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A Comparative Study of Output Metrics for

an MEMS Resonant Sensor Consisting of

Three Weakly Coupled Resonators
Chun Zhao, Member, IEEE, Graham S. Wood, Member, IEEE, Jianbing Xie, Member, IEEE,

Honglong Chang, Senior Member, IEEE, Suan Hui Pu, Member, IEEE, and Michael Kraft

Abstract— This paper systematically investigates the
characteristics of different output metrics for a weakly coupled
three degree-of-freedom microelectromechanical systems reso-
nant sensor. The key figures-of-merit examined are sensitivity and
linear range. The four main output metrics investigated are mode
frequency shift, amplitude difference, amplitude ratio, and eigen-
state shift. It is shown from theoretical considerations, equivalent
RLC circuit model simulations and electrical measurements, that
there is a strong tradeoff between sensitivity and linear range.
For instance, the amplitude difference has the best sensitivity but
the worst linear range, whereas frequency shift has the widest
linear range but the lowest sensitivity. We also show that using
the vibrational amplitude ratio as an output metric provides the
best balance between sensitivity and linear range. [2016-0077]

Index Terms— Output metrics, frequency shift, amplitude-
based output signals, weakly coupled microelectromechanical
systems (MEMS) resonant sensors.

I. INTRODUCTION

R
ECENTLY, multiple resonators coupled together have

become a viable approach for MEMS resonant sens-

ing [1]–[9]. The advantages of the new type of resonant

sensor include enhancement in sensitivity [9], the capability

of detecting the position of perturbation by monitoring only

one output [3] and an inherent capability of common mode

rejection [10]. The applications include mass sensing [2], stiff-
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ness change sensing [6], accelerometers [11] and displacement

sensing [12].

At present, research on mode-localized resonant sensors is

still in an early stage. Researchers from various groups have

used different output metrics for various sensing applications,

including mode frequency shift [8]. Recently, the mode local-

ization effect has been used to enhance the sensitivity [2]

and to improve the common mode rejection capability of

the sensor [10]. To measure the effect of mode localization,

amplitude based output metrics such as eigenstate shift [2]–[5]

and amplitude ratio [6], [7] have been reported. However,

there is no systematic comparisons between the output metrics;

therefore, the rationale for choosing an optimized output

metric is lacking.

Motivated by this, we aim to investigate different output

metrics for a multiple-degree-of-freedom (DoF) weakly cou-

pled MEMS resonant sensor with the purpose of proposing an

optimum output metric for future research on this promising

topic. We chose normalized sensitivity as one of the key

figures-of-merit (FOM) for the output metrics, following com-

mon practice for direct comparisons [2], [4]. The other key

FOM discussed in this paper is the linearity of the output

metric. To measure how linear an output is with respect to

the input, we investigate the linear range for the output for

which the nonlinearity error is within a certain tolerance.

In this paper, the focus is on the fundamental properties of

the mechanical sensor. As shown in other research [7], the

noise floor of the amplitude output is mainly attributed to the

interface electronic circuit, which is beyond the scope of this

paper. Therefore, the noise floor and dynamic range of the

sensor are not discussed in the following.

For the investigation, we used a weakly coupled 3DoF

resonant sensor for stiffness change sensing. In previous work,

we have already established a transfer function based model

for the sensor [6]. However, we believe that this study on the

output metrics of 3DoF sensors can be generalized, due to

the similarities compared to other weakly coupled resonant

sensors; therefore it can provide a useful guide for 2DoF or

other multiple-DoF mode-localized sensors.

Utilizing a transfer function based model for the theoretical

analysis, we are able to obtain the analytical expressions of

the vibrational amplitudes of individual resonators within the

system, in addition to the mode frequencies. Based on the

vibrational amplitudes of individual resonators, one amplitude-

based output metric not examined before can be derived, i.e.

1057-7157 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Spring-damper-mass model of a 3DoF resonator system [7]. Each
resonator consists of a spring (K p ), a damper (cp ) and a mass (Mp )
(p = 1, 2, 3), and are coupled to its neighboring resonator through coupling
springs (Kcq ) (q = 1, 2). If motions in other degrees-of-freedom are negligible
compared to that in the x-direction, it is assumed that each resonator is free
to move only in the x-direction, hence a 3DoF system.

amplitude difference. This allows to directly compare different

output metrics in terms of sensitivity and linearity among

four output metrics: frequency shift, amplitude difference,

eigenstate shift and amplitude ratio.

In Section II, theoretical derivations of the mode frequencies

and vibrational amplitudes, as well as amplitude-based output

metrics, including amplitude difference, amplitude ratio and

eigenstate shift, are presented. The description of the device

and experimental method are presented in Section III, followed

by the comparisons of different output metrics based on the

measurement results discussed in Section IV.

II. THEORY

The lumped element model of a weakly coupled 3DoF

resonant sensor is shown in Fig. 1. If M1 = M2 = M3 = M ,

Kc1 = Kc2 = Kc, K1 = K and stiffness perturbation is added

to resonator 3, i.e. K3 = K + �K , the equations of motion

of such a 3DoF resonator system are given by:

M Ẍ1 + c1 Ẋ1 + (K + Kc)X1 − Kc X2 = F1 (1)

M Ẍ2 + c2 Ẋ2 + (K + 2Kc)X2 − Kc X1 − Kc X3 = F2 (2)

M Ẍ3 + c3 Ẋ3 + (K + �K + Kc)X3 − Kc X2 = F3 (3)

In our previous work [7], we used transfer functions-

based models instead of matrix analysis, which has been

predominantly used by other groups [4]. This allows including

damping into the analysis. Also, the limitation of assuming

small perturbations is removed. In addition, we demonstrate

that this model can be used to derive the vibrational amplitude

of each resonator.

A. Mode Frequencies

From (1), (2) and (3), a block diagram of the 3DoF system

as shown in Fig. 2 can be derived [7].

The transfer functions Hp(s) (p = 1, 2 and 3) can be

derived as:

H1(s) ≡ Ms2 + c1s + (K + Kc) (4)

H2(s) ≡ Ms2 + c2s + (K2 + 2Kc) (5)

H3(s) ≡ Ms2 + c3s + (K + Kc + �K ) (6)

Suppose the system is only driven by F1(s) with an ampli-

tude of F(s) and F2(s) = F3(s) = 0, the amplitude of each

Fig. 2. A block diagram of the 3DoF system derived from the equations of
the motion [7].

individual resonator, X p(s) (p = 1, 2 and 3 denotes the pth

resonator), with respect to the driving force amplitude F(s)

can be found [7] by applying Mason’s rule [13]:

X1(s)

F(s)
=

H2(s)H3(s) − K 2
c

H1(s)H2(s)H3(s) − [H1(s) + H3(s)]K 2
c

(7)

X2(s)

F(s)
=

Kc H3(s)

H1(s)H2(s)H3(s) − [H1(s) + H3(s)]K 2
c

(8)

X3(s)

F(s)
=

K 2
c

H1(s)H2(s)H3(s) − [H1(s) + H3(s)]K 2
c

(9)

Suppose that the Q-factor is finite but high with Q > 5000,

and the universal assumption used in this work, weak coupling

Kc < K/10 < K2/20 is satisfied. It should be pointed

out that K2 > K is assumed. Additionally, we assume that

the mode aliasing effect is negligible, with the anti-aliasing

condition fop − fip > 2 × f3d B being satisfied [6]. To fulfill

the requirement of the anti-aliasing condition for all �K < 0

in this study, the following inequality has to be valid [6]:

K (K2 − K + Kc)

K 2
c

<
Q

2
(10)

For a 3DoF resonator system, there are three fundamental

modes of vibration: in the first mode, all resonators vibrate in-

phase with each other; in the second mode, resonators 1 and 3

vibrate out-of-phase with respect to each other and in the

third mode, each resonator is out-of-phase with its neighboring

resonator. In this study, the third mode is not discussed due to

the insignificant vibrational amplitudes of resonators 1 and 3

under the used experimental setup, e.g. an AC drive voltage

of 8mV. Nevertheless, a study of the third mode could be an

interesting topic for future research. The frequencies of the

first in-phase (i.e. the first mode) and the out-of-phase modes

(i.e. the second mode), ωip and ωop, respectively, are [6]:

ωip ≈

√

√

√

√

√

1

M

⎡

⎣K + Kc+
1

2
(�K −

2K

γ
−

√

�K 2 +

(

2K

γ

)2

)

⎤

⎦

(11)

ωop ≈

√

√

√

√

√

1

M

⎡

⎣K +Kc +
1

2
(�K −

2K

γ
+

√

�K 2 +

(

2K

γ

)2

)

⎤

⎦

(12)

Where γ is defined as:

γ =
K (K2 − K + Kc)

K 2
c

(13)
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Fig. 3. Equivalent electrical RLC model for the weakly coupled 3DoF
resonant sensor with a perturbation on resonator 3 [6].

TABLE I

VALUES USED IN THE SIMULATION TO VERIFY

THEORETICAL ESTIMATIONS

Fig. 4. Simulated mode frequencies of the in-phase and out-of-phase modes.

Due to the symmetry of the responses for positive and

negative stiffness perturbations [6], in this work, we present the

analysis for negative perturbations without loss of generality.

To demonstrate the mode frequency shift, as well as other

output metrics as a function of the stiffness perturbation �K ,

in the following sections, a simulation using an equivalent

electrical RLC model [6], [14] was carried out. The RLC

circuit-based model shown in Fig. 3 was favorable compared

to other models such as Matlab matrix based models of a 3DoF

resonator system [6] because of its capability of including

damping. It is also simple to build and faster to simulate

compared to Matlab/Simulink based models [15]. Note that

motional currents imot,p = ηωX p (where η is the transduction

factor, ω is the vibration frequency and X p is the vibrational

amplitude of the pth resonator, p = 1, 2 and 3) were set as

the simulation outputs. The vibrational amplitudes were then

calculated based on these outputs.

Values representing the device tested were used to com-

pare the simulation and measurement results; these are listed

in Table I.

We plot the simulated mode frequencies of the in-phase

and out-of-phase modes, as well as theoretically calculated

values using (11) and (12) in Fig. 4. It can be seen that

Fig. 5. Simulated normalized in-phase mode frequency change (red dot),
against the linearized scale function (black dashed line). Nonlinearity errors
for different stiffness perturbation values are also shown (blue).

the simulated results agree well with the calculated values.

More importantly, it can be seen that for �K < 0, the

shifts of the in-phase mode frequency are more pronounced

than that of the out-of-phase mode: the out-of-phase mode

frequency approaches a constant value as the stiffness per-

turbation increases (negative); whereas the in-phase mode

frequency is to good approximation a linear function of the

perturbation. Based on these observations, we can linearize

the mode frequencies for �K < 0 and |�K | > 20K/γ :

fip ≈
1

2π

√

1

M

(

K + Kc −
K

γ
+ �K

)

(14)

fop ≈
1

2π

√

1

M

(

K + Kc −
K

γ

)

(15)

Due to the more pronounced response for the same stiffness

perturbation, for this comparative study, we use the shift in

the in-phase mode frequency. Therefore, the symbol f in

this work refers to the in-phase mode frequency. Following

common practice [2], [4], we use the normalized sensitivity as

a figure-of-merit for sensitivity comparisons. For |�K | ≪ K +
Kc − K/γ , the normalized sensitivity, if the mode frequency

is used as an output signal, can be expressed as:

S f =

∂

(

� f

f0

)

∂

(

�K

K

) ≈
K − Kc + K/γ

2K
(16)

Where f0 denotes the in-phase mode frequency for �K = 0;

� f is the change of the in-phase mode frequency relative

to f0.

From Fig. 5, it can be seen that the linear sensitivity is 0.518,

agreeing with the theoretical estimation. Also, the nonlinearity

errors of the mode frequency change are well within a ±10%

tolerance for �K/K < −0.002, suggesting good linearity in

this region.

B. Vibrational Amplitudes

In Appendix A, we show that the vibrational response of

resonator 1 at the in-phase mode frequency can be orders of

magnitude lower than that at the out-of-phase mode frequency,
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if the coupled resonator system is driven with only one

actuation force from one side (e.g. F1(s) only); hence, here we

only focus on the vibrational amplitudes at the out-of-phase

mode. Substituting (12) into Equations (7), (8) and (9), we

can obtain the vibrational responses of resonator 1, 2 and 3 at

the out-of-phase mode as a function of �K and F(s):

(X1)op ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

γ�K

K
−

√

√

√

√

(

γ�K

K

)2

+ 4

2
+ j

γ

Q

K + Kc

Q

⎛

⎝− j

√

√

√

√

(

γ�K

K

)2

+ 4 −
γ

Q

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

F(s)

(17)

(X2)op ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�K +
2K

γ
−

√

√

√

√�K 2 +

(

2K

γ

)2

2Kc

− j
K

Kc Q

K + Kc

Q

⎛

⎝− j

√

√

√

√

(

γ�K

K

)2

+ 4 −
γ

Q

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

F(s)

(18)

(X3)op ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

K + Kc

Q

⎛

⎝− j

√

√

√

√

(

γ�K

K

)2

+ 4 −
γ

Q

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

F(s)

(19)

Equations (17), (18) and (19) can be seen from two dif-

ferent perspectives: magnitude and phase. In what follows,

we mainly focus on the magnitude aspect of the vibrational

responses. In the following, we use amplitude and magnitude

interchangeably.

However, the phase is also important, in the sense that we

are able to demonstrate the feasibility of a self-oscillating

loop of a weakly coupled 3DoF resonant sensor based on

the observations on the theoretical phase difference. The

theoretical derivation of the phase can be found in Appendix B.

The theoretical vibrational amplitudes are the magnitudes

of the transfer functions (17), (18) and (19). Whereas the

simulated vibrational amplitudes were calculated using the

simulated motional current and the transduction factor η value

listed in Table I. It can be seen from Fig. 6 that the simulation

agreed well with the theoretical amplitudes, with relative errors

within a ±3% range.

From Fig. 6, the amplitudes of resonator 1 and 2 monoton-

ically increase before reaching asymptotes of two different

constant values; whereas the amplitude of resonator 3 is

monotonically decreasing. Given that the vibrational energy

is described by E = 1
2

Mω2 X2 for each resonator, this

clearly suggests that the vibrational energy of resonator 3 is

redistributed to resonator 1 and 2. In other words, the total

Fig. 6. Simulated vibrational amplitudes of all resonators at the out-of-phase
mode frequency.

energy is confined locally to resonators 1 and 2, indicating

the occurrence of the mode localization effect.

To quantitatively measure the mode localization effect

within a weakly coupled resonator system for sensing pur-

poses, we propose to manipulate the output amplitudes, and

using the resulting value as an output metric. The most

intuitive choice is measuring the amplitude changes directly;

or alternatively, the summation, subtraction, multiplication and

quotient of the amplitudes, as well as the eigenstate shifts can

be used. We will discuss them in the following sections.

Another observation from the simulated motional currents

shown in Fig. 6 is that resonator 2 has orders of magnitude

smaller vibrational amplitudes than that of resonator 1 or 3.

In fact, the amplitude of resonator 2 is lower than 1nm,

making it practically difficult to detect. Thus, the amplitude of

resonator 2 is not considered to be used in any output metrics

discussed below.

C. Amplitude Difference

Since amplitudes of resonators 1 and 3 have opposite

trends for a stiffness perturbation, a subtraction between the

resonators 1 and 3 results in greater changes compared to

summation or using a single resonator. For this reason, we

only discuss amplitude difference in this section as an output

metric.

From (17), (18) and (19), it can be seen that it takes

considerable computational effort to derive a simplified expres-

sion for the normalized linear sensitivity; hence, we use

linear fitting to find the normalized sensitivity. In Fig. 7, the

amplitude difference as a function of stiffness perturbation is

shown. Assuming the values of the 3DoF resonators shown

in Table I, we find that the maximum normalized sensitivity

of the amplitude difference from Fig. 7 is:

S|X | =

∂

(

|�Xd |

|Xd,0|

)

∂

(

�K

K

) ≈ −12450.48 (20)

where |Xd,0| is the amplitude difference |X1| − |X3| for

�K = 0, and |�Xd | is the amplitude difference change with

respect to |Xd,0|.
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Fig. 7. Simulated amplitude difference change, �Xd , normalized to the
amplitude difference Xd,0 for �K = 0, at the out-of-phase mode frequency
(red dots). Also plotted are the linearized function for amplitude difference
as an output metric (black dashed line) and the nonlinearity error (blue).

Fig. 7 also shows that the maximum linear sensitivity occurs

when the stiffness perturbation is in close vicinity of �K = 0.

The nonlinearity of the sensitivity increases as the stiffness

perturbation increases (negative). The nonlinearity error is

within a ±10% margin for −0.001 < �K/K < 0.

D. Amplitude Ratios

From the amplitude section, it can be seen that another

type of manipulation of the vibrational amplitudes can be

the multiplication or quotient between the amplitudes of

resonators 1 and 3. However, from inspection of Fig. 6, the

quotients between the resonator amplitudes clearly has a more

pronounced effect compared to multiplications; hence, we only

discuss amplitude ratios (quotient) as an output metric.

Due to the possibly low amplitude of resonator 1 at the

in-phase mode frequency (as shown in Appendix A), in

this section, we only discuss the amplitude ratios at the

out-of-phase mode.

For simplicity, we define χp,q as the amplitude ratio of

|X p/Xq | (p, q = 1, 2, 3; p �= q) at the out-of-phase mode.

Within the mechanical linear region of the resonators, we can

derive the following amplitude ratios, χ1,3 and χ2,3,1 which

are independent of the actuation forces:

χ1,3 =

∣

∣

∣

∣

X1

X3

∣

∣

∣

∣

op

≈

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

γ�K

K
−

√

√

√

√

(

γ�K

K

)2

+ 4

2
+ j

γ

Q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(21)

χ2,3 =

∣

∣

∣

∣

X2

X3

∣

∣

∣

∣

op

≈

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

�K +
2K

γ
−

√

√

√

√�K 2 +

(

2K

γ

)2

2Kc

− j
K

Kc Q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(22)

The simulated amplitude ratios are plotted with the theo-

retically calculated values in Fig. 8. It can be seen that the

1The amplitude ratio between resonator 1 and 2, χ1,2, can be derived from
these two expressions.

Fig. 8. Simulated amplitude ratios χ1,3, χ2,3 and χ2,1 along with theo-

retically calculated values. Due to the difficulty to detect the amplitude of
resonator 2, χ2,1 and χ2,3 are shown only for demonstration purposes.

Fig. 9. Simulated normalized amplitude ratios χ1,3 (red dots), as well as
linearized scale function (black dashed line) and nonlinearity error (blue).

theory agrees well with the simulations, and that χ1,3 has

the highest value among the three. As shown in Section II-B,

the amplitude of resonator 2 is difficult to detect in practice.

Therefore, amplitude ratios involving resonator 2 are not

discussed in this section; thus, only χ1,3 is considered further.

In the following, for simplicity, χ is used instead of χ1,3.

For �K < 0 and |�K | > 10K/γ , the expression of χ can

be linearized based on (21) [6]:

χ ≈ −γ ×
�K

K
(23)

The normalized linear sensitivity of amplitude ratio change

�χ relative to the amplitude ratio for �K = 0, χ0, as a result

of (23), is:

Sχ =

∂

(

�χ

χ0

)

∂

(

�K

K

) ≈ −
γ

χ0
≈ −

γ
√

√

√

√1 +

(

γ

Q

)2
(24)

Using the design parameters given in Table I, the normalized

sensitivity for this particular case is Sχ ≈ −1951.96.

From Fig. 9, it can be seen that the linearized func-

tion (23) is a good approximation of the amplitude ratio χ for

�K/K < −0.002, with a nonlinearity error within a ±10%

margin. Therefore, the linear sensitivity expression (24) is

considered to be valid for a linear range of �K/K < −0.002.
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Fig. 10. Calculated eigenstate of the out-of-phase mode using the simulated
amplitudes of: all resonators, hence a 3-dimensional eigenstate (black); only
resonators 1 and 3, hence a 2-dimensional eigenstate (red). The relative error
induced by neglecting the amplitude of resonator 2 is also shown.

E. Eigenstate Shift

Eigenstate shift has been used as an output metric in

weakly coupled 2DoF resonant sensors to measure the mode

localization effect [2], [4]. An eigenstate is essentially an

amplitude vector, consisting of the vibrational amplitudes of

all the resonators within the system, normalized to unity

magnitude, i.e. �u = [X1 X2 X3]
T/|[X1 X2 X3]

T|. Due to

larger amplitudes of resonator 1, we only discuss the eigenstate

of the out-of-phase mode; thus, we use �u to indicate this

eigenstate.

For weak coupling Kc < K/10 < K2/20, resonator 2 has

orders of magnitude lower amplitude at the out-of-phase mode

frequency, as shown in Fig. 6; therefore, we will consider only

a two dimensional vector of the eigenstate of the out-of-phase

mode:

�u =

[

X1

X3

]

≈

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
χ1,3

√

1 + χ2
1,3

1
√

1 + χ2
1,3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(25)

Based on the simulated vibrational amplitudes, we can

compare the eigenstates shifts with and without reducing

the dimension of the vector. It can be seen from Fig. 10

that the estimation using the reduced dimension eigenstate

is sufficiently accurate, with an error of less than 70ppm.

Therefore, using only the amplitudes of resonators 1 and 3 is

sufficient to estimate the eigenstate shift of the weakly coupled

3DoF resonant sensor.

However, combining (21) and (25), even with the reduced

dimension eigenstate vector, the analytical derivation of the

eigenstate shift is tedious and beyond the scope of this paper.

Therefore, we use linear fitting from the simulation results to

derive the normalized linear sensitivity of the eigenstate shift.

From Fig. 11, the linear sensitivity of eigenstate shift is

found to be:

S�u =

∂

(

| ��u|

|�u|

)

∂

(

�K

K

) ≈ −380.5 (26)

Fig. 11. Normalized 2-dimensional eigenstate shift with respect to the
eigenstate for �K = 0 (red dots) against the linearized scale function (black
dashed line). The nonlinearity error (blue) is also plotted.

Fig. 12. The 3DoF MEMS resonant sensor consisting of three weakly
coupled resonators [6], along with the interface circuit configuration, tested
for comparisons between output metrics.

Also, from Fig. 11, it can be seen that for −0.001 <

�K < 0, the nonlinearity error is smaller than ±10%.

III. DEVICE DESCRIPTION & EXPERIMENTAL SETUP

To perform an experimental comparison between the dif-

ferent output metrics in practice, a 3DoF resonant sensor, as

shown in Fig. 12, was fabricated and tested. The fabrication

process, device parameters, as well as the experimental meth-

ods are discussed and described in detail in [6].

A DC coupling voltage of 50V was applied to

resonator 1 and 3, while resonator 2 was grounded. This cre-

ated electrostatic springs between the resonators, coupling the

neighboring resonators. The ratio of the mechanical stiffness

of the resonators to the electrostatic coupling stiffness was

approximately −28.55, satisfying the weak coupling condi-

tion. The peak-to-peak amplitude of the AC voltage driving

the resonators was 8mV, so that the resonators were in the

mechanical linear region of the springs.

In addition, the device was electrically tested under a

vacuum pressure of 20µTorr. The Q factor of the device was

characterized and was found to be Q = 6221 [6]. The resonant

frequencies of the in-phase and the out-of-phase modes were

found to be 14267Hz and 14274Hz, respectively. Using these

values, the bandwidths of the in-phase and out-of-phase modes

were calculated to be approximately 2.29Hz. The frequency

difference measurement results are shown in Fig. 13; it can

be seen that the minimum frequency difference is larger than
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Fig. 13. The frequency differences fop − fip is shown along with the

minimum frequency difference to minimize mode aliasing effect.

twice of the bandwidth of the out-of-phase mode, suggesting

that anti-aliasing condition [6] was fulfilled for all stiffness

perturbations.

In addition, by using the same approach as in [6] and [7],

the γ value and the offset value for the normalized stiffness

perturbation, which was introduced by the fabrication toler-

ances, was found to be 2511.91 and −0.00269, respectively.

In the following sections, the stiffness perturbation values are

all relative to this operating point.

A DC voltage was applied on the electrode on the right, as

shown in Fig. 12. This created a stiffness softening effect on

the resonator 3 equivalent to a stiffness perturbation controlled

by the applied DC voltage. The normalized stiffness perturba-

tions in the following section are calculated using (27), given

the dielectric constant ε0, cross-sectional area A, capacitive

gap d , voltage difference across the gap Ve and the applied

DC voltage for stiffness perturbation �Ve [6]:

�K ≈ −
ε0 A

d3

[

(Ve + �Ve)
2 − V 2

e

]

(27)

In the experiment, instead of directly measuring the vibra-

tional amplitudes, the capacitively induced motional cur-

rents were converted to voltages, which were then used to

calculate the amplitudes. The differential motional currents

were converted to voltages through standard transimpedance

amplifiers (TIAs) (AD8065, Analog Devices Inc., V/I gain

6.6M
 per TIA), then further amplified by instrumentation

amplifiers (INAs) (AD8421, Analog Devices Inc., voltage

gain 40dB) and eventually measured by an oscilloscope

(DSO6032A, Agilent Technologies). The interface circuit con-

figuration for measurement is shown in Fig. 12. The vibra-

tional amplitudes of resonators 1 and 3 were then calculated

using the gains of the amplifying stages and the transduction

factor calculated based on the design parameters.

IV. EXPERIMENTAL RESULTS

We examined the linear sensitivity and linear range for

different output metrics for negative stiffness perturbations.

The output metrics investigated included the mode frequency

shift, the vibrational amplitudes and amplitude difference,

amplitude ratio, and the eigenstate shift.

Fig. 14. Measured normalized in-phase mode frequency shift as a function
of normalized stiffness perturbation, together with a linear fitted function and
nonlinearity error.

Fig. 15. Calculated vibrational amplitudes of resonators 1 and 3 based on
the measured voltage amplitudes, with respect to the normalized stiffness
perturbations, against theoretical values.

A. Mode Frequency Shifts

Theoretically, we showed that for negative stiffness pertur-

bations the in-phase mode changes were more pronounced

than the out-of-phase mode changes. Therefore, we only

considered the linear sensitivity of the normalized in-phase

mode frequency. The normalized output is plotted in Fig. 14.

From Fig. 14, it can be seen that the normalized linear

sensitivity was approximately 0.54. This was 4% higher than

the theoretical value of 0.518. The discrepancy is attributed

to fabrication tolerances in the stiffness value. In addition

to the linear sensitivity, it can be seen that the linear range

for a tolerance of ±10% nonlinearity error was approximately

�K/K < −0.001. It can also be seen from the results that

the calculated stiffness perturbation is an accurate estimation

of the perturbation applied.

B. Vibrational Amplitudes

The measured vibrational amplitudes of resonators 1 and 3

at the out-of-phase mode frequencies are plotted in Fig. 15.

It can be seen that both vibrational amplitudes agreed well with

the theoretically calculated values for stiffness perturbations

�K/K < −0.001, with an error of less than 5%. The

discrepancy is likely to be caused by the fabrication tolerances.

Another possible reason is the increased mode aliasing effect

caused by the reduced mode frequency difference closer to

zero perturbations.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

Fig. 16. Normalized amplitude difference, |X1| − |X3|, calculated using the
measured amplitudes, as a function of normalized stiffness perturbation, as
well as a linear fitted function and nonlinearity error.

Fig. 17. Normalized amplitude ratios, |X1|/|X3|, calculated using the
measured amplitudes, as a function of normalized stiffness perturbation, as
well as a linear fitted function and the nonlinearity error.

C. Amplitude Difference

Using the measured vibrational amplitudes, we are able to

calculate the amplitude difference used as the output metric.

The maximum normalized linear sensitivity was found to be

in close vicinity to the zero perturbation point. This is shown

in Fig. 16. The linear fitted normalized linear sensitivity was

−2073.38. The discrepancy between this value and theoret-

ically estimated value is considered to be mainly caused by

the fabrication tolerances and increased mode aliasing effect,

which leads to an increased (approximately 4 times) Xd,0

value than theory. The linear range with a tolerance of ±10%

nonlinearity error was −0.001 < �K/K < 0.

D. Amplitude Ratios

The theoretical calculations show that the amplitude of res-

onator 2 is orders of magnitude smaller than the amplitudes of

resonators 1 and 3, making it impractical to detect. Therefore,

we only considered the amplitude ratio |X1/X3|. From the

vibrational amplitudes of the out-of-phase mode, we were

able to calculate the amplitude ratio as an output metric. The

normalized amplitude ratios are plotted in Fig. 17.

It can be seen that the maximum normalized linear sensitiv-

ity of the amplitude ratio was −1750.28. The discrepancy from

theoretical value was approximately 10%. The normalized

sensitivity is a function of the amplitude ratio for �K = 0,

Fig. 18. Normalized eigenstate shift as a function of normalized stiffness
perturbation, along with linear fitted function and nonlinearity error.

which was affected by the mode aliasing effect. Therefore, the

discrepancy was due to the mode aliasing effect, as well as

fabrication tolerances. In addition, the nonlinearity error was

within ±10% for �K/K < −0.0015.

E. Eigenstate Shift

As shown in Fig. 10, the eigenstate of a weakly coupled

3DoF resonant sensor can be estimated using only the ampli-

tudes of resonators 1 and 3. The normalized eigenstate shift

relative to the initial eigenstate was measured experimentally

and is plotted in Fig. 18.

The maximum normalized linear sensitivity was found

by linear fitting, and the value was −308.25 as shown

in Fig. 18. Similar to the amplitude difference, the maximum

linear sensitivity of eigenstate shift was found near �K = 0.

The linear region for eigenstate shift was approximately

−0.001 < �K/K < 0.

F. Output Metrics Comparison

To summarize the simulated and experimental results,

we can compare the maximum normalized linear sensitivity

(absolute value), as well as the linear region for different

output metrics including frequency shift, amplitude difference,

amplitude ratio and eigenstate shift. The key figures are listed

in Table II. We can come to the following conclusions from

both simulations and experimental results.

From the comparisons listed in Table II, it can be clearly

seen, that the frequency shift has the largest linear range for

both theoretical and experimental results, whilst it has the

lowest sensitivity among the four output metrics.

The amplitude difference has the highest value for maximum

normalized linear sensitivity, i.e. three orders of magnitude

improvement from the lowest sensitivity. However, the sen-

sitivity decreases significantly as the normalized stiffness

perturbation increases (negative), e.g. the sensitivity decreased

to a level less than half of the maximum value when

�K/K = −0.002. In addition, low nonlinearity errors are

confined to a rather limited range.

The eigenstate shift has moderate sensitivity, i.e. up to an

order of magnitude lower than the highest sensitivity, but two

orders of magnitude higher than the lowest sensitivity. In terms

of linear range, it is similar to that of the amplitude difference.
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TABLE II

MAXIMUM NORMALIZED LINEAR SENSITIVITY AND LINEAR REGION COMPARISONS FOR THE OUTPUT METRICS DISCUSSED IN THIS PAPER

Fig. 19. Different normalized output metrics as functions of normalized
stiffness perturbation. For �K/K < −0.002, amplitude ratio has the highest
sensitivity, whereas for −0.002 < �K/K < 0, amplitude difference offers
the highest sensitivity.

However, it has already been shown experimentally that eigen-

state shift has higher common mode rejection capability than

frequency shift [10]. For the other discussed output metrics,

no experimental investigation of common mode rejection has

been presented to date. All three metrics discussed show a

strong trade-off between sensitivity and linear range.

The amplitude ratio offers the best balance between the

two key specifications in our discussions. It has the second

highest sensitivity and linear range. Despite that the max-

imum sensitivity is the second highest, in the range of of

�K/K < −0.002, the normalized output becomes largest

among all four metrics, while also having the highest sen-

sitivity. This is shown in Fig. 19.

To conclude, the choice of the output metrics depends on the

specific applications. For applications where both linear range

and sensitivity are important,we propose to use amplitude ratio

as the output metric, since it has both high sensitivity and wide

linear range.

In other cases where the sensitivity is the most important

specification, the optimized output depends on the region

of operation. If we plot the measured output of all four

metrics with respect to the stiffness perturbations in Fig. 19,

it can be seen that in the region of �K/K < −0.002, the

amplitude ratio surpasses amplitude difference, to have the

highest normalized output. Thus, for a working region of

�K/K < −0.002, the amplitude ratio is the output metric

for optimized sensitivity; On the other hand, if the region of

measurement is in the range of to −0.002 < �K/K < 0, the

amplitude difference has the highest sensitivity.

For cases where linear range is the most important factor,

i.e. for ease of calibration, both the frequency shift as well as

the amplitude ratio are adequate.

V. CONCLUSIONS

In this paper, we have systematically investigated four

output metrics for a 3DoF MEMS resonant sensor for stiffness

change sensing, consisting of three weakly coupled resonators,

including frequency shift, amplitude difference, amplitude

ratio and eigenstate shift. We have analytically derived the

mode frequency shifts and amplitude changes for the 3DoF

resonant sensor under stiffness perturbations. From the analyt-

ical expressions, we showed that the mode localization effect

occurs. To measure the mode localization effect, we have used

three output metrics, amplitude difference, amplitude ratio and

eigenstate shift.

From the simulation and experimental results, we have

presented evidence that by measuring the effect of mode

localization, the normalized sensitivity improved by orders

of magnitude. However, using different manipulations of the

amplitudes of the resonators, we are able to find that the result-

ing output metrics have different characteristics. For instance,

the amplitude difference has the highest normalized sensitivity

but a relatively low linear range; whereas the amplitude

ratio has the best balance between the sensitivity and linear

range.

Using the results from this paper, future research focusing

on a MEMS resonant sensor consisting of weakly coupled

resonators can choose the optimum output metric. In general,

we propose using amplitude ratio as the output metric for

the best compromise between sensitivity and linear range,

for stiffness change sensing applications. Stiffness change

sensing can be applied to inertial, force, displacement and

strain sensors; therefore, the presented results can be directly

used for the design of such coupled resonator sensors. It is also

worth pointing out that for sensing mass changes (�M ≪ M),

the mass perturbation can be linearly translated to an equiv-

alent stiffness perturbation [16]. Hence it is believed that

the results can also be applied for for mass change sensors.

In addition, by using a similar methodology as described in

this paper, output metrics can be compared and investigated for

coupled resonators with other number of degrees of freedom,

e.g. 2DoF.

In addition to the sensitivity and linear range, there are other

key specifications which are not discussed in the main context

of the paper, e.g. resolution and dynamic range. This could be

a focus of future research.
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Lastly, the analysis in this study assumes high Q-factors

with Q > 5000 and was verified by experiments using a device

with Q ≈ 6000. It is believed that the presented analysis is also

valid for even higher Q resonators with Q-factors in the order

of 10000 or above. In this case, γ , and thus the sensitivity, can

be improved even further. However, all output metrics show

a trade-off between the sensitivity and linearity; therefore,

improvement in sensitivity implies a reduction in linear range.

On the other hand, for low Q resonators, e.g. resonators in

fluids with Q < 1000, it is more difficult to achieve high γ,

thus high sensitivity, due to the constraints of the anti-mode

aliasing condition (as indicated in (10)). However, the overall

analysis is still valid, as long as the anti-aliasing condition is

satisfied with an appropriate design. This suggests a limitation

on maximum sensitivity for low Q resonators, but a potential

to improve the linear range.

APPENDIX A

THEORETICAL DERIVATIONS OF AMPLITUDES

AND AMPLITUDE RATIOS AT THE IN-PHASE

MODE FREQUENCY

Assuming weak coupling, i.e. Kc < K/10 < K2/20,

substituting the in-phase mode frequency (11) into transfer

functions (7) and (9), we can obtain:

(X3)ip ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

K + Kc

Q

⎛

⎝− j

√

√

√

√

(

γ�K

K

)2

+ 4 −
γ

Q

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

F(s)

(28)
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∣
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∣
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∣

∣

∣
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∣

∣
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(29)

Comparing (28) to (19), it is obvious that the amplitudes of

resonator 3 are approximately equal at the in-phase and the

out-of-phase mode frequencies. Based on this, we are able to

obtain:

|X1|op

|X1|ip
≈

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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2
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∣
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∣
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∣

∣

∣

∣

∣

2

(30)

For |γ�K/K | > 5 (corresponding to a �K/K < −0.0024

in the main context, which is within the linear range of the

amplitude ratio), the amplitude of resonator 1 at the in-phase

mode frequency is less than 5% of that at the out-of-phase

mode frequency.

An interesting thought is that (30) could be the reason that

amplitude quotient of |X1|op/|X1|ip was used as an output

in [17], since the sensitivity is obviously higher than |X1/X3|

of the out-of-phase mode. However, this output requires the

sweeping of the frequency to find both modes, which is

impractical for real-time sensing.

APPENDIX B

THEORETICAL DERIVATIONS OF PHASE CHANGE

AT THE OUT-OF-PHASE MODE FREQUENCY

If �
∣

∣X p

∣

∣

op
(p = 1, 2 and 3) denotes the phase change

of the pth resonator relative to the drive force at the

out-of-phase mode frequency, using (17), (18) and (19), we

are able to obtain:

� |X1|op ≈ arctan

(

2γ /Q

γ (�K/K ) −
√

γ 2(�K/K )2 + 4

)

− arctan

(√

γ 2(�K/K )2 + 4

γ /Q

)

(31)

� |X2|op ≈ arctan

(

− 2K/Q

�K + 2K/γ −
√

�K 2 + (2K/γ )2

)

− arctan

(√

γ 2(�K/K )2 + 4

γ /Q

)

(32)

� |X3|op ≈ − arctan

(√

γ 2(�K/K )2 + 4

γ /Q

)

(33)

One important observation from the equations is that,

for |γ�K/K | > 10,
√

γ 2(�K/K )2 + 4 ≈ −γ (�K/K ),

then (31) can be approximated as � |X1|op ≈ −90◦. This is

an important conclusion for constructing a self-oscillating loop

for the weakly coupled 3DoF resonant sensor as shown in [18].
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