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Abstract

Seven years ago, Szeliski et al. published an influential

study on energy minimization methods for Markov random

fields (MRF). This study provided valuable insights in choos-

ing the best optimization technique for certain classes of

problems.

While these insights remain generally useful today, the

phenominal success of random field models means that the

kinds of inference problems we solve have changed signifi-

cantly. Specifically, the models today often include higher

order interactions, flexible connectivity structures, large

label-spaces of different cardinalities, or learned energy ta-

bles. To reflect these changes, we provide a modernized and

enlarged study. We present an empirical comparison of 24

state-of-art techniques on a corpus of 2,300 energy minimiza-

tion instances from 20 diverse computer vision applications.

To ensure reproducibility, we evaluate all methods in the

OpenGM2 framework and report extensive results regarding

runtime and solution quality. Key insights from our study

agree with the results of Szeliski et al. for the types of models

they studied. However, on new and challenging types of

models our findings disagree and suggest that polyhedral

methods and integer programming solvers are competitive

in terms of runtime and solution quality over a large range

of model types.

1. Introduction

Discrete energy minimization problems, in the form of

factor graphs, or equivalently Markov or Conditional Ran-

dom Field models (MRF/CRF) are a mainstay of computer

vision research. Their applications are diverse and range

from image denoising, segmentation, motion estimation, and

stereo, to object recognition and image editing. To give re-

searchers some guidance as to which optimization method

is best suited for their MRF model, Szeliski et al. [33] con-

ducted a comparative study on 4-connected MRF models.

Along with the study, they provided a unifying software

framework that facilitates a fair comparison of optimization

techniques. The study was well-received in our community

and has now been cited more than 600 times.

Since 2006 when the study was published, the field has

made rapid progress. Modern vision problems involve more

complex models, involve larger datasets and use machine

learning techniques to train the model parameters and ener-

gies.

Taken together, these changes give rise to hard energy

minimization problems that are fundamentally different than

the ones considered by Szeliski et al. In particular, in [33]

the models were restricted to 4-connected grid graphs with

unary and pairwise factors only.

It is time to revisit the study of [33]. We provide a mod-

ernized comparison, updating both the problem instances

and the inference techniques.

Our models are different in the following four aspects: (1)

higher order models, e.g. factor order up to 300, (2) mod-

els on “regular” graphs with a denser connectivity structure,

e.g. 27-pixel neighborhood, or models on “irregular” graphs

with spatially non-uniform connectivity structure, (3) mod-

els based on superpixels with smaller number of variables,

and (4) image partitioning models without unary terms, an

unknown number of classes.

Inference methods have changed as well since 2006, often

as a response to cope with more challenging models. The

study [33] compared the performance of the state of the art

at the time, represented by primal move-making methods,

loopy belief propagation, a tree-reweighted belief propaga-

tion variant, and a set of more traditional local optimization

heuristics like iterated conditional modes (ICM). We aug-

ment this set with more recently developed methods from

these classes, e.g. recent move-making methods and local

optimization methods. Furthermore, we use new methods

which are applicable to more general, higher order mod-

els, and non-grid graph structures. In addition, we add a

new class of polyhedral methods, which solve an underlying

(Integer) Linear Programming formulation (LP/ILP).
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Contributions We provide a modernized, follow-up study

of [33] with the following aspects: (i) A broad collection of

state-of-the-art models and inference methods. (ii) All mod-

els and inference techniques were wrapped into a uniform

software framework, OpenGM2 [2], for reproducible bench-

marking. They will be made publicly available on the project

webpage1. (iii) Comprehensive and comparative evaluation

of methods, along with a summary and discussion. (iv) We

enable researchers to experiment with recent state-of-the-art

inference methods on their own models.

Related Inference Studies Apart from the study [33], there

are many recent articles in computer vision which compare

inference techniques for a small specialized class of models,

such as [4, 27, 25]. Unfortunately, the models and/or infer-

ence techniques are often not publicly available. Even if they

were available, the lack of a flexible software-framework

which includes these models and optimization techniques

makes a fair comparison difficult. Closely related is the

smaller study [8] that uses the first and now deprecated ver-

sion of OpenGM. It compares several variants of message

passing and move making algorithms for higher order mod-

els. In contrast to this work, polyhedral inference methods

are not included and only a small number of synthetic models

are used.

Outside computer vision, the Probabilistic Inference Chal-

lenge (PIC) [3] covers a broad class of models used in ma-

chine learning. We include the leading optimization tech-

niques of PIC in our study.

Key Insights and Suggested Future Research In compari-

son with [33], perhaps the most important new insight is that

recent, advanced polyhedral LP and ILP solvers are relevant

for a wide range of problems in computer vision. For a con-

siderable number of instances, they are able to achieve global

optimality. For some problems they are even competitive in

terms of overall runtime. This is true for problems with a

small number of labels, variables and factors of low order

that have a simple form. But even for some problems with a

large number of variables or complex factor form, special-

ized ILP and LP solvers can be applied successfully. For

problems with many variables for which the LP relaxation

is not tight, polyhedral methods are not competitive. In this

regime, primal move-making methods typically achieve the

best results, which is consistent with the findings of [33].

Our new insights suggest two areas for future research

focus. First, in order to capitalize on existing ILP solvers

we could increase the use of “small” but expressive models,

e.g. superpixels or coarse-to-fine approaches. Second, our

findings suggest that further investigation in improving the

efficient and applicability of ILP and LP solvers is warranted.

1http://hci.iwr.uni-heidelberg.de/opengm2/

2. Models

We assume that our discrete energy minimization problem

is given in the form of a factor graph G = (V, F,E), a

bipartite graph, with a set of variable nodes V , a the set of

all factors F , and a set E ⊂ V × F that defines the relation

between those [23]. The variable xa assigned to the variable

node a ∈ V lives in a discrete label-space Xa and each factor

f ∈ F has an associated function ϕf : Xne(f) → R, where

xne(f) are the variables in the neighborhood ne(f) := {v ∈
V : (v, f) ∈ E} of the factor f , i.e. the set of variables in

the scope of the factor. We define the order of a factor by its

degree, e.g. pairwise factors have order 2, and the order of a

model by the maximal degree among all factors. The energy

function of the discrete labeling problem is then given as

J(x) =
∑

f∈F

ϕf (xne(f)),

where the assignment of the variable x is also known as

the labeling. For many applications the aim is to find a

labeling with minimal energy, i.e. x̂ ∈ argmin
x
J(x). This

labeling is a maximum-a-posteriori (MAP) solution of a

Gibbs distribution p(x) = 1/Z exp{−J(x)} defined by the

energy. Here, Z normalizes the distribution.

It is worth to note that we use factor graph models instead

of Markov Random Field models (MRFs), also known as

undirected graphical models. The reason is that factor graphs

represent the structure of the underlying problem in a more

precise and explicit way than MRFs can, c.f . [23].

2.1. Categorization of Models

One of the main attributes we use for our categorization is

the meaning of a variable, i.e. if the variable is associated

with a pixel, superpixel or something else. The number of

variables is typically related to this categorization.

Another modeling aspect is the number of labels the vari-

able can take. Note that the size of the label-space restricts

the number of methods that are applicable, e.g. QPBO or

MCBC can only be used for Boolean problems. We also

classify models by properties of the factor-graph, e.g. av-

erage numbers of factors per node, mean degree of factors,

or structure of the graph, e.g. grid structure. Finally, the

properties/type of the functions embodied by the factors

are of interest, since for some subclasses specialized opti-

mization methods exists, e.g. metric energies [33] or Potts

functions [19].

2.2. Benchmark Models

Table 1 gives an overview of the models summarized in

this study. Note, some models have a single instance, while

others have a larger set of instances which allows to derive

some statistics. We now give a brief overview of all models.

A detailed description of all models is available online and

in the supplementary material.

http://hci.iwr.uni-heidelberg.de/opengm2/


modelname # variables labels order structure functiontype ref

P
ix

el

mrf-stereo 3 ∼100000 16-60 2 grid-N4 TL1, TL2 [33]

mrf-inpainting 2 ∼50000 256 2 grid-N4 TL2 [33]

mrf-photomontage 2 ∼500000 5,7 2 grid-N4 explicit [33]

color-seg-N4 9 76800 3,12 2 grid-N4 potts [29]

inpainting-N4 2 14400 4 2 grid-N4 potts [29]

object-seg 5 68160 4–8 2 grid-N4 potts [4]

color-seg-N8 9 76800 3,12 2 grid-N8 potts [29]

inpainting-N8 2 14400 4 2 grid-N8 potts [29]

color-seg 3 21000, 3,4 2 grid-N8 potts [4]

424720

dtf-chinese-char 100 ∼ 8000 2 2 sparse explicit [30]

brain 5 400000-7000000 5 2 grid-3D-N6 potts [1]

S
u

p
er

p
ix

el

scene-decomp 715 ∼ 300 8 2 sparse explicit [16]

geo-surf-seg-3 300 ∼ 1000 3 3 sparse explicit [15, 17]

geo-surf-seg-7 300 ∼ 1000 7 3 sparse explicit [15, 17]

correlation-clustering 715 ∼ 300 ∼300 ∼300 sparse potts [22]

image-seg 100 500-3000 500-3000 2 sparse potts [6]

3d-neuron-seg 2 7958, 7958, 2 sparse potts [9, 10]

101220 101220

O
th

er matching 4 ∼ 20 ∼20 2 full or sparse explicit [27]

cell-tracking 1 41134 2 9 sparse explicit [21]

Table 1: List of datasets used in the benchmark.

Pixel-Based Models For many low-level vision problems

it is desirable to make each pixel a variable in the model.

For 2D images, where variables are associated to pixels in a

2D lattice, a simple form of a factor graph model connects

each pixel with its four nearest neighbors using a pairwise

energy. This simple form is popular and was the sole subject

of the study [33]. In our study we incorporated the models

mrf-stereo, mrf-inpainting, and mrf-photomontage from [33].

Additionally we used three models which have the same

4-connected structure, inpainting inpainting-N4 [29], color

segmentation color-seg-N4 [29]2 and object segmentation

object-seg [4]. All sets have a small number of labels and use

Potts regularizers. In inpainting-N4 and color-seg-N4 this

regularizer is fixed for all factors. In object-seg, it depends on

the image-gradient. The unary terms measure the similarity

to predefined class-specific color models.

From a modeling point of view such models are restricted,

since they encode the assumption that each variable is con-

ditionally independent from all others given its immediate

neighbors. Hence important relations cannot be modeled by

a simple grid structure. For instance, better approximations

of the boundary regularization can be obtained by increas-

ing the neighborhood [12]. Therefore, models with denser

structures (both regular and irregular) as well as higher order

models have been introduced in the last decade. The datasets

inpainting-N8 and color-seg-N8 [29] include the same data-

term as inpainting-N4 and color-seg-N4 but approximate the

boundary length using an 8-neighborhood. Another dataset

with an 8-neighborhood and Potts terms depending on the

image-gradient is color-seg [4].

We also use a model with a 6-neighborhood connectivity

structure in a 3D-grid. It is based on simulated 3D MRI-

brain data [1], where each of the 5 labels represent color

modes of the underlying histogram and boundary length

regularisation [12] similar to color-seg-N4 in 2D.

2The inpainting-N4/8 and color-seg-N4/8-models were originally used

in variational approaches together with total variation regularisers [29]. A

comparison with variational models is beyond the scope of this study.

(a) image (b) input (c) TRWS

J = −49768

100 sec.

(d) MCBC

J = −49839

562 sec.

Figure 1: Example for a pixel based model [30].

(a) image (b) superpixels (c) MCA

Figure 2: Example for a superpixel partition model [6]: im-

age (left), superpixels (middle) and segmentation (right).

We also consider the task of in-painting in binary images

of Chinese characters, dtf-chinesechar [30]. The factors are

learned potentials from a decision tree field. Although each

variable has only two labels, their regional sparse neigh-

borhood structure makes the resulting inference problem

challenging, c.f . Fig. 1.

Superpixel-Based Models In these models, all pixels that

lie in the same superpixel are constrained to have the same

label. This reduces the number of variables in the model and

makes it attractive to add complex, higher order factors.

In the scene-decomposition-dataset [16] every super-

pixel has to be assigned to one of 8 classes. Pairwise

factors between neighboring superpixels enforces likely

label-neighborhoods. The datasets geo-surf-3 and geo-surf-

7 [15, 17] are similar but have additional third-order factors,

that enforce consistency of labels for three vertically neigh-

boring superpixels.

Superpixel-Based Partition Models Beyond classical su-

perpixel models, this study also considers a recent class of

superpixel models [22, 6, 9, 10] which aim at partitioning

an image without any class-specific knowledge, i.e. the cor-

responding energy function is invariant to permutations of

the label set. Since the partition into isolated superpixels is a

feasible solution, the label space of each variable is equal to

the number of variables of the model, and therefore typically

very large, c.f . Tab. 1. State-of-the-art solvers for classical

models either are inapplicable or perform poorly on these

models [19]. Moreover, commonly used LP-relaxations suf-

fer from the interchangeability of the labels in the optimal

solution.



(a) TRWS

J = 61.06, 0.1 sec.

(b) TRWS-LF2

J = 34.15, 0.5 sec.

(c) ogm-ASTAR

J = 19.36, 5.9 sec.

Figure 3: Example output for a matching model [27]: Green

dots represent the variables of a fully connected graph. The

discrete label assigns a green dot to a red dot (shown with a

line).

The hyper-graph image segmentation dataset correlation-

clustering [22] includes higher order terms that favor equal

labels for superpixels in their scope if those are visually sim-

ilar. The probabilistic image partition dataset image-seg [6]

contains factors between pairs of superpixels. Two models

for 3d neuron segmentation 3d-neuron-seg [10] give exam-

ples for applications in large scale data.

Other Models Our benchmark includes two models in

which neither pixels nor superpixels are used. The first is a

non-rigid point matching problem [27], see Fig. 3. In this

case the models include no unary terms, whereas the pair-

wise terms penalize the geometric distortion between pairs

of points. The second model is a cell tracking model [21].

Variables correspond to tracks of cells in a video sequence.

Since a track can either be active or dormant, the variables

are binary. Higher order factors are used to model the likeli-

hood of a “splitting” and “dieing” event of a cell.

3. Inference Methods

We consider more than 24 different inference methods

for evaluation. The selection of methods is representative of

the state of the art in the field. We now give a brief overview

of these methods. As for the model instances, we provide a

more detailed description along with parameter settings in

the supplementary material.

Polyhedral and Combinatorial Methods A large class of

algorithms solves a linear programming relaxation (LP) of

the discrete energy minimization problem. Perhaps the most

commonly used relaxation is the LP relaxation over the

local polytope. For small instances this can be done by

standard LP-solvers e.g. ogm-LP-LP [5]. For large prob-

lems this is no longer possible and special solvers have been

proposed that optimize a dual formulation of the problem.

A famous example is the block-coordinate-ascent method

TRWS [24], which, however, can get stuck in local fix points.

In contrast, subgradient methods (ogm-SUBGRAD-A) [18]

and bundle methods [18] with adaptive (ogm-BUNDLE-

A) or heuristic (ogm-BUNDLE-H) stepsize are guaranteed

to converge to the optimum of the relaxed dual3. In both

cases primal integer solutions are reconstructed from the

subgradients. Related to polyhedral methods are Integer

Linear Programs (ILPs). These include additional integer

constraints and guarantee global optimality, contrary to the

methods based on LP-relaxations. Solutions of ILPs are

found by solving a sequence of LPs and either adding addi-

tional constraints to the polytope (cutting plane techniques),

or branching the polytope into several polytopes (branch-

and-bound techniques). We evaluate three state-of-the-art

ILP solvers: IBM CPLEX wrapped by OpenGM2 [5] (ogm-

ILP), the current best performing method in the PIC called

breath-rotating and/or branch-and-bound [31] (BRAOBB),

and the AStar-Method (ogm-ASTAR) [11]. To reduce the

large memory requirements which come along with the vec-

torization of the objective for the LP, we also consider the

multicut-representation introduced by Kappes et al. [19].

This multicut solver (MCA) can only be applied for func-

tions which includes terms that are either invariant under

label permutations or of first-order. Additionally, we tested

a variant that only add facet-defining constraints during the

cutting plane procedure, called MCA-fdo. We also consider

a relaxed multicut version [22] (MCR) only applicable to

partition problems, and a max-cut solver (MCBC) for pair-

wise binary problems.4

Message Passing Methods Message passing methods are

simple to implement and can be easily parallelized, mak-

ing them a popular choice in practise. Polyhedral methods

can often be reformulated as a message passing method,

e.g. TRWS [24]. Also its non-sequential version TRBP [34]

can be written as a message passing algorithm. TRBP can

be applied to higher order models but has no convergence

guarantees. Practically it works well if sufficient message

damping [34] is used. Maybe the most popular message

passing algorithm is loopy belief propagation (LBP). While

LBP converges to the global optima for acyclic models, it

is only a heuristic for general graphs, which turns out to

perform reasonably well in practise. We evaluate the paral-

lel (LBP) and sequential (BPS) versions from [33], as well

the general higher order implementation using parallel up-

dates (ogm-LBP) from [5]. For parallel methods we use

message damping.

Max-Flow and Move-Making Methods In some cases

network flow algorithms exist that are equivalent to LP-

relaxations. These converge in finite time and are usually

much faster. For submodular second-order binary models

min s-t cut is such an example. For general second-order

binary models, QPBO [32] solves the LP relaxation over the

local polytope and provides a persistence certificate. An-

3Here we consider spanning trees as subproblems such that the relax-

ation is equivalent to the local polytope relaxation.
4The latter two methods are not publicly available and results were

kindly provided by the authors.



other class of common methods applies a greedy minimiza-

tion over the label space by solving a sequence of max-flow

problems. Three members of this class are α-Expansion (EX-

PANSION), α-β-Swap (SWAP) [13, 26] and FastPD [28].

We also consider a generalization of α-Expansion for gen-

eral problems and higher order factors known as α-Fusion

(FUSION), which fusion-moves and the order-reduction of

Fix et al. [14]. The Lazy Flipper [7] algorithm is similar in

that it iteratively applies a greedy search over local subsets.

It converges to a configuration which is optimal within a

Hamming distance in label space, without using max-flow

methods. The Lazy Flipper relies heavily on initialization,

for which we use standard methods.

4. Experimental Setup

Our benchmark builds on the success of the OpenGM2

framework [2, 5], which provides custom implementations

and wrappers to existing implementations, for several state-

of-art techniques. In the following, we use prefixes in

method names to indicate the source of the implementation.

Prefixes ogm and mrf are used to denote methods whose

source implementation is [5] and [33] respectively. Lack

of a prefix in some method names indicates that we used

available code from the corresponding authors and wrote

OpenGM2 wrappers. This is always possible because in con-

trast to other graphical-model libraries, OpenGM2 imposes

no restrictions on the class of allowed functions or topology

of the models. Furthermore, the use of a common platform

provides a uniform representation of models, as well as a

file format that is sufficiently general to store all models

in this study with affordable file sizes. All models used in

this study will be made available in the OpenGM2 file for-

mat. All experiments were conducted on a Xeon W3550

machine with 3.07GHz CPU and 12 GB RAM. In an attempt

to perform a fair comparison, each solver was allowed to use

only one thread, and only 3 of the 4 cores were used. The

evaluation of the parallelizability of the methods is beyond

the scope of this comparison. Furthermore, in order to keep

computational resources in check, we stop bundle, subgradi-

ent and message passing methods after 1000 iterations and

other polyhedral and combinatorial methods, which do not

have an applicable stopping criteria based on iteration, after

1 hour, if they have not yet converged.

Some evaluated algorithms do not use the OpenGM2

data structures and rather convert the instance into their own

internal data structures. In order to evaluate runtime, we

do not measure the time taken for an initial setup of mem-

ory buffers. During optimization we store the value of the

current integer solution and the lower bound after each iter-

ation, if applicable. The runtime of the algorithm does not

include the overhead for computing and maintaining such

intermediate statistics. Consequently, we can compare up-

per and lower bounds of the algorithms at various runtimes.

It is important to note that comparing algorithms solely in

terms of runtime has the effect of favoring implementation

efficiency over algorithmic efficiency. For instance, a gen-

eral implementation of the same algorithm will typically be

significantly slower than a specialized implementation that

makes assumptions about the problem structure (e.g. only

pairwise terms). In fact, our benchmark does include highly

optimized implementations for special problem-subclasses,

e.g. those from [33], as well as general, less optimized re-

search code. We observe a speed-up factor of 10− 100 for

an optimized implementation compared to a general imple-

mentation.

Clearly, not all methods can be used for all types of mod-

els. We made our best effort to apply methods to as many

models as possible. The supplementary material provides

detailed information about the data structures used by each

algorithm, specific restrictions on problem-classes and other

considerations.

5. Evaluation

Due to lack of space, we only provide a brief summary of

the benchmark results here. Detailed results for all instances,

including plots of energy values and bounds versus runtime,

are provided in the supplemental material and will be made

publicly available on the project webpage5.

It is important to note that in contrast to [33], our compar-

ison includes techniques with significantly different internal

data structures and underlying motivations. Specifically,

some solvers are specialized implementations for a certain

class of problems (e.g. grids with Potts functions), while

others make no assumptions about the problem and tackle

the general case (i.e. arbitrary functions and order). While

both paradigms have merit, it becomes challenging to quan-

tify their relative performance in a fair manner. Due to the

algorithmic complexity we expect a speedup of ∼ 100 for

specialized implementations of methods with prefix ogm, all

other methods should be comparable.

Over all our experiments, we found that FastPD is typ-

ically the fastest method, on problems where it is applica-

ble. Even though it only provides approximate solutions,

they are often of high quality. For difficult models like dtf-

chinesechar and matching, the exact solution is significantly

better than approximate ones, both in terms of energy and

quality. For some models, surprisingly, the exact methods

are faster than currently reported state-of-the-art methods.

Solutions from these exact methods are used for evaluating

the sub-optimality of the approximate solutions.

We also mention that even when they are not the fastest,

message passing, polyhedral, and exact polyhedral methods

often provide very good results quickly, and then spend

most of the time to verify optimality or achieve a stopping

criterion.

5http://hci.iwr.uni-heidelberg.de/opengm2/
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The tables below give a snapshot of the best performing

methods for various models. We report runtime (mean run-

time), objective value achieved by the final integer solution

(mean value), and lower bound achieved (mean bound).

All three quantities are averaged over all instances for a

model. Furthermore, we report how often (in terms of per-

centage) an algorithm returned the best6 (not necessary opti-

mal) integer solution among all results (best) and how often

the method was able to “verify optimality” by achieving a rel-

ative integrality gap smaller than 10−8 (ver. opt). Note that

for some instances, no method was able to verify optimality.

Second-Order Models Table 2 summarizes the results for

the stereo labeling problems from [33]. For instances of this

problem, methods like ogm-BUNDLE-A that solve the LP-

relaxation perform best. The mrf-TRWS method from [33]

produces the best solution on average, but does not solve the

LP-relaxation optimally, since the average lower bound is

not the tightest. Applying Lazy Flipper on top (TRWS-LF2)

improves the solution further.

Table 2: mrf-stereo (3 instances)

algorithm mean run time mean value mean bound best ver. opt

FastPD 4.47 sec 1614255.00 −∞ 0.00 0.00

FastPD-LF2 296.38 sec 1611484.33 −∞ 0.00 0.00

mrf-EXPANSION 13.04 sec 1614353.00 −∞ 33.33 0.00

mrf-TRWS 296.22 sec 1587928.67 1584746.53 0.00 0.00

ogm-BUNDLE-A 8458.49 sec 1610985.00 1584776.15 33.33 33.33

ogm-SUBGRAD-A 8533.41 sec 1752958.00 1578421.00 33.33 33.33

TRWS-LF2 668.47 sec 1587040.00 1584746.53 33.33 0.00

In contrast to the previous case, primal move-making

methods outperform LP-relaxation methods for the mrf-

photomontage model, also from [33]. Table 3 provides the

details. We believe this is because some unary terms have

infinite values. As observed in [33], mrf-EXPANSION is

both the fastest and achieves the best results on average.

The same behavior can be seen for the synthetic inpainting

instances inpainting-N4/8. The instance “inverse” is con-

structed such that the LP-relaxation over the local polytope

is not tight. In this case pure primal move-making methods

are superior, since they do not face the rounding problem

(see supplementary material for details).

Table 3: mrf-photomontage (2 instances)

algorithm mean run time mean value mean bound best ver. opt

mrf-EXPANSION 8.54 sec 168220.00 −∞ 100.00 0.00

mrf-SWAP 11.35 sec 180345.00 −∞ 0.00 0.00

mrf-TRWS 253.20 sec 1243144.00 166827.07 0.00 0.00

ogm-BUNDLE-H 4771.35 sec 599206.00 111100.35 0.00 0.00

ogm-SUBGRAD-A 4734.20 sec 3846787.00 26005.24 0.00 0.00

TRWS-LF2 431.34 sec 735193.00 166827.12 0.00 0.00

6For numerical reasons, a solution is considered to be “best” if its value

deviates by less than 10
−8 from the best value.

In Table 4, we analyze the color-seg-4 model that has fewer

variables and a simpler Potts regularization. In this case,

we are able to calculate the globally optimal solution us-

ing MCA. This is also true for other models with similar

characteristics, e.g. color-seg, object-seg, color-seg-n8, and

brain. Even the complex pfau-instance could be solved to

optimality in 3 hours. In this case, LP-based methods are su-

perior in terms of objective values, but EXPANSION, SWAP

and FastPD converged to somewhat worse but reasonable

solutions very quickly.

Table 4: color-seg-n4 (9 instances)

algorithm mean run time mean value mean bound best ver. opt

FastPD 0.35 sec 20034.80 −∞ 0.00 0.00

FastPD-LF2 13.61 sec 20033.21 −∞ 0.00 0.00

mrf-EXPANSION 1.24 sec 20031.81 −∞ 0.00 0.00

mrf-SWAP 0.86 sec 20049.90 −∞ 0.00 0.00

mrf-TRWS 33.15 sec 20012.18 20012.14 88.89 77.78

ogm-BUNDLE-A 692.39 sec 20024.78 20012.01 77.78 77.78

ogm-BUNDLE-H 1212.24 sec 20012.44 20012.13 77.78 22.22

ogm-SUBGRAD-A 1179.62 sec 20027.98 20011.57 66.67 11.11

MCA 982.36 sec 20527.37 19973.25 88.89 88.89

MCA-6h 1244.30 sec 20012.14 20012.14 100.00 100.00

All models so far consisted of truncated convex pairwise

terms. Arbitrary pairwise terms can lead to optimization

problems that are significantly harder to solve, as we found

in dtf-chinesechar in Table 5. In this case, the pairwise terms

are learned and happen to be a mix of attractive and repulsive

terms. Although these are medium sized binary problems,

the relaxations over the local polytope are no longer as tight.

Only the advanced polyhedral method (MCBC) [20] was

able to solve some (56) instances to optimality.

Table 5: dtf-chinesechar (100 instances)

algorithm mean run time mean value mean bound best ver. opt

BPS 72.85 sec -49537.08 −∞ 19.00 0.00

MCBC 2053.89 sec -49550.10 -49612.38 91.00 56.00

ogm-ILP 3580.93 sec -49536.59 -50106.17 8.00 0.00

QPBO 0.16 sec -49501.95 -50119.38 0.00 0.00

SA [30] n/a -49533.02 −∞ 13.00 0.00

TRWS 100.13 sec -49496.84 -50119.41 2.00 0.00

TRWS-LF2 106.94 sec -49519.44 -50119.41 11.00 0.00

The matching problems in Table 6 have very few vari-

ables, which is ideal for sophisticated ILP solvers. In-

deed, we observe that pure branch-and-bound algorithms

like BRAOBB or ogm-ASTAR can achieve global optimal-

ity relatively quickly. Again, standard LP-solvers do not

perform well, since the relaxation is not very tight. Lazy flip-

ping, as a post-processing step, can help significantly in these

situations, c.f . Fig. 3. Fusion moves with α-proposals does

not work well for matching instances. Generating problem-

specific proposals might overcome this problem.



Table 6: matching (4 instances)

algorithm mean run time mean value mean bound best ver. opt

BPS 0.17 sec 40.26 −∞ 25.00 0.00

BRAOBB 3.50 sec 21.22 21.22 100.00 100.00

FUSION 0.02 sec 1465000000000.00 −∞ 0.00 0.00

ogm-ASTAR 8.78 sec 21.22 21.22 100.00 100.00

ogm-BUNDLE-H 5.58 sec 7500000055.96 15.91 0.00 0.00

ogm-ILP 1287.07 sec 23.04 20.44 75.00 75.00

ogm-ILP-6h 1694.34 sec 21.22 21.22 100.00 100.00

ogm-LP-LP 33.17 sec 102500000036.76 16.35 0.00 0.00

TRWS 0.17 sec 64.29 15.22 0.00 0.00

TRWS-LF2 0.76 sec 32.38 15.22 0.00 0.00

Second-Order Models - Superpixel Models based on su-

perpixels differ from pixel-based models in two important

ways. First, they have a small number of variables and

second, they often have very strong unary data-terms that

make local polytope relaxations often tight. Consequently,

ILP-solvers become not only feasible, they outperform state-

of-the-art methods in terms of runtime. One example of this

behavior is the scene-decomposition model where ogm-ILP

performs best. Table 7 shows the results.

Table 7: scene-decomposition (715 instances)

algorithm mean run time mean value mean bound best ver. opt

BPS 0.17 sec -866.73 −∞ 79.16 0.00

BRAOBB 28.31 sec -866.93 −∞ 100.00 99.86

FUSION 0.07 sec -866.85 −∞ 82.10 0.00

ogm-BUNDLE-H 0.91 sec -866.93 -866.93 100.00 94.13

ogm-ILP 0.11 sec -866.93 -866.93 100.00 100.00

ogm-LP-LP 0.09 sec -866.92 -866.93 99.58 99.58

TRWS 0.17 sec -866.92 -866.93 99.58 99.58

Higher Order Models Higher order superpixel models

exhibit similar behavior as the second-order superpixel mod-

els. As long as the number of labels and the order of factors

is small, the linear objective is small and ILP-solvers outper-

form alternative methods. Table 8 shows an example, where

again ogm-ILP is the best and only FUSION converge faster,

but not always to optimal solutions.

Table 8: geo-surf-7 (300 instances)

algorithm mean run time mean value mean bound best ver. opt

BRAOBB 1031.34 sec 478.96 −∞ 82.67 74.33

FUSION 0.28 sec 477.83 −∞ 85.67 0.00

ogm-BUNDLE-H 97.91 sec 476.95 476.86 99.67 60.00

ogm-SUBGRAD-A 129.24 sec 479.26 473.16 53.33 4.00

ogm-ILP 0.87 sec 476.95 476.95 100.00 100.00

ogm-LBP 3.51 sec 498.45 −∞ 22.00 0.00

ogm-LP-LP 2.27 sec 476.95 476.94 99.67 99.67

For the cell tracking instance, shown in Table 9, ILP-

methods clearly outperform all the alternatives. Only the LP-

solver manages to find a solution that satisfies the constraints,

included as soft-constraint in the model. Applying the Lazy

Flipper as a post-processing can overcome this problem, as

shown for LBP.

Table 9: cell-tracking (1 instances)

algorithm mean run time mean value mean bound best ver. opt

ogm-LBP-LF2 308.83 sec 7515575.61 −∞ 0.00 0.00

FUSION 11.12 sec 34335812.82 −∞ 0.00 0.00

ogm-BUNDLE-H 1068.11 sec 107553778.57 7501875.98 0.00 0.00

ogm-ILP 32.77 sec 7514421.21 7514421.21 100.00 100.00

ogm-LBP 30.47 sec 407520058.41 −∞ 0.00 0.00

ogm-LP-LP 3.26 sec 7516359.61 7513851.52 0.00 0.00

Partition Models Partition models, shown in [19], are

challenging for classical MRF techniques, because any la-

bel permutation of an optimal solution is also an optimal

solution. An efficient way to solve these problems is by

transforming them into a multicut problem. We apply the

solver suggested in [19, 6] and also apply a variant that

only considers facet defining constraints (-fdo). For the

correlation-clustering dataset, which contains terms of or-

der up to 300, we also report the original results obtained

by an outer relaxation (MCR) [22]. Table 10 shows that

the approximate method is a factor of 3-times faster than

exact methods but can verify optimality only in 10% of the

cases. We observe for all partition models using only the

facet-defining constraints yields better runtimes. Overall, we

have optimal solutions for 3 different structured partition

models, c.f . Tab. 1.

Table 10: correlation-clustering (715 instances)

algorithm mean run time mean value mean bound best ver. opt

MCR 0.38 sec -624.35 -629.03 16.36 10.21

MCA 1.14 sec -628.16 -628.16 100.00 100.00

MCA-fdo 1.04 sec -628.16 -628.16 100.00 100.00

6. Conclusions

We presented a large set of discrete energy minimization

problems for computer vision applications whose variety

reflects progress of the field concerning both modelling and

MRF-based inference during the last decade.

For small and moderate problem sizes, advanced integer

programming methods using cutting-plane and branch-and-

bound techniques not only provide a global optimality certifi-

cate, but also tend to outperform alternative approximative

methods in terms of speed.

This is not the case yet for large-scale problems. In such

cases, whenever move making methods like α-expansion or

FastPD can be applied, they often efficiently provide solu-

tions that are accurate enough for many applications. Oth-

erwise, dedicated methods based on LP-relaxation provide

lower bounds on minimal energies and in turn reasonable

integer-valued solutions. Finally, for sophisticated models

LP-relaxations may not be tight enough. In these cases, pure

primal move making methods are faster and return better

solutions.



This work also includes a unifom and flexible software

framework that offers a broad range of inference algorithms

to researchers in computer vision. The project website pro-

vides all models and methods considered and gives the oppor-

tunity to add models and results of other inference methods

online. We hope this will encourage researchers to construct

more complex models and in turn novel optimization meth-

ods beyond second-order metric grid models.
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