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Abstract. Weld bead plays an important role in determining the quality of welding particularly in high heat

input processes. This research paper presents the development of multiple regression analysis (MRA) and

artificial neural network (ANN) models to predict weld bead geometry and HAZ width in submerged arc

welding process. Design of experiments is based on Taguchi’s L16 orthogonal array by varying wire feed rate,

transverse speed and stick out to develop a multiple regression model, which has been checked for adequacy and

significance. Also, ANN model was accomplished with the back propagation approach in MATLAB program to

predict bead geometry and HAZ width. Finally, the results of two prediction models were compared and

analyzed. It is found that the error related to the prediction of bead geometry and HAZ width is smaller in ANN

than MRA.

Keywords. Submerged arc welding (SAW); multi-regression analysis (MRA); artificial neural network

(ANN); bead geometry and HAZ width.

1. Introduction

Submerged arc welding (SAW) is one of the most essential

welding processes in manufacturing industries [1]. The

weld bead plays an important role in determining the

quality of the weld. Therefore, it is very important to set the

proper welding process parameters to get the best bead

geometry and HAZ width [2]. In SAW the weld quality is

mainly influenced by independent variables like wire feed

rate (Wf), electrode stick (So) out and traverse speed (Ts),

and these are also represented the strength of weldment [3–

6]. So, it is necessary to control these input parameters for

quality welding. Yang et al [6] used a regression model to

control the process parameters of SAW. Raveendra and

Parmaris [7] applied regression analysis to predict the

welding geometry. Sen et al [8] developed a mathematical

model by using a multiple linear regression analysis in

MINITAB 13.1 to predict the weld bead geometry for

double pulse gas metal arc welding process. Rao et al [9]

developed a mathematical model based on multiple

regression analysis (MRA) to correlate the welding process

parameters and weld bead geometry and prediction of bead

geometry in pulsed GMA welding.

But most of the industrial processes are non-linear,

complex, and the linear mathematical models are not giving

a closer approach to describe the behavior of the processes.

Recently, for observing and controlling the welding pro-

cesses parameters many artificial intelligence (AI) methods

or technique such as fuzzy logic (FL), artificial neural

networks (ANN) [10–13], artificial neural fuzzy interface

system (ANFIS) [14] and expert system have been

deployed as key techniques. Many researchers (Ghosh et al

[15], Li et al [16]) advocating the advantages of the above-

mentioned models consideration of simplicity, applicabil-

ity, powerful tools are reviewed. Nagesh and Datta [17]

reported that artificial networks are powerful tools for

analysis and modeling. An ANN model has been developed

to establish the relationship between the welding process

parameters and the weld bead geometry in laser welding

[18], GMAW [19]. To predict and optimize the depth of

penetration in hybrid CO2 laser–MIG welding, an artificial

neural network was used for 5005 AI–Mg alloy [20]. Dhas

and Kumanan [21] present the development of Neuro

hybrid model (NHM) to predict weld bead width in SAW.
*For correspondence

549
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A comparison of multiple regression analysis (MRA)

with artificial neuron network (ANN) was used as methods

of predicting the bead geometry and mechanical properties

[22–30]. In 2014, Xiong et al [31] reported that the neural

network model has a better performance than regression

model for predicting the bead geometry in GMAW process.

Kim et al [32] studied the back propagation neural network

(BPNN) considerably more accurate than multiple regres-

sions (MRA) in modeling bead height in metal arc welding.

Moreover, the prediction with ANN is more accurate than

that with a regression equation [33].

Based on above trend, the main objective of this study is

to develop an MRA and ANN models and techniques for

predicting the weld bead geometry and HAZ width by a

SAW for a given set of welding parameters. Finally, the

results by the two prediction models were compared and

analyzed.

2. Experiment design and procedure

In the experiment, AISI 1015 mild steel plates of sizes

200 mm 9 100 mm 9 12 mm and 3.15 mm diameter mild

steel electrode coated with copper were used. Table 1 shows

the chemical composition of the experimental plates and

electrode wire. Welding is completed by depositing bead on

plate in SAW machine (ADOR WELDING LTD. INDIA,

Machine No: MODEL PS-1200 (F)) as shown in figure 1.

The variations of the input parameters are done as per design

matrix, keeping the voltage constant. As the voltage change

in the actual welding is minimum and also not controllable

as per design of the power source. So, as input variables it is

not included in the present study. However, its value is

recorded by induction type multimeter putting on the cable.

Flux used in this experiment is fused type silicon product

with grain size 0.2–1.6 mm with basicity index 1.6 and the

chemical composition is given in table 2.

3. Plan of investigation

The present work was planned to be carried out in the

following steps:

• Identifying the important process parameters and

finding their limits.

• Developing the design matrix and conducting the

experiments.

• Recording the response variables such as penetration

(P), bead width (W), reinforcement (R), and HAZ

width.

• Developing mathematical models by MRA method.

• Calculating the regression co-efficient.

• Improvement of final mathematical model.

• Predicted the bead geometry shape and size by ANN

model

• Comparison of MRA and ANN model.

• Analysis of results.

3.1 Selection of process parameters and their

working ranges

Based on the effect on weld bead geometry, ease of control

and capability of being maintained at the desired level,

three independently controllable process parameters were

identified to enable the carrying out of experimental work

and developing the mathematical model. These are wire

feed rate (Wf), stick out or nozzle to plate distance (So),

traverse speed (Ts) and their upper and lower limits together

with notations and units are given in table 3.

3.2 Developing the design matrix and conducting

the experiments as per the design matrix

In the present study, since three factors, each with four

levels was selected as controllable process parameters

Table 1. Chemical composition (wt%) of the base plate and electrode wire.

Element Carbon Manganese Slicon Phosphorus Sulphur Carbonequ

Base metal 0.163 0.419 0.150 0.0190 0.0130 0.240

Electrode 0.040 0.40 0.050 – – –

Table 2. Chemical composition of flux.

Element Al2O3 ? MnO2 CaO ? MgO SiO2 ? TiO2 CaF2
Wt% 35% 25% 20% 15%

Figure 1. SAW machine [the wire feed = 50 to 450 cm/min,

welding speed = 0 to 150 cm/min and voltage = 415 V (max.)].
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variables were selected for conducting the experiments.

The design matrix comprises 16 experiments is used to

study the entire welding parameter space when the Tagu-

chi’s L16 orthogonal array design matrix is used. Sixteen

sets of test plates were welded as per the design matrix by

selecting trails at random. The experimental layout for the

welding process parameters using the L16 orthogonal array

design matrix is shown in table 4 and table 5.

Table 3. Welding process control parameters and their levels.

Parameters Units Notation Level 1 Level 2 Level 3 Level 4

Wire feed rate mm/min Wf 105 140 175 210

Stick out mm So 15 20 25 30

Traverse speed m/min Ts 0.75 0.9 1.15 1.2

Table 4. Design matrix with code independent process variables.

Experimental no.

Coded variable Actual variable

Wire feed rate (Wf) Stick out (So) Traverse speed (Ts) Wire feed rate (Wf) Stick out (So) Traverse speed (Ts)

1 1 1 1 105 15 0.75

2 1 2 2 105 20 0.9

3 1 3 3 105 25 1.15

4 1 4 4 105 30 1.2

5 2 1 2 140 15 0.9

6 2 2 1 140 20 0.75

7 2 3 4 140 25 1.2

8 2 4 3 140 30 1.15

9 3 1 3 175 15 1.15

10 3 2 4 175 20 1.2

11 3 3 1 175 25 0.75

12 3 4 2 175 30 0.9

13 4 1 4 210 15 1.2

14 4 2 3 210 20 1.15

15 4 3 2 210 25 0.9

16 4 4 1 210 30 0.75

Table 5. L16 design matrix with the experiment values of bead penetration, bead width, reinforcement and HAZ width.

Experimental no. Wf So Ts Penetration (mm) Bead width (mm) Reinforcement (mm) HAZ width (mm)

1 105 15 0.75 4.00 12.00 1.86 1.40

2 105 20 0.90 3.80 11.20 1.80 1.37

3 105 25 1.15 3.10 10.25 1.70 1.30

4 105 30 1.20 3.20 10.10 1.50 1.10

5 140 15 0.90 4.10 14.10 2.41 1.46

6 140 20 0.75 4.80 13.26 2.45 1.82

7 140 25 1.20 3.56 11.36 2.27 1.16

8 140 30 1.15 4.00 10.76 2.37 1.37

9 175 15 1.15 5.80 11.10 2.76 1.22

10 175 20 1.20 5.30 10.00 2.79 1.24

11 175 25 0.75 6.10 12.60 3.04 1.83

12 175 30 0.90 6.26 11.30 3.50 1.55

13 210 15 1.20 6.40 9.44 3.44 1.34

14 210 20 1.15 7.30 10.00 3.40 1.30

15 210 25 0.90 7.28 11.00 3.50 1.87

16 210 30 0.75 6.52 11.46 4.45 1.77
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3.3 Recording the response parameters

Once the welding is over, all welded plates were cut

approximately 100 mm long 9 10 mm wide, transverse to

the welding direction using a Buehler Abrasimet abrasive

Cutter which included the bead shape and size, the heat

affected zone and the base metal. After cutting, the samples

were polished by different emery papers in 150, 400, 600,

1000, 1200, 1500 and up to 2000 grit papers as per ASTME3.

Then prepared samples are etchant with 2% Nital solution.

Then the specimens are observed through low magnification

microscope attached with the micro hardness tester (Vicker’s

Micro hardness test machine, Model: HV-10) and the scale is

used to find the dimension of various parameters of bead

geometry and HAZ width. Figure 2 and figure 3 are showing

the typical welded samples and weld bead geometry respec-

tively. The average values of weld penetration (P), width

(W) and reinforcement (R) and HAZ width (from the two

specimens for the same welding condition) were taken for

each experiment. The dimensions of weld bead geometry of

each welding condition are provided in table 5.

3.4 Development of mathematical models

An MRA was carried out for better understanding of the

effects of the input variables on the output variables and a

linear regression equation is also deduced for the prediction

of the output variables. So, a mathematical model can be

developed for predicting and to establish the interrelationship

between welding process parameters to weld geometry and

HAZ width by MRA. The general response function repre-

senting any of the weld-bead dimensions can be expressed as

Y ¼ f Wf ; So; Ts
� � ð1Þ

Y ¼ b0 þ b1Wf þ b2So þ b3Ts ð2Þ
where Y is the depended variables or response variables

such as penetration, bead width, reinforcement and HAZ

width; b0, b1, b2 and b3 is the coefficient.

3.5 Estimation of coefficients of the model

The values of the regression coefficients of the above

polynomial were calculated with the help of Minitab sta-

tistical software. The estimated regression coefficients are

given in table 6. The value of regression co-efficient gives

an idea as to what extent the process parameter variables

affect the response parameters. Higher values of regression

co-efficient signify high influence of input variables on the

response parameters and inversely relationship is found for

the value of regression co-efficient which is negative.

3.6 Testing the significance of regression

coefficients

The value of the regression coefficients gives an idea as to

what extent the control variables affect the output or

response variables. The less significant coefficients can be

dropped along with the responses with which they are

related, without sacrificing accuracy. To achieve this,

p value is used. According to this test when the calculated

value of p\ 0.05 for the desired level of probability (say

95%), the regression coefficient becomes significant

(table 7). These conditions were satisfied for the develop-

ment of final mathematical model.

3.7 Development of final mathematical model

The significant regression coefficients, thus selected were

recalculated and final models were developed using only

these coefficients. The final mathematical model is used to

predict the weld bead geometry and HAZ width by sub-

stituting the above significant coefficient values in Eq. (2).

This is done as per design table in coded form of the

Figure 2. Image of welded samples.

Figure 3. Weld bead geometry.
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independent variables. Finally, based upon regression

analysis the following linear equations are developed and

proposed as follows:

P ¼ 2:88þ 1:20Wf � 0:259Ts ð3Þ
W ¼ 14:8� 0:964Ts ð4Þ

R ¼ 1:36þ 0:648Wf � 0:171Ts ð5Þ
HAZ width ¼ 1:63þ 0:0822Wf � 0:188Ts ð6Þ

4. Methodology of artificial neural network
modeling

The arrangement of neurons into layer and the connection

pattern within and between the layers are called as network

architecture. The architecture consists of three parts

1. Input layer receives the welding parameters

2. Hidden layer

3. Output layer obtaining the predicted values of response

parameters.

The performance of the neural networks depends upon,

the number of hidden layers and number of neurons in the

hidden layers. It was trained to help of back propagation

(BP) algorithm in MATLAB. The flow chart for the back

propagation algorithm is shown in figure 4.

In training, it is essential to balance the importance of

each parameter, the data must be normalized. Since, neural

networks works better in the range of 0 to 1, the input and

output vector values are converted in the range of 0 to 1

using the following equation.

Xn ¼ X � Xminð Þ = Xmax � Xminð Þ ð7Þ
where Xn = normalized value, X = actual input (or output)

value, Xmax = Maximum value of the inputs (or outputs),

Xmin = Minimum value of the inputs (or outputs)

The designed neural network structure was 3-5-4 (3

neurons in input layer, 5 neurons in hidden layer and 4

neurons in output layer). Many different ANN network

algorithms have been proposed in welding process, but

back propagation (BP) algorithm has been found to be the

best for prediction [12]. And proposed back propagation

neural network architecture is shown in figure 5.

5. Results and discussion

Multiple linear regression analysis is one of the most

widely used methodologies for expressing the dependence

of response parameters on several independent input

Table 6. Estimated regression coefficients of mathematical model for bead geometry parameters and HAZ width.

Coefficients Penetration (p) Bead width (W) Reinforcement (R) HAZ width

b0 2.8825 14.2513 1.36375 1.63125

b1 1.1985 -0.3408 0.64825 0.08225

b2 -0.0725 -0.0428 0.06925 0.03525

b3 -0.2595 -0.8737 -0.17075 -0.18775

Table 7. ANOVA analysis for bead geometry and HAZ width.

Response parameter Source Sum of squares Degree of freedom Adj. mean- squares F-value p-value

P Regression 30.1800 6 10.0600 39.95 0.000

Residual error 3.02200 9 0.25200

W Regression 27.2060 6 3.02289 7.11 0.013

Residual error 2.54950 9 0.42491

R Regression 9.55748 6 1.06194 23.39 0.001

Residual error 0.27241 9 0.04540

HAZ width Regression 1.01480 6 0.11275 6.70 0.016

Residual error 0.10100 9 0.01683

Figure 4. Flow chart for neural network.
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parameters. At first the analysis of variance (ANOVA) of

the regression model is considered for the significance and

also considered for finding the correlation among the

variables for the better accuracy of the statistical model.

The experimental data were used to develop linear models,

and analysis of the models was carried out through

ANOVA (table 7). Above all the final mathematical model

equation is validated by R2-vlaue (94.4%, 91.43%, 97.23%

and 90.95%) (table 8). The Adjusted R2-value statistic

compensates for the number of variables in the model and it

will only increase if added variables contribute significantly

to the model. The adjusted R2-value suggests the strength

of the model. The Adjusted R2-value statistic in the model

for penetration, bead width, reinforcement and HAZ width

are nearly 80% (table 8). It means that 80% of the variation

in the bead geometry shape and size can be attributed to

these three variables (wire feed rate, transverse speed and

stick out) which ultimately suggest the good explanatory

power of the regression equation.

A multi regression equation (i.e., Eqs. 3–6) was used to

predict the weld bead geometry and HAZ width. The

validity of the above equations can be judged from their

coefficients of correlation and also from scatter-diagrams

(figures 6, 7, 8, 9), which indicated that, a good relationship

between the actual and predicted values of bead geometry

and HAZ width exists. After that the value of various

Figure 5. Back propagation neural network architecture.

Table 8. ANOVA results for mathematical model validation.

Response parameter R-Square (%) Adjusted R-square (%)

P 94.40 86.00

W 91.43 78.58

R 97.23 93.07

HAZ width 90.95 77.37

Figure 6. Scatter diagram for penetration.

Figure 9. Scatter diagram for HAZ width.

Figure 8. Scatter diagram for reinforcement.

Figure 7. Scatter diagram for bead width.

554 Abhijit Sarkar et al



parameters of bead geometry and HAZ width is calculated

based upon above linear equation of the regression model

and presented in table 9. The results of the experimental

values and predicted values are compared and the related

graphs are shown in figures 10, 11, 12 and 13. From the

graphs, it is observed that the weld bead geometry and HAZ

width are in good agreement except for a few combinations

of parameters. Similarly the result obtained from ANN

model is also provided in table 9.

Figures 14, 15, 16 and 17 show that the relationship

between the experimental and predicted values of bead

geometry and HAZ width in the artificial neural network. It

can be seen from figures; the experimental and predicted

values of bead geometry shape and size are too close to

each other.

Further, a comparison of MRA and ANN was done to see

the efficiency of a particular model. In this respect com-

parison graphs of predicted values of bead geometry and

HAZ width are in figures 18, 19, 20 and 21. From this

comparison it appears that ANN is better model comparable

to MRA for predicting bead geometry and HAZ width. As

the ANN model is based on non-linear concept comparable

to MRA which is based on linear concept, the prediction is

more accurate. However, the variation of the result based

upon the above two models are within ±20% (table 10).

Table 9. Comparison of actual and predicted values of the bead geometry and HAZ width for MRA and ANN model.

Sl. no P W R HAZ width

MRA predicted value ANN predicted value

P W R HAZ width P W R HAZ width

1 4.00 12.00 1.86 1.40 3.82 13.84 1.84 1.52 3.99 12.00 1.85 1.39

2 3.80 11.20 1.80 1.37 3.56 12.87 1.67 1.34 3.79 11.20 1.80 1.36

3 3.10 10.25 1.70 1.30 3.30 11.91 1.50 1.15 3.14 10.19 1.71 1.29

4 3.20 10.10 1.50 1.10 3.04 10.94 1.32 0.96 3.15 10.15 1.49 1.1

5 4.10 14.10 2.41 1.46 4.76 12.87 2.31 1.42 3.86 14.09 2.84 1.46

6 4.80 13.26 2.45 1.82 5.02 13.84 2.49 1.61 4.79 13.26 2.44 1.98

7 3.56 11.36 2.27 1.16 4.24 10.94 1.97 1.04 3.55 11.36 2.25 1.16

8 4.00 10.76 2.37 1.37 4.50 11.91 2.14 1.23 3.50 10.75 2.38 1.36

9 5.80 11.10 2.76 1.22 5.70 11.91 2.79 1.31 5.79 10.50 2.77 1.22

10 5.30 10.00 2.79 1.24 5.44 10.94 2.62 1.13 5.29 9.9 2.77 1.24

11 6.10 12.60 3.04 1.83 6.22 13.84 3.13 1.69 6.10 12.59 3.04 1.83

12 6.26 11.30 3.50 1.55 5.96 12.87 2.96 1.50 6.26 11.29 3.50 1.55

13 6.40 9.44 3.44 1.34 6.64 10.94 3.27 1.21 6.40 8.44 3.42 1.33

14 7.30 10.00 3.40 1.30 6.90 11.91 3.44 1.40 7.29 9.99 3.40 1.29

15 7.28 11.00 3.50 1.87 7.16 12.87 3.61 1.58 7.28 11.00 3.50 1.89

16 6.52 11.46 4.45 1.77 7.42 13.84 3.78 1.77 6.51 11.45 4.44 1.77

Figure 10. Actual and predicted penetration using MRA model.

Figure 11. Actual and predicted bead width using MRA model.
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Figure 12. Actual and predicted reinforcement using MRA.

Figure 13. Actual and predicted HAZ width using MRA model.

Figure 14. Actual and predicted penetration using ANN model.

Figure 15. Actual and predicted bead width using ANN model.

Figure 16. Actual and predicted reinforcement using ANN

model.

Figure 17. Actual and predicted HAZ width using ANN model.
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6. Conclusion

Based on the different welding parameters ranges (wire

feed rate is 105–210 mm/min; transverse speed is

0.75–1.2 mm/min; stick out is 15–25 mm), the MRA and

ANN are used to predict the bead geometry and HAZ width

in present study and the following conclusions were drawn

through comparison and analysis.

1. There is a linear relationship consequent between the

welding process parameters and the weld bead geometry

and HAZ width in linear equations through the multiple

regression analysis.

2. Developed linear equations through MRA may be used

to predict the various components of weld bead geom-

etry and HAZ width in the welding of mild steel plates

by SAW process.

3. The best architecture found by using back-propagation

algorithm is 3-5-4 for the present work.

4. In ANN model, the percentage errors obtained for bead

geometry and HAZ width are very low. It proves that the

Back Propagation ANN model developed in this study is

capable of predicting weld bead geometry and HAZ

width with acceptable accuracy.

Figure 19. Predicted bead width using ANN and MRA.

Figure 18. Predicted penetration using ANN and MRA.

Figure 20. Predicted reinforcement using ANN and MRA.

Figure 21. Predicted HAZ width using ANN and MRA.
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5. The prediction accuracy is better in ANN than MRA

model and the variation of the result based upon the two

models are within ±20%.
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