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Abstract

Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that
has affected millions all over the world. With its rapid spread and increasing
numbers, it is becoming overwhelming for the healthcare workers to rapidly
diagnose the condition and contain it from spreading. Hence it has become a
necessity to automate the diagnostic procedure. This will improve the work
efficiency as well as keep the healthcare workers safe from getting exposed to the
virus. Medical image analysis is one of the rising research areas that can tackle this
issue with higher accuracy. This paper conducts a comparative study of the use of
the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2,
InceptionV3, Resnet50, and Xception) to deal with the detection and classification of
coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray
images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and
performance metrics were used to analyze each model. Results show DenseNet121
(99.48% of accuracy) showed better performance when compared with the other
models in this study.

Keywords: Artificial neural networks, Deep learning, Transfer learning, Multi-task
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1 Introduction

The novel coronavirus of 2019, or simply known as the COVID-19, affects the re-

spiratory tracts and the lungs leading to severe cases of pneumonia. The usual

symptoms include fever, dry hack cough, body ache, and loss of taste or smell. In

extreme cases, the patient may experience shortness of breath and multiple organ

failure and may lead to fatality (https://www.worldometers.info/coronavirus/).

While the world pharmaceutical companies are trying to develop vaccination to

prevent the spread of this pandemic, the current medical practice to control the

spread of COVID-19 is focused on early detection and isolation of the patient.

The current gold standard for COVID-19 detection is the real-time reverse

transcription-polymerase chain reaction (RT-PCR), where the short sequences of

DNA or RNA are reproduced or amplified and analyzed [1]. Fang et al. [2]
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reported that the RT-PCR testing has a low sensitivity of 71% while Williams et al.

[3] reported that the sensitivity of a single RT-PCR test in hospitalized patients is

82.2%.

Perceiving the limitations of RT-PCR, there is a need for cross-verification exam-

ination by using radiological images. Chest radiography, particularly chest X-ray, is

one of the most frequently performed diagnostic examinations even in underdevel-

oped areas. Radiographic scanning was proposed to detect pathological effects of

COVID-19 by examining chest radiological images of lungs of patients [4]. Several

studies have shown that changes in chest radiography images such as X-ray and

CT scan were noticed even before the appearance of clinical features of COVID-19

[5]. Interpretation of chest X-ray (CXR) and CT scans have widely been done by

radiologists to find some visual indicators for COVID-19 infection as an alternative

method for rapid screening of infected patients. For early-stage COVID-19 on

CXR, peripheral ground-glass opacities are observed which progresses to consolida-

tions at later stages [6, 7]. Since the studies have shown that the abnormalities

caused by COVID-19 are visible in chest X-rays, these abnormalities, especially the

opacities, are further used to detect COVID-19.

Radiological COVID-19 detection also experiences challenges due to its similar na-

ture and appearance with viral pneumonia radiographs. It requires medical experts to

identify the specific radiographic markers to distinguish between the two conditions.

With an enormous number of COVID-19 cases suspected daily, it is difficult to assign

enough time and resources to individual radiographs. This discrepancy between the

available experts and the need of the human expertise has promoted automation and

machine learning to fill this much-needed gap [8]. Over the last year, scientists and re-

searchers are unitedly working to automate the detection methods and provide intelli-

gent machines that can easily distinguish infectious COVID-19 cases from other similar

appearing cases. This study is conducted to explore these state-of-the-art techniques

that have shown promising result and compare it with the same parameters and data-

sets to identify the best DL model for COVID-19 detection.

2 Related work

Jain et al. [9] implemented ResNet-101 in the classification of COVID-19 and viral

pneumonia, achieving an accuracy of 97.78%. Che Azemin et al. [10] used pre-

trained ResNet-101 to detect COVID-19 in CXR with an accuracy of 71.9% as their

training dataset was based on airspace opacity instead of confirmed COVID-19

cases. Ismael et al. [11] also used ResNet-50 architecture but only for feature ex-

traction. The extracted features were classified using an SVM classifier with the

Linear kernel function and produced high accuracy of 94.7%. Makris et al. [12]

fine-tuned several CNN models and compared their performances in classifying

COVID-19, pneumonia, and normal images. VGG16 turned out to have the best

performance with an overall accuracy of 95.88% in their study. Abbas et al. [13]

proposed a new method to classify COVID-19, SARS, and normal CXR which is

called DeTraC (stands for Decompose, Transfer, and Compose). It is done by add-

ing a class decomposition layer to the pretrained models that can partition each

image class into sub-classes, but assemble back during prediction. By using VGG19

with the DeTraC approach, the model has achieved a classification accuracy of
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93.1%. Asif et al. [7] trained InceptionV3 using transfer learning techniques to dis-

tinguish COVID-19 from viral pneumonia and normal CXR and obtained an accur-

acy of 98%. Inspired by DarkNet architecture, Ozturk et al. [14] developed a deep

learning network named DarkCovidNet for automated COVID-19 diagnosis. The

model achieved an accuracy of 98.08% for binary (COVID-19 and normal) and

87.02% for multiclass (COVID-19, pneumonia, and normal) classification. Shelke

et al. [15] worked in the segregation of COVID-19 and normal pneumonia using

DenseNet-161 and achieved an accuracy of 98.9%. Minaee et al. [16] fine-tuned 4

pretrained networks (ResNet18, ResNey50, SqueezeNet, and DenseNet-121) and

compared their performance. Different cut-off thresholds for probability score were

experimented in this study. SqueezNet turned out to be the best model with a sen-

sitivity of 98% and a specificity of 92.9%. Das et al. [17] have developed a new

model with a weighted average ensembling method; the model comprises of three

pre-trained CNN models—DenseNet201, Resnet50V2, and InceptionV3. This ap-

proach has achieved an accuracy of 95.7% and a sensitivity of 98% in the classifica-

tion of positive and negative COVID-19 cases. Ridhi et al. [18] proposed a new

method to classify COVID-19, pneumonia, and normal CXR by using stacked of

DenseNet and GoogleNet as feature extractor, and then the features were classified

by the ensemble of XGB, RF, and SVM classifiers. The classification accuracy ob-

tained in this study is 91.7%. Gupta et al. [19] proposed an integrated stacked deep

convolution network called InstaCovNet-19 which makes use of InceptionV3, NAS-

Net, Xception, MobileNetV2, and ResNet101. The proposed model achieved an ac-

curacy of 99.53% in binary (COVID-19 vs non-COVID-19) classification and an

accuracy of 99.08% in 3-class (COVID-19, pneumonia, normal) classification. A 22-

layer CNN architecture was proposed by Hussain et al. [20] which achieved a clas-

sification accuracy of 99.1%, 94.2%, and 91.2% for binary, 3-class, and 4-class classi-

fication, respectively. Canayaz et al. [21] developed a model called MH-COVIDNet

that used VGG19 as a feature extractor and BPSO meta-heuristic algorithm (MH

algorithm) for feature selection. This approach obtained a classification accuracy of

99.38%. Khuzani et al. [22] performed feature extraction using different techniques

such as Texture, FFT, Wavelet, GLCM, and GLDM. In the study, a multilayer net-

work was created with 2 hidden layers of 128 and 16 neurons and a final classifier.

The 3-class classification (COVID-19, pneumonia, and normal) has achieved an ac-

curacy of 94%.

Table 1 List of databases used in this study

Dataset COVID-19 Pneumonia

1 CoronaHack-Chest X-Ray-Dataset [28] 19 4118

2 Covid_Data_GradientCresent [29] 69 158

3 Covid-19 Radiography Database [30] 1143 1345

4 Covid-chestxray-dataset [31] 142 –

5 Figure1-COVID-chestxray-dataset [32] 35 –

6 Actualmed-COVID-chestxray-dataset [33] 58 –

7 COVID-19-x-ray-10000-images [34] 70 –

8 ChestXRay2017 [35] – 8

Total 1536 5629
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From the above researches, it is observed that identification of the novel corona-

virus on radiological images using deep learning techniques has the potential to re-

duce the pressure on radiologists. However, with various researchers using different

deep learning methods, it is unclear which model provides the best result. There-

fore, this study compares various deep learning models that have given impressive

results in COVID-19 identification. In this study, we have fine-tuned existing

models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3,

Resnet50, and Xception) based on our classification requirements. These models

have shown remarkable results in pneumonia detection [23–25] and have also been

showing promising results with COVID-19 [11, 26, 27] classification. Hence, in this

study, we have compared them based on the same data and variables to determine

the best model to distinguish COVID-19 X-ray from pneumonia. The models have

been trained and tested on COVID-19 and pneumonia CXR images from multiple

datasets to avoid any biases. The models are then compared based on their per-

formance metrics and computational time taken. The results are carefully analyzed,

and the best model is chosen for this binary classification.

3 Materials and methods

3.1 Dataset

Due to the limitation of publicly available COVID-19 data, we have complied with mul-

tiple databases for this study. All images collected for pneumonia and COVID-19 are

from publicly available datasets. Table 1 tabulates the various databases and the num-

ber of images adopted from them; similar images were eliminated. A total of 1536

COVID-19 and 5629 pneumonia images were used for training, validation, and testing

of the models. The images collected from these databases were of various dimensions,

which was resized to 224 × 224 pixels.

From the total samples of COVID-19, 10% of samples was randomly selected for test-

ing. The remaining sample was split into 80% for training and 20% for validation.

Table 2 Data for training, validation, and testing

COVID-19 Pneumonia

Training 1101 1104

Validation 276 276

Testing 156 4249

Fig. 1 VGG16 architecture designed for binary classification
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Similarly, a balanced dataset was obtained by randomly selecting a similar number of

samples for training and validation of pneumonia and splitting them 80% for training

and 20% for validation. The remaining samples were used for testing. Table 2 tabulates

the total images used in each class used for training, validation, and testing. The train-

ing and validation tests were balanced to obtain a better result and to avoid overfitting

to the majority class that is the pneumonia cases. A balanced training set has been ob-

served to give the highest accuracy regardless of the instances in the test dataset [36].

Also, the models were exposed to images from various databases to avoid any biases to-

wards a database. Also, the imbalance between the two test sets was done to imitate a

real-life environment where a number of cases are not balanced and are not from one

particular source.

3.2 Transfer learning approach

There are two types of transfer learning in the context of deep learning, which are fea-

ture extraction and fine-tuning. In the feature extraction technique, a pretrained model

on some standard dataset such as ImageNet is used, but the top layer, which is used for

classification purpose, will be removed. Then on top of the pretrained model, it trains a

new classifier to perform classification. The pretrained model without the top classifier

is treated as an arbitrary feature extractor in order to extract useful features from the

new dataset. In the second approach which is fine-tuning, the pretrained model weights

are treated as the initial values for the new training, and they are updated and adjusted

in the training process. In this case, the weights are fine-tuned from generic feature

Fig. 2 VGG19 architecture designed for binary classification

Fig. 3 DenseNet121 architecture designed for binary classification
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maps to specific features associated with the new dataset. The goal of fine-tuning is

about adapting the generic features to a given task rather than overwriting the generic

learning.

For this study, a transfer learning approach was adopted and pre-trained weights

from ImageNet were used to compensate for the small training data set. With transfer

learning, the models were prevented from overfitting due to the small data set. In this

study, we fine-tuned the last layer of seven state-of-the-art deep learning models—

VGG16, VGG19, DenseNet12, Inception-ResNet-V2, InceptionV3, ResNet50, and

Xception—while using the pre-trained model as a feature extractor. To fine-tune these

models for binary classification, the last set of layers which consists of fully-connected

layers along with softmax activation function were replaced with a flatten layer, which

converts the data from the previous layer to a giant 1-dimensional tensor. A dropout of

0.5 was added for regularization, and lastly, a dense layer was added which applied soft-

max activation on previous layers and produce two outputs of probability for “COVID-

19” and “pneumonia” classes. The next section will briefly discuss the architecture of

these models and how they are used for this binary classification.

3.2.1 VGG16

The input of VGG16 is of fixed size 224 × 224 RGB image. It consists of 16 layers

which include 13 convolutional layers and 3 fully connected layers, including max-

pooling to reduce the volume size and softmax classifier following the last fully

Fig. 4 Inception-ResNet-V2 architecture designed for binary classification

Fig. 5 InceptionV3 architecture designed for binary classification
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connected layer. For this study, the last fully connected layer along with softmax activa-

tion is replaced with our designed classifier as shown in Fig. 1.

3.2.2 VGG19

The input of VGG19 is of fixed size 224 × 224 RGB image. It consists of 19 layers

which include 16 convolutional layers and 3 fully connected layers, including max-

pooling to reduce the volume size and softmax classifier following the last fully con-

nected layer. For this study, the last fully connected layer along with softmax activation

is replaced with our designed classifier as shown in Fig. 2.

3.2.3 DenseNet121

The input of DenseNet121 is of fixed size 224 × 224 RGB image. DenseNet121 consists

of 121 layers with parameters of more than 8 million. It is divided into DenseBlocks

where the dimensions of the feature maps are the same within the block but the num-

ber of filters is different. The layers between the blocks are called transition layers and

they apply batch normalization for down-sampling. For this study, the last fully con-

nected layer along with softmax activation is replaced with our designed classifier as

shown in Fig. 3.

Fig. 6 ResNet50 architecture designed for binary classification

Fig. 7 Xception architecture designed for binary classification
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3.2.4 Inception-ResNet-V2

The basic building block of Inception-ResNet-V2 is called Residual Inception Block. A

1 × 1 convolution filter expansion layer is used after each block to scale up the filter

bank dimensionality before the addition to match the depth of the input. This architec-

ture uses batch normalization only on top of the traditional layers. Inception-ResNet-

V2 is 164 layers deep and has an image input size of 299 × 299. The Residual Inception

Block incorporates multiple-sized convolutional filters with residual connections. With

the use of residual connections, this architecture prevents the problem of degradation

due to deep networks and reduces the duration of training. Figure 4 explains our fine-

tuned model of Inception-ResNet-V2 for COVID-19 and pneumonia classification.

3.2.5 InceptionV3

InceptionV3 is made up of 484 layers consisting of 11 inception modules. It has an

image input size of 299 × 299. Each module consists of convolution filters, pooling

layers, and ReLu activation function. Without downgrading the network efficiency,

InceptionV3 reduces the number of parameters by factorizing convolutions. Incep-

tionV3 also proposed novel downsizing to reduce the number of features. Figure 5 ex-

plains our fine-tuned model of InceptionV3 for COVID-19 and pneumonia

classification.

3.2.6 ResNet50

ResNet50 is a variant of ResNet or Residual Network. It consists of 48 convolutional

layers, 1 MaxPool, and 1 average pool layer. Each convolution block has 3 convolution

Table 3 Accuracy and loss during training and validation

Best
epoch

Training
loss

Training
accuracy

Validation
loss

Validation
accuracy

VGG16 21 0.0100 0.9990 0.0000e+00 1.0000

VGG19 22 0.0122 0.9994 0.0000e+00 1.0000

DenseNet121 20 6.1363e−09 1.0000 7.2103e−07 1.0000

Inception-ResNet-
V2

9 0.0022 0.9993 0.0011 1.0000

InceptionV3 3 0.0472 0.9943 0.0554 0.9963

ResNet50 4 1.1188e−04 1.0000 0.0633 0.9982

Xception 4 0.0430 0.9951 0.0325 0.9926

Fig. 8 VGG16 accuracy loss graph
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layers, and there are also 3 convolution layers in each identification block. ResNet-50

has more than 23 million parameters which can be trained. Figure 6 explains our fine-

tuned model of ResNet50 for COVID-19 and pneumonia classification.

3.2.7 Xception

Xception was proposed by Chollet in 2016, the creator of the Keras library. It is an

adaption of the Inception architectures in which the Inception modules are replaced

with depth-wise separable convolutions. Xception outperformed the traditional Incep-

tionV3 with higher Top-1 and Top-5 accuracy on ImageNet dataset. The number of

parameters of Xception is roughly the same as InceptionV3 (around 23 million). Fig-

ure 7 explains our fine-tuned model of Xception for COVID-19 and pneumonia

classification.

3.2.8 Model training

For this study, all deep learning models—VGG16, VGG19, DenseNet121, Inception-

ResNet-V2, InceptionV3, Resnet50, and Xception—were trained on 12 GB NVIDIA

Tesla K80 GPU. All the images of the dataset were resized to 224 × 224 pixels. For the

algorithm development and implementation of CNN, the deep learning library – Ten-

sorFlow 2.4 with Keras API was used. The model was trained using the categorical

cross-entropy loss function to measure the performance of the model from the ground

truth probabilities. The categorical cross-entropy loss function is defined as:

Fig. 9 VGG19 accuracy loss graph

Fig. 10 DenseNet121 accuracy loss graph
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Categorical cross−entropy loss : −

XM

c¼1
yi;c log pi;c

� �

ð1Þ

where M indicates the class and yi, c and pi, c indicates the ground truth and predicted

probabilities for individual images. We then minimized the loss function and improved

the efficacy using Adam optimizer with a learning rate of 0.001. We implemented an

early stopping technique based on validation performance to overcome the issue of

overfit or underfit model. Validation loss was used as a performance measure to ter-

minate the training when no improvement in performance was observed in 20 consecu-

tive epochs.

3.3 Performance metrics

After the models finished training, they were tested on test set to evaluate the model

accuracy. The models were tested on 156 COVID-19 images and 4249 pneumonia im-

ages. To evaluate the performance of the models, the metrics adopted include overall

classification accuracy, recall (also known as sensitivity), precision, and F1-score. The

metrics are defined as follow:

Accuracy :

TP þ TN

TP þ TN þ FP þ FN
ð2Þ

Precision :

TP

TP þ FP
ð3Þ

Recall :

TP

TP þ FN
ð4Þ

Fig. 11 Inception-ResNet-V2 accuracy loss graph

Fig. 12 InceptionV3 accuracy loss graph
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F1−score :

2� Recall � Precisionð Þ

Recall þ Precisionð Þ
ð5Þ

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and

false negative. In this study, if the COVID-19 image is correctly classified, it is counted

as TP, while if incorrectly classified as pneumonia, it is counted as FN. On the other

hand, if a pneumonia image is classified correctly, it is counted as TN and the incor-

rectly classified as COVID-19 is FP. A confusion matrix was plotted to depict the num-

ber of correctly classified images, and a classification report was generated using the

scikit-learn metrics function.

4 Experimental results and discussions

The accuracy and loss values in training and validation process are listed in Table 3

and shown in Figs. 8, 9, 10, 11, 12, 13, and 14 for each fine-tuned model. When com-

paring the number of epochs taken by each model to reach the minimum validation

loss, it is observed that InceptionV3, ResNet50, and Xception reached a minimum loss

at just 3, 4, and 4 epochs, respectively. With few epochs, they are able to achieve valid-

ation accuracy of 99% and above. This indicates that these models are able to learn the

distinctive features between COVID-19 and pneumonia very quickly. However, when

loss and accuracy are taken into consideration, it is observed that the training accuracy

is highest for DenseNet121 and ResNet50; however, the DenseNet121 has the lowest

training loss. For the validation set, VGG16, VGG19, DenseNet121, and Inception-

ResNet-V2 have higher accuracy; however, DenseNet121 has the lowest validation loss.

Fig. 13 ResNet50 accuracy loss graph

Fig. 14 Xception accuracy loss graph
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Hence, from this data, it can be summarized that the DenseNet121 model exhibits

higher training and validation performance among the seven models.

The confusion matrix displays numbers of images identified correctly and incorrectly

by the model. The confusion matrix was generated for both the validation dataset and

the test dataset. The validation dataset comprised of 276 COVID-19 and 276 pneumo-

nia images whereas the test dataset comprised of 157 COVID-19 and 4250 pneumonia

images. Table 4 below summarized the confusion matrix for all the seven models. It

can be observed that though multiple models performed well during the validation,

DenseNet121 has the lowest false positive and false negative, indicating that the Dense-

Net121 model, as shown in Fig. 15, made the least number of errors while predicting

the image was COVID-19 or pneumonia.

This study even compared these pre-trained models based on the accuracy, precision,

recall, and F1 score as tabulated in Table 5. It is observed that DenseNet121 gave good

classification performance with an accuracy of 99.48%, followed by ResNet50 with

99.32% accuracy. Table 5 also compares the computational times taken by each model

for training and testing. It is seen that the InceptionV3 takes the least time (11 min 50

s) for training; however, it is slow during testing (16 min 14 s), whereas DenseNet121

was slower during training (20 min), but it was the fastest during testing (15 min 36 s)

with the highest accuracy.

From the above result, we recommend DenseNet121 (99.48% accuracy, 99.54%

precision, 99.48% recall, and 99.49% of F1 score) for classification of COVID-19

Table 4 Confusion matrix

Model Validation Testing

TP TN FP FN TP TN FP FN

VGG16 276 276 0 0 157 4210 40 0

VGG19 276 276 0 0 157 4214 36 0

DenseNet121 276 276 0 0 156 4228 22 1

Inception-ResNet-V2 276 276 0 0 156 4172 78 1

InceptionV3 276 274 2 0 155 4206 44 2

Resnet50 275 276 0 1 156 4221 29 1

Xception 274 274 2 2 155 4179 71 2

Fig. 15 DenseNet121 confusion matrix
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from pneumonia cases on chest X-ray, further comparing our fine-tuned Dense-

Net121 with the studies recently published that also performed binary classifica-

tion, particularly COVID-19 and pneumonia images. Shelke et al. [15] used a

deeper network, DenseNet-161, but the accuracy obtained is lower, which might

be due to the lower number of training images. Compared with other works that

worked on the binary classification of CXR images, our model has the second

highest accuracy (Table 6). The highest binary classification accuracy is obtained

by Gupta et al. [19] using their proposed network called InstaCovNet-19.

5 Conclusion

Deep learning algorithm can aid healthcare workers in detecting COVID-19 with

minimal processing of chest X-ray images. In this study, 2-class datasets were cre-

ated which included COVID-19 and pneumonia images obtained from open

Table 5 Performance metrics

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

Training time
(s)

Testing time
(s)

VGG16 99.09 99.28 99.09 99.14 1353 1012

VGG19 99.18 99.34 99.18 99.22 1344 946

DenseNet121 99.48 99.54 99.48 99.49 1200 936

Inception-ResNet-
V2

98.21 98.79 98.21 98.38 899 1083

InceptionV3 98.96 99.17 98.96 99.02 710 974

ResNet50 99.32 99.42 99.32 99.35 783 1056

Xception 98.34 98.83 98.34 98.49 750 865

Table 6 Comparison with other related work that performed binary classification on CXR images

Author
(year)

CNN architectures Image
classification

Total
dataset

Accuracy

Nayak et al. [37] ResNet-34 COVID-19 and normal COVID-19: 775
Normal: 775

98.33%

Ismael and Şengür
[11]

ResNet50 feature + SVM COVID-19 and normal COVID-19: 180
Normal: 200

94.7%

Ozturk et al. [14] DarkCovidNet COVID-19 and no-findings COVID-19: 177
No-findings: 500

98.08%

Amit Kumar et al.
[38]

Ensembling method: three
pretrained CNN models—
DenseNet201, Resnet50V2,
and Inceptionv3

COVID-19 positive and
COVID-19 negative

COVID-19 +ve:
538
COVID-19 −ve:
468

95.7%

Gupta et al. [19] InstaCovNet-19 (integrated
stacking of InceptionV3,
NASnet, Xception, MobileNetV2
and ResNet101)

COVID-19 and non-COVID COVID-19: 361
Normal: 365

99.53%

Hussain et al. [20] CoroDet COVID-19 and normal COVID-19: 2843
Normal: 1108

99.1%

Shelke et al. [15] DenseNet-161 COVID-19 and pneumonia COVID-19: 500
Pneumonia: 500

98.9%

Jain et al. [9] ResNet-101 COVID-19 and viral
pneumonia

COVID-19: 440
Viral pneumonia:
480

97.78%

This study DenseNet-121 COVID-19 and
pneumonia

COVID-19: 1536
Pneumonia:
5629

99.48%
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sources. Several state-of-the-art pretrained neural networks that include ResNet50,

DenseNet121, InceptionV3, VGG16, VGG19, Inception-ResNet-V2, and Xception

were experimented using transfer learning technique. The best model turned out

to be DenseNet-121 which accomplished an accuracy of 99.48%, followed by

ResNet50 with a classification accuracy of 99.32%. This study summarizes that the

detection models built using CNNs with transfer learning technique are able to

perform good binary classification tasks on COVID-19 and pneumonia images.

COVID-19 and viral pneumonia CXR images contain similar features which are

challenging for the radiologist to interpret. However, the CNN model can easily

learn the features in just a few epochs of training and classify the images correctly.

The high accuracies obtained suggest that the deep learning models could find

something distinctive in the CXR images and that makes the deep networks cap-

able of distinguishing the images correctly. These trained models can effectively re-

duce the workload of medical practitioners and increase the accuracy and

efficiency of COVID-19 diagnosis.
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