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SUMMARY

Concepts of u-fold cross-validation and repeated learning-testing methods have been
introduced here. In many problems, these methods are computationally much less
expensive than ordinary cross-validation and can be used in its place. A comparative
study of these three methods has been carried out in detail.
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1. INTRODUCTION

Model selection has attracted the attention of many researchers. One of the most
well-known methods is ordinary cross-validation. Much work has been done on this, for
example Stone (1974, 1977), Bowman (1984) and Hardle & Marron (1985). However,
the difficulty with ordinary cross-validation is that it can be computationally very expen-
sive in a number of practical problems, for example L1 regression, tree structured methods
for classification and regression (Breiman et al., 1984), estimation of the optimal transfor-
mations of variables for correlation and regression (Breiman & Friedman, 1985). We
have therefore recently introduced two techniques (Burman, 1989) in a study of the
optimal transformations of variables. We call them corrected u-fold cross-validation and
repeated learning-testing methods. These methods can be used in the place of ordinary
cross-validation whenever the latter is computationally very expensive. In this present
paper we study these methods in detail.

The organization of the paper is as follows. In § 2 we introduce the concepts of u-fold
cross-validation and the repeated learning-testing methods. In § 3 we discuss the stability
of our estimates. In § 4 we present a few simulation results on various aspects of our
proposed estimates. We then summarize our findings in § 5. Section 6 presents a few
technical results to support our simulation study, and finally we give proofs in § 7.

2. y-FOLD CROSS-VALIDATION AND REPEATED LEARNING-TESTING METHODS

2 • 1. General description
In this section we describe u-fold cross-validation and repeated learning-testing

methods, demonstrate the need for bias correction and introduce the proper correction
terms. The concepts of y-fold cross-validation and repeated learning-testing methods are
not new. They are discussed by Breiman et al. (1984, Ch. 3, 8). Based on their simulation
studies they concluded that these methods do not always work. To rectify that we have
introduced certain correction terms. Burman (1989) showed that with these correction
terms u-fold cross-validation and repeated learning-testing methods work very well for
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model selection purposes. Here we study various aspects of these methods in detail. Is
y-fold cross-validation a better method than repeated learning-testing? For what values
of v does u-fold cross-validation work best?

Let Z , , . . . , Zn be independent and identically distributed observations with distribu-
tion function F and let Fn be the empirical estimate of F. Our goal is to estimate a
quantity of the form

sn=\ T(z,Fn)dF(z). (2-1)

We may also wish to estimate E(sn), which could be estimated by ordinary cross-
validation. We introduce three other methods for estimating sn. We first give a few
examples of T and sn.

Example 1. Let Zi = {Yi,Xi) (i = 1 , . . . , n) be independent and identically distributed
random variables and let /x(x) = E(YX\XX = x) be the regression function. If we approxi-
mate the regression function by a polynomial of degree k, estimate the parameters by
least-squares and denote the estimated regression function by /2k(x), then z = (y, x),

y-jik(x)}2dF(x,y).

Here sn is the predictive error. In model selection problems we estimate sn for various
values of k and choose that value of k for which the estimated value of sn is the smallest.

Example 2. Let Z = (Y, Xx,..., Xd) be a vector of univariate random variables. Breiman
& Friedman (1985) considered transformations h( Y), </>,(X,),..., <pd(Xd) of the variables
Y, Xi,..., Xd such that

Transformations h*, <j>*,..., <f>* are called optimal if they minimize

e\h, <}>x,...,<l>d) = E{h{Y)- <t>x{Xx) - . . . - <f>d{Xd)}
2.

Assume that we have a data set of size n and estimate the optimal transformations using
splines with k0, kx,..., kd knots respectively. If h, $x,..., <f>d are the sample estimates
of the optimal transformations, then the predictive error is

In this example, sn is the quantity above and we are interested in estimating it for various
v a l u e s k0, kx,...,kd.

Example 3: L regression. Consider the regression problem in Example 1. Let 60,..., 6d

be the estimates obtained by minimizing

1 1 y, - 0O- etx, - e2x
2 -... - ekx%

i=l

Let (X, Y) be independent of (X,, Y,) (i = 1 , . . . , n). Then the prediction error is

E(\Y-eo-eix-...-ekx
k\\Yi,xi, , = i , . . . , « ) .

Here sn is the quantity given above. The L1 method is typically used to get a robust
estimate of the regression function. It is known that a good deal of computing is needed
to calculate the estimates 60,...,dd.
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In the last two examples ordinary cross-validation could be computationally very
expensive and there thus arises the need for alternative methods. Let us now formally
introduce the concepts of u-fold cross-validation, the repeated learning testing and the
repeated u-fold cross-validation methods.

2-2. v-fold cross-validation
We first divide the data randomly in v groups so that their sizes are as nearly equal

as possible. Let the size of the ath group be ma and assume that [n/v]^ ma ^ [n /u ] + l
for all a. Let Fna be the empirical estimate of F based on all the na = n-ma observations
outside group a and let Fna be the estimate of F based on the ma observations in group
a. Then a u-fold cross-validated estimate of sn is given by

- - i p. \
«=i a J

cvnv= Zpa] T(z, Fna) dFna(z),

where pa = ma/n. Note that pa — v~l for all a.
Let s = j T(z, F) dF(z). If we assume that T(., Fn) can be expanded about T(., F)

and note that na — (v — !)«"'n for all a, then

where c0 is a constant depending on T and F. Consequently,

E(cvnv-sn) — (u- l )" 1 ^"" 1 - (2-2)

For ordinary cross-validation, that is u = n, the right-hand side of the last expression is
O{n~2), but when v is small, say u = 3 or 4, this term is not necessarily very small.
Simulation results presented in § 4 clearly bring this out. Also the term c0 is of the order
of k, the number of parameters being estimated. Indeed, for the regression case in Example
1, if we fit a polynomial of degree k, then c0 is a constant times fc +1. So cvnu may turn
out to be a poor estimate of sn if the number of parameters is not small. This observation
is consistent with Stone's response to Geisser's comment (Stone, 1974).

Thus a correction term for cvnp is needed. We show later that the following works
well. Let

cv*nv = Zpa J T(z, Fna) dFna(z) + ̂  T(z, Fn) dFn(z)-j:pa J T(z, Fna) dFn(z). (2-3)

As shown in § 6,

(-(u-ir 'c.n"2 (2-4)

for some constant c, depending on T and F. Expressions (2-2) and (2-4) show that the
corrected u-fold cross-validated estimate cv*u works much better than cvnu asymptotically
as n increases; the correction term is negligible when v — n.
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In the regression case, Example 1, let jxk be as in Example 1. Let (Lka be the regression
estimate based on the na = n — ma observations not in group a. Then the uncorrected
u-fold cross-validated estimate of sn is

cvno = X (ma/

where the sum inside the bracket is over all the ma observations in group a. We have
already discussed the need for a correction term as given in (2-3). The corrected u-fold
cross-validated estimate of sn is

/i- t {mjn)\i {Y.-jl
a = l Li=l

2-3. Repeated learning-testing method
In this method, we repeatedly split the data randomly in two parts, a learning set of

size n0 and a test set of size m0 (mo+ no = n). Typically no3= m0. For each split, estimates
are developed based on the data in the learning set and then these are tested on the data
in the test set. On the ath split of the data let Fna and Fna be the estimates of F based
on the observations in the learning set and the test set respectively. If the data is split u
times, then a repeated learning-testing estimate of sn is given by

I T(z,Fna)dFna{z).

As for u-fold cross-validation, this does not provide an adequate estimate of sn and a
bias correction term is needed here too. The following gives a corrected repeated
learning-testing estimate of sn.

T(z, Fna) dFn(z).

The corrected u-fold cross-validated and repeated learning-testing estimates have exactly
the same form. It can be shown that

E(uTnv-sn)^(m0/no)con~l, E(hT*v-sn)^(mo/no)cin~2, (2-5)

where c, is the same as in (2-4). The bias does not depend on v, the number of repeats,
and is reduced if the ratio of the size of the test set to the size of the learning set is small.

The predictive sample reuse method of Geisser (1975) could be regarded as a version
of the repeated learning-testing method. However, he did not introduce a correction term.
Since he considered all possible partitions of the data into learning and test sets of sizes
n0 and m0, the number, v, of repeats is nl/{mol(n -m0)!}, and consequently his method
involves a lot more computing than ordinary cross-validation.

2-4. Repeated v-fold cross-validation
This method is a combination of the u-fold cross-validation and the repeated learning-

testing methods described in this section. This method is quite simple. We repeat the
method of u-fold cross-validation t times. On the /3th repeat we randomly split the data
in v groups as described in § 2-2, get a bias corrected estimate cv*^ of sn, and finally
we take a simple average of these t estimates. Let us call this estimate Rcv*w, so that
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Rcvnu, has about the same bias as cv*;

However, a variance calculation shows that it may be better to use a uf-fold corrected
cross-validated estimate rather than RCV*,,,; see § 3.

3. STABILITY OF THE ESTIMATES

We now compare the stability of the ordinary cross-validated estimate of sn with those
defined in § 2.

Retaining only the terms of order n~2 and higher, we get, see § 6,

\ar (cwnn- sn)- yon'1 + yln~2 + 2y2n~2,

var(cv* y -s n ) -y 0n~' + t>(u-ir1y1n-2 + 2y2n-2. (3-1)

Here yo>0, Ti>0 and y2 are constants depending on T and F. Thus

var (cv*u - sn) > var (cvnn - sn).

However, the difference is {v-\)~xyxn~2 and this decreases as v increases. So we can
expect the difference to be small for v > 2 and this is supported by simulation. The
expression for var (cvnv-sn) is not pretty, but it can be shown that

var (cvno -sn) = var (cv*u-sn) + O((v- l)'ln~2);

see § 6. In the regression case it can be shown that it is larger than var (cv*o-jn) and
var (cvnn — sn). We believe this to be true always, but do not have a proof. However, as
expected, the difference between var (cv*,, - sn) and var (cvn i )-sn) is negligible as v
becomes large.

Now consider the repeated learning-testing estimate. Even though LT*,, has a small
bias as an estimate of sn, its variance is not as small as we want it to be. Retaining terms
of order n"1 we get

var (LT*0 -sn)^{l + no/(mov)}yon~\

var(L.T*v-sn)-var(cvnn-sn)^no/(mov)yon-1.

Recall from § 2 that

£(LT*o-Sn) = (fM0/«0)c,«"2.

As the ratio mo/no decreases the bias becomes smaller but the variance increases. The
only way we can reduce variance in the learning-testing case is by increasing v, the
number of repeats. From a computational point of view, it seems that u-fold cross-
validation is better than the repeated learning-testing method. As in the case of u-fold
cross-validation, the expression for var (LTnv-sn) is not a nice one; see § 6.

Finally, consider the repeated u-fold cross-validated estimate as given in § 2-4. It turns
out that

var(RCvL-5 n ) -y o n- 1 + / ( f - l ) - 1 (u- l ) - 1 y 1 «~ 2 + 2y2n-2, (3-2)

where y0, yi and y2 are as in (3-1). An easy calculation shows that the expression in
(3-2) is larger than the variance of the corrected uf-fold cross-validated estimate, though
the difference ^"'(u — I)~1-y1n~2 is rather small. In repeated u-fold cross-validation, the
estimate T(. , .) has to be calculated vt times, as it has to be in the case of uf-fold
cross-validation, so that we may be better off using irt-fold cross-validation than repeating
u-fold cross-validation t times.
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4. SOME SIMULATION RESULTS

In this section we present some simulation results for a regression model. The correct
regression is a quadratic model but we fit a linear model to it. Let

Y
where

), 1), e~N(0,2), p(x) = x\x\--
X and e being independent. Based on a data set of size n we estimate the linear regression
d + bx by least-squares. We want to estimate

stt = E{(Y-a-bX)2\(Xt, Y,), i = 1 , . . . , «} .

We consider two sample sizes, n = 12 and n = 24. For u-fold cross-validation we randomly
split the data in v groups and calculate the linear regression da + bax by least-squares
based on all the observations not in group a. The uncorrected u-fold cross-validated
estimate of sn is

cvnv= £ (ma/n){I(y,-fla-to)7ma},

where the sum inside the second bracket is over all the ma observations in group a. The
corrected u-fold cross-validated estimate of sn is

cv*u = cvnu+£ (Y,-d-bXt)
2/n- £ (mjn){i (y;-ao-to)7«]-

1 = 1 a = l l i = l J

For the repeated learning-testing method, n0 and m0 are the sizes of the learning and the
test sets and v is the number of times the data has been split. The uncorrected repeated
learning-testing estimate is

LT^IT1 £ (KYi-4 -to)7m0},

where the second sum inside the second bracket is over all the m0 observations in the
test set on the ath split of the data.

The corrected repeated learning-testing estimate is

LT*, = LTnu + £ (Y, - a - WC)2/n - v~l £ f £ (Y,,- aa - to)2/«]•
i=l a = l l l = l J

The simulations in Tables 1, 2 and 3 are based on 40 000 repeats. In Table 1 we have
calculated E(cvtv-sn), E(cvno-sn), and the standard deviations of cv* u -s n and
cvnu — sn for various values of v. The case v = n is evaluated only for the uncorrected case;
cvnn is the ordinary cross-validated estimate of sn.

Table 1 shows that the bias of cv*u is always smaller than that of cvnu and c\*v has
a smaller variance than cvnu even though the difference is quite small when n = 24 and
v>3. The simulations support the observations in §§2 and 3 that the performance of
cv*u is worst when v = 2. Though it seems that the bias for cv*p initially decreases and
then increases, there is no reason to support that simply because the standard error is
about 001 when n = 12 and is about 0004 when n = 24.

Table 2 gives results for the repeated learning-testing method for various values of
Po= "»0/n, t n e proportion of observations in the test set. For each p0, we consider two
values of v, v = [l/p0] and v = [2/p0], where [.] is the integer part of a number. The
reason for these two choices is as follows. If p0 = j and v = [ l/po] = 3 then we are calculating
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Table 1. Biases and variances of uncorrected and corrected v-fold cross-validated estimates

12 2-566 £ (cv , , t - j n ) 0-78 0-31 0-20 014 012 006
£ ( c v j o - s n ) 016 005 004 001 003
st. dev. (cv,,u-s,,) 2-66 1-79 1-62 1-54 1-49 1-41
st. dev. (cv*D-sn) 1-79 1-54 1-48 1-44 1-42

24 2-321 E(cv,,v-sn) 0-25 Oil 007 005 004 002
E(cv*v-sn) 002 0002 0-0001 00004 0-002
st. dev. ( c v m - s n ) 1-05 0-88 0-84 0-82 0-80 0-78
st. dev. (C\*v-sn) 0-86 0-81 0-80 0-79 0-78

t The case for v = n corresponds to ordinary cross-validation.

Table 2. Biases and variances of uncorrected and corrected repeated learning-testing
estimates; v, number of repeats

n E(sn)

12 2-566

24 2-321

the regression line three times for three learning sets. Three-fold cross-validation corre-
sponds to the case po = \ and v = 3 in the sense that test set sizes are about one-third of
the data and the regression line has been calculated three times. When p0 = j and v = 6
we have 6 learning sets and consequently we have to estimate the regression line 6 times.

As we have discussed earlier, the variances of the repeated learning-testing estimates,
corrected and uncorrected, decrease as v, the number of repeats, increases. However, as
shown in (2-5), the biases do not depend on the number of repeats. The simulation results
support these facts and also show that the bias of LTnu is always larger than that of LT*U .
As for u-fold cross-validation, it appears that vr*v has a smaller variance than LTnu, but
the difference seems to be quite small when n=24 and u>3. Comparison of Tables 1
and 2 shows that cv*r and LT*U have about the same biases, but var (cv*u)<var (LT*,,).

For a fixed data set the value of the corrected and the uncorrected u-fold cross-validated
estimates vary from partition to partition. Table 3 is based on a simulation study
of this variability. For the quantities £{var (cvnv\3£n)}, £{var(cv*p|2Tn)} given in
Table 3, the variance is first taken over random partitions for a given data set
2£n = {Zi = {Yi,Xi): i = 1,...,«} and then the expectation is taken over 2tn. Tables 1 and
3 clearly show that £{var (cvnu|3Tn)} and £{var (cv*,,!^,,)} are quite small compared to
the variances of cvnv-sn and cv*u-sn .

Table 3. Variability of the estimates over the partitions

n = l2 n=24
v = 2 v = 3 v = 4 v = 5 v = 6 v = 2 v = 3 v = 4 v = 5 v = 6

£{var(cvJ3rn)} 0046 0037 0029 0025 0032 0014 0011 0008 0008 0006
£{var(cv*c|arn)} 0023 0023 0021 0019 0025 0008 0008 0006 0007 0005

E(LTnv-Sn)
E(i.T*v-sn)
st. dev. (LT,w-sn)
st. dev. (LT*v-sn)

E(LT,,V-Sn)
E(LT*V-S,,)

st. dev. (LTnv-sn)
st. dev. (LT* -sn)

Po
v = 2

0-74
014
2-59
1-78

0-26
0-02
109
0-93

— 2

v = 4

0-75
014
219
1-59

0-24
001
0-98
0-85

Po
v = 3

0-31
005
1-93
1-68

012
001
101
0-95

— 3

v = 6

0-32
006
1-74
1-53

0-12
001
0-92
0-87

Po
v = 4

019
003
1-87
1-71

008
001
102
0-98

= 5
u = 8

0-20
004
1-65
1-53

008
001
0-92
0-88

Po
v = 5

011
002
1-85
1-76

005
001
106
103

= 5
y = 10

012
003
1-65
1-58

0 0 4
-0003

0-94
0-91

Po
t> = 6

013
004
1-82
1-73

004
-0001

1-02
0-99

i > = 1 2

012
0-02
1-61
1-54

004
-0001

0-90
0-88
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5. CONCLUSIONS

In summary whenever ordinary cross-validation is computationally very expensive, we
can use i>-fold cross-validation or the repeated learning-testing methods. If v is not large
the uncorrected u-fold cross-validated estimate or the uncorrected repeated learning-
testing estimate may have large biases. Thus we recommend that the correction terms
given in § 2 should be routinely used.

The corrected r-fold cross-validated estimate is preferable to the corrected repeated
learning-testing estimate because the former has a smaller variance.

The bias and the variance of the y-fold cross-validated estimate decrease as v increases.
From a practical point of view, 2-fold corrected cross-validation should be avoided if
possible.

For the corrected repeated learning-testing estimate, the bias depends on the ratio
mo/"o> the ratio of the size of the test set to the learning set, and not on the number of
repeats v. The smaller the ratio mo/no, the smaller the bias. However, the smaller the
ratio no/(mov), the smaller the variance.

6. SOME TECHNICAL RESULTS

This section gives a few technical results on the biases and the variances. More details
appear in an unpublished technical report. We assume that for any z, 7(z,.) is von Mises
differentiate with derivatives 7, and 72 (Serfling, 1980, Ch. 6). This condition can be
relaxed a little. For all the results in this section, we keep only the dominant terms. All
proofs we present here can be made rigorous with careful analysis (Beran, 1984; Serfling,
1984). Let Dn = Fn- F, Dna = Fna - F, Dna = Fna - F,

nE | {T(z, Fn)-T(z, F)}

- E J {7,(z,, z, Fn)- 7,(2,, z, F)} dDn(Zl) dDn(z) = c,«-2+ O{n~*).

Note that the constants c0 and c, depend on 7 and F.

THEOREM 6-1. We have that
(a) E(cvnv-sn)^(v-l)-lc0/n,

(b) F.(LTm,-Sn)-(/7Jo//!o)Co/n,
(c) £(cv*u-sn)-(i>-ir1c,/«2,
(d) E(VT*V-sn)^(m0/no)cjn2,
(e) F . (RCvL-s n ) - (u- l ) - 1 c , /n 2 .

To find c0 and c, in the regression case of Example 1, let us assume that the regression
function \L is linear,

where e and X are independent normal random variables, F.(e) = 0 and var(e) = o-2.
Then c0 = 2cr2 and c, = 4cr2. Now

E(cvnv-sn)-2(T\V - l r ' i T 1 , £(cvnn -sn)*±2a2n~2,

If the regression function fi is not linear, but we fit a linear regression, then the
expressions for c0 and c, are not so simple because they include terms involving the bias
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function fe(x) = /*(*)-/*,(*), where nl(x) = a + bx is the least-squares linear model
closest to fx.

Next, for any a, let

T(z)dDn(z)J = y0.

Tx{zx,z) dDna{zx) dDna{z)

+ J Tl(zl,z)dDna(zl)dDna(z)} =

[Jx [ J Uz2, zx,z) dDna(z2) dDna{zx) dDnQ

Then y0, y, and y2 are constants depending on T and F and y, > 0. Since ma — n/v for
all a, two quantities described above are meaningful.

THEOREM 6-2. We have
(a) var(cv*1)-5n)-y0/n + y(i '-l)"171 /
(b) var (LT*,,-sn)-{1 + no/(mov)}yo/n,
(c)
(d)

As a consequence of Theorem 6-2 we get the following result.

COROLLARY 6-3. It follows that
(a) var (cv*r - sn) ^ var (cvnn -s n ) + (u - \)~xyjn2,
(b)
(c)

Theorem 6-2 and Corollary 6-3 show that LT^ is a poorer estimate of sn than cv*u.
Also var (cv* r-s n)> var (cvnn-5n), but the difference becomes small as v increases.

The expressions for the variances of cvno — sn and LTnu — sn are quite complicated. Here
we give only the expression for var (urnv-sn). Let

J j j T(z)
THEOREM 6-4. We

(a)
(b)

Corollary 6-3 shows that cv*a, the corrected u-fold cross-validated estimate, has a
larger variance than cvnn, the ordinary cross-validated estimate of sn. Even though we
have been unable to show in our general setting that cv*u has a smaller variance than
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cvn u , we believe this to be so. In the regression case when the regression function /i is
linear, y0

 = 2o-4, yx = 16<74 and y2 = y3 = y4 = 0. Then the following can be shown:

var (cvnn - *„) - 2o-4{«"1 + 8/T2},

As we have discussed earlier, if the regression function fi is not linear and we are fitting
a linear model, then the expressions for y0,..., y4 involve the model bias.
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APPENDIX

Outline of proofs of theorems
For Theorem 6 1 , note for (a) that cvnv — sn can be written as

J T(z) dDn(z) + Zpa J {T(z, Fna)-T(z, F)} dDna(z)

+ llPaj{nz,Fna)-T(z,Fn)}dF(z) = Il + I2 + I3, (A-l)

say. Now E(I1) = E(I2) = 0, whereas

,(Zl) dDna(zl)-fx(z1) dD^z,)}J
, zl) dDna(z2) dDna{zx)-t2{z2, z,) dDn{z2) dDn(zt)}.

The first term in the last expression is zero since ^/>aDna = Dn. Since pa — v~l and na^(v — l)w~!n
for all a, the expectation of the second term approximately is

The proof of (b) is the same as in (a).
For (c) note that

cw*nv~sn = J T(z) dDn{z) + YdPa J {T(z, Fna)-T(z, F)} dDna(z)

+ 1 A. J {T(z, Fn)-T(z, Fna)} dDn(z)

= / 4 +/ 5 + /6, (A-2)

say. Now E(I4) = E(I5) = 0. The result holds since it can be shown that

The proofs of (d) and (e) follow as in (c).
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For (a) of Theorem 6-2, as in (A-2), cv*v -sn = I4+Is + I6. Since £(cv*u - sn) = O(n~2) as given
in Theorem 61 and since we are keeping terms of order n~2 and higher,

Now,

The result is proved via

E(H) = yo/n,

£(/2)-O(n-3),

For (b), the proof follows from part (a) of Theorem 6-4 by putting v = n.
For (c) note that vr*v-sn can be written as

i T 1 T(z) dDna(z) + v'11 J {T(z, Fna)- T(z, F)} dDna{z)

+ v~ll) iT(z> Fn)-T(z, Fna)}

say. The result holds since it can be shown that

The proof of (d) is the same as in parts (a) and (c).
For Theorem 6-4 the proof of (a) follows using (A-l) and calculations similar to the ones in

Theorem 6-2.
For (b) note that

LTnv-sn = »-' Z J T(z) dDna(z) + v~l I J {T(z, Fna)- T(z, F)} dDna{z)

+ v~l I J {T(z, Fna)-T{z, Fn)} dF{z)

= /,0+/|l + /l2,

say. Since we are interested only in the terms of order n"1,

The proof follows from

E(I2w) = {1 + "o/("iov)}yon~l, E(IwIl2)- -{nv)~ly4,

REFERENCES

BERAN, R. J. (1984). Jackknife approximation to bootstrap estimates. Ann. Statist. 12, 101-18.
BOWMAN, A. W. (1984). An alternative method of cross-validation for the smoothing of density estimates.

Biometrika 71, 353-60.
BREIMAN, L. & FRIEDMAN, J. (1985). Estimating optimal transformations for regression and correlation.

/. Am. Statist. Assoc. 80, 580-619.
BREIMAN, L., FRIEDMAN, J., OLSHEN, R. & STONE, C. (1984). Classification and Regression Trees. Belmont,

California: Wadsworth.



514 PRABIR BURMAN

BURMAN, P. (1989). Estimation of optimal transformations using D-fold cross validation and repeated
learning-testing methods. Sankhya A 51. To appear.

GEISSER, S. (1975). The predictive sample reuse method with applications. J. Am. Statist. Assoc. 70, 320-28.
HARDLE, W. & MARRON, J. S. (1985). Optimal bandwidth selection in nonparametric regression function

estimation. Ann. Statist. 13, 1465-81.
SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley.
SERFLING, R. J. (1984). Generalized L-, M-, and K-statistics. Ann. Statist 12, 76-86.
STONE, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. R.

Statist. SocB 36, 111-47.
STONE, M. (1977). Cross validation: a review. Math. Oper. Statist., ser. Statist. 9, 127-39.

[Received April 1988. Revised January 1989]


