. Results are

shown in Tab. 5 and Fig. 9. It can be seen form these re-

sults that all instances could be solved by the multicut algo-

rithm and CombiLP, both of which verified optimality of the

respective solutions. LP relaxations over the local polytope

are tight for 7 instances and are overall better than other ap-

proximations. FastPD, α-expansion and αβ -swap converged

(a) image (b) input (c) TRWS (d) FastPD (e) α-Exp

Figure 8: mrf-inpainting: Depicted above is one example of

image inpainting. From the original image (a), a box is re-

moved and noise is added to the remaining part (b). The result

of inpainting and denoising by means of TRWS (c) is better

than that of FastPD (d) and α-expansion (e) which show arti-

facts.

algorithm runtime value bound best opt

mrf-α-Exp-TAB 7.54 sec 168284.00 −∞ 2 0

mrf-αβ -Swap-TAB 8.42 sec 200445.50 −∞ 0 0

ogm-TRWS-LF1 300.21 sec 1239959.00 166827.12 0 0

ogm-TRWS-LF2 390.34 sec 735193.00 166827.12 0 0

mrf-LBP-TAB 686.61 sec 438611.00 −∞ 0 0

mrf-BPS-TAB 167.49 sec 2217579.50 −∞ 0 0

mrf-TRWS-TAB 172.20 sec 1243144.00 166827.07 0 0

ogm-ADSAL 3618.86 sec 182045.50 165979.33 0 0

Table 4: mrf-photomontage (2 instances): For these instances,

α-Expansion is clearly the first choice. Due to the lack of

unary data-terms, the LP relaxation is weak and rounding is

hard.

to somewhat worse but still reasonable solutions very quickly.

For the hardest instance, algorithms based on multiway cuts

did not find a solution within one hour. It can be seen from

Fig. 9 that approximate solutions differ, especially at the yel-

low feathers around the neck.

Color Segmentation (color-seg). We now consider three

instances of a graphical model for color segmentation pro-

vided by Alahari et al. [3]. Results are shown in Tab. 6. It can

be seen from these results that the local polytope relaxation

is tight. Approximate algorithms find the optimal solution for

two instances and a near optimal solution for one instance of

the problem. When Kovtun’s method is used to reduce the

problem size–which works well for this problem–the reduced

problem can be solved easily and overall faster than with ap-

proximative algorithms alone.

Object Segmentation (object-seg). We now consider five

instances of a graphical model for object segmentation pro-

vided by Alahari et al. [3]. Results are shown in Tab. 7. As

for the color segmentation instances, the local polytope relax-

ation is tight. Compared to TRWS, FastPD is 10 times faster

and worse in terms of the objective value only for 1 instance

and only marginally. Furthermore, the pixel accuracy (PA) for

results of FastPD and α-expansion is slightly better than for

optimal solutions. For instances like these which are large and

easy to solve, combinatorial algorithms offer no advantages in

practice.

Inpainting (inpainting-n4/n8). We now consider four syn-

thetic instances of a graphical model for image inpainting, two

instances with a 4-connected grid graph and two instances
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algorithm runtime value bound best opt

FastPD 0.27 sec 20034.80 −∞ 0 0

mrf-α-Exp-TL 0.94 sec 20032.61 −∞ 0 0

mrf-αβ -Swap-TL 0.68 sec 20059.02 −∞ 0 0

ogm-FastPD-LF2 9.64 sec 20033.21 −∞ 0 0

ogm-ICM 2.09 sec 26329.45 −∞ 0 0

ogm-TRWS-LF2 9.90 sec 20012.17 20012.14 7 7

mrf-LBP-TL 46.45 sec 20053.25 −∞ 0 0

mrf-BPS-TL 24.75 sec 20094.03 −∞ 0 0

ogm-LBP-0.5 1573.21 sec 20054.27 −∞ 0 0

MCR-TC-MTC 464.79 sec 20424.79 19817.76 6 6

mrf-TRWS-TL 8.47 sec 20012.18 20012.14 8 7

ogm-ADSAL 983.73 sec 20012.15 20012.14 8 7

TRWS-pct 135.38 sec 20012.17 20012.14 7 7

MCI-TC-MTC-TCI 564.17 sec 20416.16 19817.76 8 8

MCI-pct 507.98 sec 20889.89 −∞ 8 8

ogm-CombiLP 42.11 sec 20012.14 20012.14 9 9

Table 5: color-seg-n4 (9 instances): TRWS gives optimal or

nearly optimal results on all instances. CombiLP also solves

all problems. MCI solves all but one instance.

(a) input data (b) CombiLP (c) FastPD

Figure 9: color-seg-n4: For the hardest instance of the color

segmentations problems, the differences between the optimal

solution (b) and the approximate ones, here exemplary for

FastPD (c), are small but noticeable.

with an 8-connected grid graph. For each graph structure,

one instance has strong first-order factors and the other in-

stance (with postfix ’inverse’) is constructed such that, for

every variable, a first-order factors assigns to same objective

value to two distinct labels. Results are shown in Tab. 8 and

Fig. 10. It can be seen from these results that even Potts mod-

els can give rise to hard optimization problems, in particular

if the first-order factors do not discriminate well between la-

bels. Moreover, it can be seen from Fig. 10 that increasing

the neighborhood-system helps to avoid discretization arte-

facts. However, even with an 8-neighborhood, the model fa-

vors 135◦ over 120◦ angles, as can be seen in Fig. 10(c).

(a) input data (b) result for N4 (c) result for N8

Figure 10: inpainting. Depicted above are solutions (b) and

(c) of synthetic instances of the inpainting problem (a). It can

be seen that discretization artifacts due to the 4-neighborhood

(b) are smaller than discretization artifacts due to the 8-

neighborhood (c).

algorithm runtime value bound best opt

α-Exp-pct 1.07 sec 308472274.33 −∞ 3 0

α-Exp-VIEW 6.12 sec 308472275.67 −∞ 2 0

FastPD 0.31 sec 308472275.00 −∞ 2 0

ogm-LF-2 13.70 sec 309850181.00 −∞ 0 0

αβ -Swap-VIEW 6.54 sec 308472292.33 −∞ 2 0

BPS-TL 70.81 sec 308733349.67 −∞ 0 0

ogm-LBP-0.5 983.26 sec 308492950.67 −∞ 0 0

ogm-LBP-0.95 328.49 sec 308494213.33 −∞ 0 0

MCR-TC-MTC 84.99 sec 308472274.33 308472274.33 3 3

ogm-ADSAL 2505.06 sec 308472274.33 308472274.31 3 2

TRWS-TL 94.15 sec 308472310.67 308472270.43 2 1

TRWS-pct 1.08 sec 308472290.67 308472274.33 2 2

MCI-TC-TCI 92.90 sec 308472274.33 308472274.33 3 3

MCI-pct 1.26 sec 308472274.33 308472274.33 3 3

ogm-CombiLP 433.98 sec 308472274.33 308472274.33 3 3

Table 6: color-seg (3 instances): For all instances, the local

polytope relaxation is tight. Nevertheless, the fixed point of

TRWS is suboptimal and for one instance, ADSAL does not

converge within 1 hour. MCI-pct provides verified solutions

as fast as α-Expansion and FastPD which do not provide op-

timality certificates.

algorithm runtime value bound best opt PA

FastPD 0.13 sec 31317.60 −∞ 4 0 0.8856

mrf-α-Exp-TL 0.27 sec 31317.60 −∞ 4 0 0.8856

mrf-αβ -Swap-TL 0.27 sec 31318.70 −∞ 3 0 0.8835

mrf-LBP-TL 30.06 sec 32400.01 −∞ 0 0 0.8439

mrf-BPS-TL 11.37 sec 35775.27 −∞ 0 0 0.7992

MCR-TC-MTC 482.85 sec 32034.47 31317.23 4 4 0.8842

mrf-TRWS-TL 2.25 sec 31317.23 31317.23 5 5 0.8800

ogm-ADSAL 115.52 sec 31317.23 31317.23 5 5 0.8800

TRWS-pct 1.15 sec 31317.23 31317.23 5 5 0.8800

MCI-TC-MTC-TCI 580.41 sec 31317.23 31317.23 5 5 0.8800

MCI-TC-TCI 492.34 sec 31317.23 31317.23 5 5 0.8800

MCI-pct 73.56 sec 31317.23 31317.23 5 5 0.8800

ogm-CombiLP 37.47 sec 31317.23 31317.23 5 5 0.8800

Table 7: object-seg (5 instances): For instances like these

which are large and for which the local polytope relaxation

is tight, combinatorial algorithms offer no advantages in prac-

tice.

Brain Segmentation (brain-3/5/7mm). We now consider

twelve instances of a graphical model for segmenting MRI

scans of human brains defined by four simulated scans at three

different resolutions. These instances have 105 − 106 vari-

ables. For such large instances, the efficient data structures

are helpful. Results are shown in Tab. 9. It can be seen from

these results that TRWS provides tight lower bounds but sub-

optimal approximate solutions which shows that the round-

ing problem remains hard. Multiway cut cannot be applied

directly because the instances are too large. However, with

model reduction as pre-processing, MCI-ptc is the only algo-

rithm that could solve all instances within one hour. FastPD

terminates in 1/10 of the runtime, providing approximations

which are worse in terms of the objective value but reason-

able in the application domain.

DTF Chinese Characters Inpainting (dtf-chinesechar).

We now consider 100 instances of a graphical model for Chi-

nese character inpaining. In contrast to all models considered

so far, these instances are decision tree fields (DTF) which are
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algorithm runtime value bound best opt

FastPD 0.03 sec 454.75 −∞ 1 0

mrf-α-Exp-TL 0.02 sec 454.35 −∞ 2 0

mrf-αβ -Swap-TL 0.02 sec 454.75 −∞ 1 0

ogm-TRWS-LF2 1.98 sec 489.30 448.09 1 1

mrf-LBP-TL 4.68 sec 475.56 −∞ 1 0

mrf-BPS-TL 1.63 sec 454.35 −∞ 2 0

mrf-TRWS-TL 0.96 sec 490.48 448.09 1 1

ogm-ADSAL 101.85 sec 454.75 448.27 1 1

ogm-SG-A 36.63 sec 455.25 447.76 1 1

ogm-SG-A+ 29.85 sec 455.25 441.36 1 1

ogm-SG-A- 57.99 sec 454.35 447.89 2 0

TRWS-pct 6.42 sec 489.30 448.10 1 1

MCI-TC-MTC-TCI 1821.99 sec 511.69 448.07 1 1

ogm-CombiLP 1867.58 sec 461.81 446.66 1 1

Table 8: inpainting-n4 (2 instances): One instance is easy

because the LP relaxations is tight. The other instance is de-

signed to be hard. On average, α-Expansion and BPS perform

best. Subgradient algorithms with small step-size give the best

primal solutions, but dual convergence is slow. Combinatorial

algorithms cannot solve the hard instance within 1 hour.

algorithm runtime value bound best opt

α-Exp-pct 10.16 sec 19088999.75 −∞ 0 0

α-Exp-VIEW 103.27 sec 19089080.00 −∞ 0 0

FastPD 2.22 sec 19089484.75 −∞ 0 0

ogm-TRWS-LF2 220.80 sec 19087628.00 19087612.50 0 0

BPS-TL 453.81 sec 19090723.25 −∞ 0 0

ogm-ADSAL 3612.32 sec 19087690.00 19087612.49 0 0

TRWS-TL 152.94 sec 19087730.25 19087612.50 0 0

TRWS-pct 23.21 sec 19087728.50 19087612.50 0 0

MCI-pct 29.20 sec 19087612.50 19087612.50 4 4

ogm-CombiLP 2761.11 sec 19087646.75 19087612.50 2 2

Table 9: brain-5mm (4 instances): Although the local poly-

tope relaxation is tight for these instances, rounding is not triv-

ial. Only MCI-pct is able to solve all instances within 1 hour.

FastPD is 10 times faster but solutions are worse in terms of

the objective value. For real world applications, these solu-

tions might, however, be sufficient.

learned in a discriminative fashion. This gives rise to frus-

trated cycles which render the inference problem hard. Re-

sults are shown in Fig. 11 and Tab. 10. It can be seen from

these results that the local polytope relaxation is loose. More-

over, it can be seen that instead of applying a combinatorial

algorithm directly, it is beneficial to first reduce the problem.

Here, MCBC-pct performs best, verifying optimality of 56

of 100 instances. In shorter time, sequential belief propaga-

tion (BPS) and lazy flipping give good results. With respect

to the pixel accuracy (PA) in the inpainting-region, BPS is

with 67,15% correct in-painted pixels, better than MCBC-pct

which has PA of 66,24%.

Color Segmentation with Inclusion (inclusion). We now

consider ten instances of a higher-order graphical models for

color segmentation with inclusion. Due to the higher-order

factors, some methods, e.g. TRWS, are no longer applicable.

Results are shown in Tab. 11. It can be seen from these results

that the local polytope relaxation is quite tight. However, stan-

dard rounding procedures do not yield good integer solutions.

Overall, the ILP solver performs best. For larger problems,

algorithm runtime value bound best opt PA

ogm-LF-1 0.44 sec −49516.08 −∞ 1 0 0.5725

ogm-LF-2 15.28 sec −49531.11 −∞ 7 0 0.6003

ogm-LF-3 963.78 sec −49535.37 −∞ 17 0 0.6119

BPS-TAB 78.65 sec −49537.08 −∞ 30 0 0.6715

ogm-ADSAL 1752.19 sec −49524.32 −50119.39 1 0 0.6487

QPBO 0.20 sec −49501.95 −50119.38 0 0 0.5520

TRWS-pct 7.58 sec −49496.76 −50119.38 2 0 0.5636

ogm-ILP-pct 3556.36 sec −49547.48 −50062.14 62 0 0.6540

MCBC-pct 2053.89 sec −49550.10 −49612.38 83 56 0.6624

ogm-ILP 3569.92 sec −49533.85 −50096.11 8 0 0.6399

SA − −49533.02 −∞ 13 0 0.6541

Table 10: dtf-chinesechar (100 instances): Best results are

obtained by combinatorial methods after model reduction.

MCBC use special cutting plane methods which lead to tighter

relaxations and better lower bounds. When a shorter running

time is needed the Lazy Flipper and BPS are alternatives.

(a) GT (b) data (c) TRWS (d) MCBC

Figure 11: dtf-chinesechar: Depicted above is one example

of the Chinese character inpainting problem. The purpose of

the model is to reconstruct the original image (a), more pre-

cisely, the mask (b), from the rest of the image. It can be seen

in (c) that TRWS labels the complete inpainting area as back-

ground. MCBC finds the optimal solution which reflects the

full potential of decision tree fields for this application.

ILPs might not scale well. In such a case, LBP followed by

lazy flipping is a good alternative. The best pixel accuracy

(PA) is obtained by Bundle-methods, which is 0.1% better

than optimal results that have a pixel accuracy of 94.96%.

6.2 Superpixel-Based Models

Graphical models defined with respect to an adjacency graph

of superpixels have fewer variables than graphical models de-

fined with respect to the pixel grid graph. The relative differ-

ence in the number of variables can be several orders of mag-

nitude. Thus, combinatorial algorithms are more attractive for

superpixel-based models.

Scene decomposition (scene-decomposition). We now

consider 715 instances of a graphical model for scene-decom-

position. These instances have between 150 and 208 vari-

ables. Results are shown in Tab. 12. It can be seen from these

results that the differences between the solutions of the differ-

ent methods are marginal, both in terms of objective value and

in terms of pixel accuracy (PA), i.e. the percentage of correctly

labeled pixels. While TRWS is the fastest method, CombiLP

is the fastest method that solves all problems to optimality.

The best results in terms of pixel accuracy are given by TRBP.
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algorithm runtime value bound best opt PA

ogm-LBP-LF2 95.66 sec 1400.61 −∞ 7 0 0.9495

ogm-LF-1 0.01 sec 1556.20 −∞ 0 0 0.6206

ogm-LF-2 0.14 sec 1476.39 −∞ 0 0 0.7630

ogm-LF-3 1.69 sec 1461.23 −∞ 0 0 0.8011

ogm-LBP-0.5 96.11 sec 2100.61 −∞ 7 0 0.9487

ogm-LBP-0.95 104.38 sec 2700.74 −∞ 8 0 0.9492

ogm-TRBP-0.5 103.46 sec 1900.84 −∞ 5 0 0.9491

ogm-TRBP-0.95 100.35 sec 2600.73 −∞ 8 0 0.9481

ADDD 7.24 sec 3400.81 1400.31 1 1 0.9479

MPLP 7.47 sec 4000.44 1400.30 2 1 0.9479

ogm-BUNDLE-H 137.47 sec 1400.76 1400.32 3 1 0.9496

ogm-BUNDLE-A- 151.85 sec 1400.68 1400.30 4 0 0.9506

ogm-SG-A- 154.05 sec 26797.36 1343.02 0 0 0.8518

ogm-LP-LP 20.98 sec 3900.59 1400.33 1 1 0.9484

ogm-ILP 6.54 sec 1400.57 1400.57 10 10 0.9496

Table 11: inclusion (10 instances): Only the commercial ILP

software solves all instances of this dataset. While the local

polytope relaxation is quite tight, rounding is still hard. Lazy

flipping can help to correct some rounding errors.

The PA of TRBP is with 77.08% slightly better that the PA for

optimal solutions.

algorithm runtime value bound best opt PA

ogm-LBP-LF2 0.31 sec −866.76 −∞ 576 0 0.7699

ogm-LF-3 0.99 sec −866.27 −∞ 420 0 0.7699

ogm-TRWS-LF2 0.01 sec −866.93 −866.93 714 712 0.7693

BPS-TAB 0.12 sec −866.73 −∞ 566 0 0.7701

ogm-LBP-0.95 0.09 sec −866.76 −∞ 580 0 0.7696

ogm-TRBP-0.95 0.61 sec −866.84 −∞ 644 0 0.7708

ADDD 0.09 sec −866.92 −866.93 701 697 0.7693

MPLP 0.06 sec −866.91 −866.93 700 561 0.7693

MPLP-C 0.07 sec −866.92 −866.93 710 567 0.7693

ogm-ADSAL 0.17 sec −866.93 −866.93 714 712 0.7693

ogm-BUNDLE-H 0.76 sec −866.93 −866.93 715 673 0.7693

ogm-BUNDLE-A+ 0.21 sec −866.93 −866.93 715 712 0.7693

ogm-SG-A+ 0.21 sec −866.92 −866.93 711 707 0.7694

ogm-LP-LP 0.28 sec −866.92 −866.93 712 712 0.7693

TRWS-TAB 0.01 sec −866.93 −866.93 714 712 0.7693

ADDD-BB 0.15 sec −866.93 −866.93 715 715 0.7693

ogm-CombiLP 0.05 sec −866.93 −866.93 715 715 0.7693

ogm-ILP 0.24 sec −866.93 −866.93 715 715 0.7693

BRAOBB-1 19.07 sec −866.90 −∞ 670 0 0.7688

Table 12: scene-decomposition (715 instances): Almost all

algorithms provide optimal or nearly optimal solutions. Also

in terms of pixel accuracy (PA), the difference between these

solutions is marginal. The PA of optimal solutions is 0.2%

worse than the PA of the suboptimal solutions found by TRBP.

TRWS is the fastest algorithm, followed by CombiLP.

Geometric Surface Labeling (geo-surf-3/7). We now con-

sider 2 × 300 instances of higher-order graphical models for

geometric surface labeling. Results are shown in Tab. 13. It

can be seen from these results that the local polytope relax-

ation is very tight and the commercial ILP solver performs

best. With increasing number of labels (from three to seven),

non-commercial combinatorial algorithms suffer more than

the commercial solver which performs well across the en-

tire range, finding optimal solutions faster than approximative

algorithms take to converge. For geo-surf-7, only α-Fusion

is significant faster, but the approximate solutions are also

worse. In terms of pixel accuracy, suboptimal approxima-

tions are better than optimal solutions. LBP-LF2 has a 0.07%

and 4.59% higher pixel accuracy (PA) than the optimal label-

ing for geo-surf-3 and geo-surf-7, respectively. This indicates

that, at least for geo-surf-7, the model does not reflect the pixel

accuracy loss and can potentially be improved.

algorithm runtime value bound best opt PA

α-Fusion 0.02 sec 477.83 −∞ 257 0 0.6474

ogm-LBP-LF2 3.97 sec 498.44 −∞ 66 0 0.6988

ogm-LBP-0.5 3.07 sec 498.45 −∞ 67 0 0.6988

ogm-TRBP-0.5 35.79 sec 486.42 −∞ 128 0 0.6768

ADDD 0.66 sec 476.95 476.94 296 293 0.6531

MPLP 1.83 sec 477.56 476.94 278 195 0.6529

MPLP-C 2.00 sec 477.34 476.95 282 198 0.6529

ogm-BUNDLE-H 76.77 sec 476.95 476.86 299 180 0.6529

ogm-BUNDLE-A+ 59.55 sec 476.95 476.91 299 239 0.6529

ogm-SG-A+ 56.57 sec 477.29 476.75 295 250 0.6533

ogm-LP-LP 3.07 sec 476.95 476.94 299 299 0.6530

ogm-ILP 1.01 sec 476.95 476.95 300 300 0.6529

BRAOBB-1 981.94 sec 479.81 −∞ 214 0 0.6602

Table 13: geo-surf-7 (300 instances): The commercial ILP

solver performs best for these small models. The local poly-

tope relaxation is tight for almost all instances. While α-

Fusion is very fast, the solutions it provides are significant

worse than the optimal solution, for some instances, both in

terms of the objective value and in terms of pixel accuracy

(PA). The suboptimal solutions provided by LBP have a bet-

ter PA than optimal solutions.

6.3 Partition Models

The properties of graphical models for unsupervised image

segmentation, namely (1) absence of unary terms, (2) invari-

ance to label-permutation, and (3) huge label spaces, exclude

most common inference methods for graphical models. Most

important, the invariance to label-permutation causes that the

widely used local polytope relaxation is more or less useless.

That why we will compare here solvers that are designed to

make use of or can deal with this additional properties.

Modularity Clustering (modularity-clustering). We now

consider six instances of graphical models for finding a clus-

tering of a network that maximize the modularity. Results are

shown in Tab. 14. The Kerninghan-Lin algorithm is an estab-

lished, fast and useful heuristic for clustering networks with

respect to their modularity. It can be seen from the table that

local search by means of ICM or LF-1 does not find better fea-

sible solution than the initial labeling (a single cluster). While

multicut methods work well for small instances, they do not

scale so well because the graph is fully connected. It can also

be seen that odd-wheel constraints tighten the standard LP-

relaxation (with only cycle constrains) significantly. Com-

bined LP/ILP cutting-plane methods (MCI-CCFDB-CCIFD)

is the overall fastest exact method for networks of moderate

size. However, for the largest instances, even MCI-CCFDB-

CCIFD does not converge within one hour.

Image Segmentation (image-seg). We now consider 100

instances of graphical models for image segmentation. These

models differ from models for network-analysis in that the for-

mer are sparse. Results are shown in Tab. 15. It can be seen

16



algorithm runtime value bound best opt

ogm-ICM 0.13 sec 0.0000 −∞ 0 0

ogm-KL 0.01 sec −0.4879 −∞ 3 0

ogm-LF-1 0.04 sec 0.0000 −∞ 0 0

MCR-CC 26.62 sec −0.4543 −0.5094 1 1

MCR-CCFDB 2.31 sec −0.4543 −0.5094 1 1

MCR-CCFDB-OWC 602.27 sec −0.4665 −0.4960 5 5

MCI-CCFDB-CCIFD 601.02 sec −0.4400 −0.5019 5 5

MCI-CCI 1206.33 sec −0.4363 −0.5158 4 4

MCI-CCIFD 1203.71 sec −0.4274 −0.5174 4 4

Table 14: modularity-clustering (6 instances): The largest in-

stance cannot be solved by any variant of MCI within one

hour. KL is robust, fast and better on large instances, leading

to a better mean objective value.

(a) image (b) KL (c) MC-CC (d) MC-CCI

Figure 12: image-seg: Depicted above is one example of the

image segmentation problem. KL produces a segmentation

which do not separate plants from background and constains

incorrect boundaries. The ILP and LP-based multicut algo-

rithms lead to reasonable results with differ only in the lower

right part of the image.

from these results that standard LP-relaxations with only cycle

constraints (MCR-CC and MCR-CCFDB) work well and sig-

nificant better than KL, both in terms of objective value and

variation of information (VI). Adding odd-wheel constraints

(MCR-CCFDB-OWC) gives almost no improvement. Pure

integer cutting plane methods (MCI-CCI and MCI-CCIFD)

provide optimal solutions faster than LP-based methods and

KL. Using only facet defining constraints reduces the number

of added constraints and give better runtimes for MCR and

MCI. Visually, the results are similar and vary only locally,

cf. Fig. 12, indicating that fast and scalable approximative al-

gorithms might be useful in practice.

algorithm runtime value bound best opt VI

ogm-ICM 4.24 sec 4705.07 −∞ 0 0 2.8580

ogm-KL 0.77 sec 4608.55 −∞ 0 0 2.6425

ogm-LF-1 1.84 sec 4705.01 −∞ 0 0 2.8583

MCR-CC 2.40 sec 4447.14 4442.34 36 35 2.5471

MCR-CCFDB 1.85 sec 4447.14 4442.34 35 35 2.5469

MCR-CCFDB-OWC 2.20 sec 4447.09 4442.34 35 35 2.5469

MCI-CCFDB-CCIFD 2.49 sec 4442.64 4442.64 100 100 2.5367

MCI-CCI 2.33 sec 4442.64 4442.64 100 100 2.5365

MCI-CCIFD 2.47 sec 4442.64 4442.64 100 100 2.5367

Table 15: image-seg (100 instances): Variants of MCI solve

all instances to optimality and are as fast as approximative

algorithms.

Higher-Order Image Segmentation (image-seg-3rdor-

der). We now consider 100 instances of higher-order graph-

ical models for image segmentation. Here, factors of order

three are defined w.r.t. the angles between the tangents of con-

tours at points in which contours meet. Results are shown

in Tab. 16. It can be seen from these results that the stan-

dard LP relaxation (MCR-CCFDB) is no longer as tight as for

the second-order models image-seg, cf. Tab. 15. Odd-wheel

constraints (MCR-CCFDB-OWC) tighten this relaxation only

marginally. Integer cutting plane methods (MCI) suffer from

the weaker relaxations and need longer for optimization, but

provide optimal solutions for all 100 instances. Consistent

with the results reported in [6], we find that the VI of segmen-

tations defined by optimal solutions of the third-order models

is higher than the VI of segmentations defined by optimal so-

lutions of the second-order models, indicating that either the

hyper-parameter of the model needs to be estimated differ-

ently or the third-order terms are uninformative in this case.

algorithm runtime value bound best opt VI

ogm-ICM 7.12 sec 6030.49 −∞ 0 0 2.7089

ogm-LF-1 2.71 sec 6030.29 −∞ 0 0 2.7095

MCR-CC 27.35 sec 5822.42 5465.15 0 0 2.7723

MCR-CCFDB 16.24 sec 5823.15 5465.15 0 0 2.7702

MCR-CCFDB-OWC 21.64 sec 5823.64 5465.29 0 0 2.7702

MCI-CCFDB-CCIFD 43.75 sec 5627.52 5627.52 100 100 2.6586

MCI-CCI 71.52 sec 5628.31 5627.45 99 98 2.6588

MCI-CCIFD 59.88 sec 5627.52 5627.52 99 100 2.6586

Table 16: image-seg-3rdorder (100 instances): Variants of

MCI provide optimal solutions for all instances. Numerical

problems arise only for some instances. Approximative meth-

ods are faster but results are worse.

Hierarchical Image Segmentation (hierarchical-image-

seg): Next, we consider 715 instances of a graphical model

for hierarchical image segmentation which include factors of

orders up to 651. Results are shown in Tab. 17. For these in-

stances, the standard LP relaxation (MCR-CC) is quite tight.

Without odd-wheel constraints, 98 instances can be solved by

the MCR. With odd-wheel constraints, 100 instances can be

solved by the MCR, all with zero gap. For all 715 instances,

the feasible solutions output by MCR are close to the opti-

mum, both in terms of their objective as well as in terms of

the VI. While MCR is 10 times faster than exact MCI algo-

rithms, we emphasize that MCR was used to learn these in-

stances which might be an advantage.

Due to well-known numerical issues, e.g. slackness intro-

duced to improve numerical stability, bounds are not always

tight for MCI. Parameters can be adjusted to overcome this

problem for these particular instances, but such adjustments

can render the solution of other models less numerically sta-

ble. Thus, we use the same parameters in all experiments.

3D Neuron Segmentation (knott-3d-150/300/450). We

now consider 3 × 8 instances of graphical models for the

segmentation of supervoxel adjacency graphs, i.e. for the seg-

mentation of volume images. Results for instances on volume

images of 3003 voxels are shown in Tab. 18. It can be seen

from these results that MCR and MCI become slower. For

the instances based on volume images of 3003 voxels, MCI-

CCIFD solved instances within reasonable time. Without the
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algorithm runtime value bound best opt VI

ogm-ICM 1.45 sec −585.60 −∞ 0 0 2.6245

ogm-LF-1 0.75 sec −585.60 −∞ 0 0 2.6245

MCR-CC 0.08 sec −626.76 −628.89 162 98 2.0463

MCR-CCFDB 0.06 sec −626.76 −628.89 162 98 2.0463

MCR-CCFDB-OWC 0.06 sec −626.77 −628.89 164 100 2.0460

MCI-CCFDB-CCIFD 0.64 sec −628.16 −628.16 715 712 2.0406

MCI-CCI 1.28 sec −628.16 −628.17 715 707 2.0406

MCI-CCIFD 1.26 sec −628.16 −628.17 715 711 2.0406

Table 17: hierarchical-image-seg (715 instances): For these

instances, the standard LP relaxation (MCR-CC) is quite tight.

For all 715 instances, the feasible solutions output by MCR

are close to the optimum, both in terms of their objective as

well as in terms of the VI.

restriction to facet defining constraints only, the system of in-

equalities grows too fast inside the cutting-plane procedure.

algorithm runtime value bound best opt VI

ogm-ICM 97.63 sec −25196.51 −∞ 0 0 4.1365

ogm-KL 8.42 sec −25553.79 −∞ 0 0 4.1380

ogm-LF-1 34.11 sec −25243.76 −∞ 0 0 4.1297

MCR-CC 1090.97 sec −27289.63 −27303.52 1 1 1.6369

MCR-CCFDB 309.11 sec −27289.63 −27303.52 1 1 1.6369

MCR-CCFDB-OWC 257.23 sec −27301.42 −27302.81 7 7 1.6373

MCI-CCFDB-CCIFD 251.28 sec −27302.78 −27302.78 8 8 1.6352

MCI-CCI 181.60 sec −27302.78 −27305.02 8 7 1.6352

MCI-CCIFD 77.43 sec −27302.78 −27302.78 8 8 1.6352

Table 18: knott-3d-300 (8 instances): MCI-CCIFD affords the

best solutions. MCR-CCFDB-OWC affords good solutions as

well but suffers form the fact that the separation procedure is

more complex and time consuming for fractional solutions.

6.4 Other Models

Matching (matching). We now consider four instances of

a graphical model for the matching problem. These instances

have at most 21 variables. Results in shown in Tab. 19. It

can be seen from these results that pure branch-and-bound al-

gorithms, such as BRAOBB-1 or AStar, can solve these in-

stances fast. In contrast, algorithm based on LP relaxations

converge slower. The local polytope relaxation, used e.g. in

MPLP, is loose because of the second-order soft-constraints

used in this graphical model formulation of the matching

problem. Thus, the rounding problem is hard. Adding addi-

tional cycle constraints, e.g. in MPLP-C, is sufficient to close

the duality gap and obtain exact integer solutions. Another

way to improve the objective value of poor integer solutions

caused by violated soft-constraint is local search by lazy flip-

ping.

Cell Tracking (cell-tracking). We now consider one in-

stance of a graphical model for tracking biological cells in

sequences of volume images. Results are shown in Tab. 20.

It can be seen from these results that the ILP solver clearly

outperforms all alternatives. Only the off-the-shelf LP-solver

(LP-LP) manages to find a solution that satisfies all soft-

constraints. Algorithms which solve the same relaxation, e.g.

algorithm runtime value bound best opt MPE

ogm-LBP-LF2 0.34 sec 38.07 −∞ 1 0 5.4469

ogm-LF-2 0.46 sec 40.79 −∞ 0 0 5.7689

ogm-LF-3 20.29 sec 39.81 −∞ 0 0 5.6346

ogm-TRWS-LF2 0.47 sec 33.31 15.22 0 0 3.1763

BPS-TAB 0.17 sec 40.26 −∞ 0 0 4.9692

ogm-LBP-0.5 0.01 sec 105 ·109 −∞ 0 0 6.0228

ADDD 2.31 sec 105 ·109 16.33 0 0 3.2429

MPLP 0.35 sec 65 ·109 15.16 0 0 3.1630

MPLP-C 4.63 sec 21.22 21.22 4 4 0.0907

ogm-ADSAL 2371.04 sec 34.58 16.04 0 0 2.8783

ogm-LP-LP 26.47 sec 1025 ·109 16.35 0 0 3.3482

TRWS-TAB 0.04 sec 64.19 15.22 0 0 3.8159

ogm-ASTAR 7.20 sec 21.22 21.22 4 4 0.0907

ogm-CombiLP 408.56 sec 21.22 21.22 4 4 0.0907

ogm-ILP 1064.87 sec 21.22 21.22 4 4 0.0907

BRAOBB-1 2.25 sec 21.22 −∞ 4 0 0.0907

Table 19: matching (4 instances): Pure branch & bound meth-

ods such as BRAOBB and AStar afford optimal solutions fast.

Cycle constraints as used by MPLP-C tighten the relaxation

sufficiently. For optimal solutions, the objective value corre-

lates with the mean position error (MPE).

ADDD and MPLP, are slower and their rounded solutions vi-

olate soft-constraints. Lazy Flipping as a post-processing step

can overcome this problem, as shown for LBP.

algorithm runtime value bound best opt

ogm-LBP-LF2 240.76 sec 7515575.61 −∞ 0 0

ogm-LF-3 2.38 sec 8461693.24 −∞ 0 0

ogm-LBP-0.95 236.29 sec 307513873.84 −∞ 0 0

ogm-TRBP-0.95 246.10 sec 107517017.88 −∞ 0 0

ADDD 13.28 sec 34108661574.79 6206883.23 0 0

MPLP 583.47 sec 107514359.61 7513851.52 0 0

ogm-LP-LP 4.66 sec 7516359.61 7513851.52 0 0

ADDD-BB 55077.04 sec 7514421.21 7411393.72 1 0

ogm-ILP-pct 13.40 sec 7514421.21 7514421.21 1 1

ogm-ILP 13.78 sec 7514421.21 7514421.21 1 1

Table 20: cell-tracking (1 instance): The commercial ILP soft-

ware solves this instance fast. The commercial LP solver af-

fords good results three times faster. In contrast, dual LP

solvers such as ADDD and MPLP do not find good integer

solutions.

Side-Chain Prediction in Protein Folding (protein-fold-

ing). We now consider 21 instances of graphical models for

side-chain prediction in protein folding. These instances have

many variables and are highly connected. Results are shown

in Tab. 21. It can be seen from these results that MPLP, with

additional cycle-constraints, obtain the best lower bounds and

CombiLP verified optimality for 18 instances, within one

hour. The best results are obtained by BPS and LBP followed

by lazy flipping with search-depth 2. The rounding techniques

used in the algorithms based on linear programming are insuf-

ficient for these instances.

Prediction Protein-Protein Interactions (protein-predic-

tion). We now consider eight instances of a higher-order

graphical model for prediction of protein-protein interactions.

Results are shown in Tab. 22. The range of algorithms ap-

plicable to these instances is limited. ILP solvers found and

verified solutions for 3 instances and performed best for 7 in-
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algorithm runtime value bound best opt

ogm-LBP-LF2 582.65 sec −5923.01 −∞ 12 0

ogm-LF-2 87.56 sec −5747.56 −∞ 0 0

ogm-TRWS-LF2 78.40 sec −5897.06 −6041.38 6 1

BPS-TAB 25.34 sec −5917.15 −∞ 12 0

ogm-LBP-0.5 509.21 sec −5846.70 −∞ 13 0

ogm-TRBP-0.5 722.27 sec −5810.68 −∞ 9 0

ADDD 251.49 sec −4213.94 −10364.89 0 0

MPLP 753.55 sec −5611.60 −6033.98 1 1

MPLP-C 1705.26 sec −5824.14 −5991.75 11 7

ogm-ADSAL 1890.32 sec −5881.78 −6130.86 5 1

ogm-BUNDLE-A+ 1140.61 sec −5448.03 −6395.59 2 1

TRWS-TAB 25.18 sec −5771.50 −6041.38 2 1

ogm-CombiLP 568.86 sec −5911.12 −6016.78 18 18

Table 21: protein-folding (21 instances): Due to the large

number of labels, combinatorial methods are not applicable.

A notable exception is CombiLP, which manages to solve 18

instances to optimality. MPLP-C gives the best results in

terms of the lower bound, but is not the best in generating

labelings. The best integer solutions are obtained by BPS and

LBP-LF2.

stances, within one hour. For one remaining instances, the

ILP solver affords a solution far the optimum. Thus, LBP

with lazy flipping gives the best results on average.

algorithm runtime value bound best opt

ogm-LBP-LF2 69.86 sec 52942.95 −∞ 1 0

ogm-LF-3 25.99 sec 57944.06 −∞ 0 0

ogm-LBP-0.5 60.97 sec 53798.89 −∞ 0 0

ogm-TRBP-0.5 86.03 sec 61386.17 −∞ 0 0

ADDD 10.97 sec 106216.86 41124.16 0 0

MPLP 86.60 sec 101531.75 43123.68 0 0

ogm-LP-LP 180.72 sec 102918.41 44347.16 0 0

ogm-ILP 2262.83 sec 60047.02 44516.07 7 3

BRAOBB-1 3600.16 sec 61079.07 −∞ 0 0

Table 22: protein-prediction (8 instances): Except for one in-

stance, the commercial ILP software solves all instances. LBP

followed by lazy flipping is a good approximation.

7 Discussion and Conclusions

Our comparative study has shown that there is no single tech-

nique which works best for all cases. The reason for this

is that, firstly, the models are rather diverse and, secondly,

there are several objectives, e.g. running time, best energy or

loss functions. We would also like to point out, again, that

not all compared models are on the same level of generality

and modularity, and some implementations are highly opti-

mized compared to others. Consequently, we do not advise

to overemphasize the relative runtimes reported for the differ-

ent methods which have different implementation paradigms.

Moreover, sometimes a single instance can decrease the aver-

age performance of a method, which is reported in Tab. 2–22.

Consequently, methods that are best for all but one instance

are not leading in the average score, e.g. MCI for color-seg-

n4 or ILP for protein-prediction.

For most models, we have found that approximative meth-

ods provide nearly optimal solutions very fast. According to

application specific measurements, these are often not worse

than those with optimal energy. With the suggested (heuris-

tic) stopping conditions, TRWS performs well in those case it

which it is applicable. This is also due to the fact that for many

models the local polytope relaxation is nearly tight. FastPD

and α-expansion are slightly worse, but have a determinis-

tic stopping condition and do not suffer on problems where

the local polytope relaxation is loose, e.g. mrf-photomontage.

While methods that can deal with higher order-terms are infe-

rior in terms of runtimes for second order models, they can be

directly applied to higher-order models, where best perform-

ing methods for second-order models are no longer applica-

ble.

For difficult models like dtf-chinesechar and matching, the

exact solutions are significantly better than approximate ones,

both in terms of energy and quality. For easier models they

can be used to calculate the optimal solutions and allow as-

sessing if approximative methods can be used in applications

without harm. Fig. 7 gives an overview of models where

all (green), some (yellow) or none (red) instances have been

solved to optimality within one hour. As reported in [61]

more instances, including those from mrf-inpainting and mrf-

photomontage, can be solved to optimality with a time limit

of less than a day.

For some models combinatorial optimization methods are

faster than currently reported state-of-the-art methods. While

for small problems combinatorial methods can often be ap-

plied directly, for larger problems the reducing of the problem

size by partial optimality is required to make them tractable.

Solutions from these exact methods are used for evaluating

the sub-optimality of the approximate solutions.

Furthermore we observe that the energy-optimal labeling is

not always best in terms of application specific loss function,

cf. Tab 13. While methods that find global optimal solutions

select the global optima – regardless of similar solutions that

have a considerable higher energy –, approximative methods

often tend to avoid such "isolated" solutions and prefer more

"consistent" modes. While this shows that full evaluation of

models is only possible in presence of optimal solvers, it also

raises the question if approximative methods are preferable

when they are not so sensitive to optimal "outliers" or if the

models itself need to be improved. The answer to this question

might vary for different applications and models and as we

have shown, for many models the energy correlates quite well

with the loss functions.

Methods based on LP-relaxations over the local polytope

often lead to empirically good solutions and are in general

not restricted to special subclasses but are also not the fastest

ones. Recently, Prua and Werner [59] showed that solving

LPs over the local polytope is as hard as solving general LPs,

which are of high polynomial complexity. When the local

polytope relaxation is too weak, tightening the polytope can

help a lot, multicuts for Potts models and MPLP-C for the

matching instances are examples of that kind.

While our study covers a broad range of models used nowa-

days (without being all-embracing), the models used in the
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Figure 13: Legend for the box-plots. Values are up to numerical precision and averaged over all instances of a model. The bars

for energy gap (upper right), gap of the lower bound to the optimal or best available energy (upper left), and runtime (lower right)

are scaled piecewise linear between the ticks. The model specific normalization Ê,was manually choosen for better visualization

and comparability of different datasets.

For numerical reasons we test for a relaxed zero gap using an absolute and relative precision threshold by the test function

δ (A,B) = ‖A−B‖< 10−5 or
‖A−B‖
‖A‖+1

< 10−10.

last decade might have been biased by solvers that are avail-

able and work well. Consequently, second order Potts or trun-

cated convex regularized models, as considered in [66], were

in the focus of research. In this study we show alternative

methods that can deal with more complex models, includ-

ing higher order and more densely structured models, cf. dtf-

chinesechar, matching or protein-prediction.

With availability of more general optimization methods

we hope to stimulate the use of complex and powerful dis-

crete models. This may then inspire the development of

new, efficient approximative methods that can meet hard time-

constraints in real world applications.
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Figure 14: Results for grid structured models with four-pixel neighborhood-system and truncated convex regularization

from [66]. See Fig. 13 for the legend. For all models local polytope relaxations give good lower bounds. However, extracting

a integer solution from the fractional one can be very difficult, especially for the photomontage instances, where soft constraints

renders linear programming relaxation harder. FastPD and α-expansion are the first choice if fast optimization is required. For

stereo- and inpainting problems LP-relaxations as obtained by TRWS have given best results – especially when followed by lazy

flipping post processing. For some instances we were able to solve them to optimality by CombiLP but often need more than 1

hour.
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Figure 15: Results for grid structured models with four-pixel neighborhood-system and Potts regularization. See Fig. 13

for the legend. For Potts models relaxations over the local polytope are often very tight and multicut relaxations works quite good

and efficient. FastPD is the first choice if fast optimization is required. When ever persistence is available to reduce the problem

size it helps a lot. In the color-seg-n4 dataset the instance pfau is the hardest one and rises the average runtime. Also the lower

bound on the pfau instances produced by MCI within one hour are very weak. The fastest exact solver is here CombiLP. In the

inpainting-n4 dataset the inverse instance is designed to be hard and make LP-solvers struggling.
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Figure 16: Results for grid structured models with 8-pixel neighborhood-system and Potts regularization. See Fig. 13 for

the legend. For Potts models relaxations over the local polytope are often very tight and multicut relaxations works quite good and

efficient. Compare to the same models with a 4-pixel neighborhood-system, cf. Fig. 15, the local polytope relaxations becomes

weaker. FastPD is the first choice if fast optimization is required. When ever persistence is available to reduce the problem size it

helps a lot. In the color-seg-n8 dataset the instance pfau is the hardest one and rises the average runtime. Also the lower bound on

the pfau instances produced by MCA within 6 hours are very weak. In the inpainting-n8 dataset the inverse instance is designed

to be hard and make LP-solvers struggling.
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Figure 17: Results for grid structured models with 3D 6-voxel neighborhood-system and Potts regularization. See Fig. 13

for the legend. The slice thick is given in millimeters. Thinner slices give larger models. FastPD is the fastest and TRWS the best

approximative method. Local polytope relaxations give very good bounds for this models. Exact results are feasible by MCA-pct

with runtimes comparable to approximative methods. Without preprocessing (pct) MCA is much slower and requires more than

10 GB of memory for the smallest instance.
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Figure 18: Results for binary models. See Fig. 13 for the legend. The Chinese character instances include Potts terms with

negative coupling strength, that means the models are non-submodular. That why only a small subset of solvers is applicable. The

large degree of the structure makes local polytope relaxations week and the remaining rounding problem hard. BPS give good

results, but we obtain best results by first using persistence to reduce the problem size and then tightening the relaxation. The

cell-tracking and protein-prediction dataset include higher order terms. This render them more challenging and many standard

methods are no longer applicable. For cell-tracking ogm-ILP performs best, many other methods violate soft-constraints which

causes hight objective values. For the protein-protein dataset ogm-ILP performs best except of 1 instance. This seemed to be

caused by numerical problems. For all protein-protein instances LBP, optionally followed by lazy flipping give very good results

in reasonable time.
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Figure 19: Results for higher order models. See Fig. 13 for the legend. For the inclusion instances ogm-ILP give best results,

similar to those of LBP. LP relaxations of the local polytope are relatively tight but rounding is not trivial and often violates the

inclusion soft-constraints. Adding additional cycle constraints does improve the results only marginally. The geo-surf instances

are based on superpixels and therefor much smaller. Fastest and optimal results are produced by ogm-ILP and AD3-BB. Later is

non-commercial available under the LGPL.
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Figure 20: Results for unsupervised partition models. See Fig. 13 for the legend. Over all MCI-CCFDB-CCIFD performs best.

The KL-method used outside computer vision does not perform well on sparse computer vision problems and cannot be used for

higher order models. Linear programming relaxations give worse results and are not necessary faster than ILP-based methods.

The reason for this is, that the separation procedures for non-integer solutions are more complex and time consuming.
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Figure 21: Evaluation of the 3D neuron segmentation datasets. See Fig. 13 for the legend. With increasing problem size

relaxations (MCR) get worse. Also integer variants (MCI) suffers and separating violated constraints becomes the most time

consuming part. Consequently, for large models it is preferable to start directly with integer constraints and not to start with an

LP-relaxation first, as done within MCI-CCFDB-CCIFD, because the separation procedure is than to slow.
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Figure 22: Evaluation of the second order models with no truncated convex regularizers. See Fig. 13 for the legend. The

scene decomposition instances are based on superpixels, such models are small and combinatorial methods like ogm-ILP or AD3-

BB are fast and optimal. Contrary to scene-decomposition for the matching instances the local polytope relaxation is not tight.

On can either tighten the relaxation MPLP-C or use alternative methods to obtain bounds ogm-AStar for obtaining fast optimal

results. For protein-folding relaxations are weak too and the huge label-space renders the problem hard for many solvers, e.g.

ogm-ILP. We obtain the best results by BPS.
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