
A Comparative Study of Pub/Sub Methods in
Structured P2P Networks

Matthias Bender, Sebastian Michel, Sebastian Parkitny, Gerhard Weikum

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken
{mbender, smichel, parkitny, weikum}@mpi-inf.mpg.de

Abstract. Methods for publish/subscribe applications over P2P net-
works have been a research issue for a long time. Many approaches have
been developed and evaluated, but typically each based on different as-
sumptions, which makes their mutual comparison very difficult if not
impossible. We identify two design patterns that can be used to imple-
ment publish/subscribe applications over structured P2P networks and
provide an analytical analysis of their complexity. Based on a character-
ization of different real-world usage scenarios we present evidence as to
which approach is preferable for certain application classes. Finally, we
present simulation results that support our analysis.

1 Introduction

1.1 Motivation

Peer-to-Peer system have been a hot research topic for years now, but only
recently there have been some success stories of actually deploying legal P2P-
based applications on a large-scale basis, such as BitTorrent or Skype. We feel
that this is partly due to the fact that the P2P paradigm has been applied to all
kinds of popular (web) application scenarios, even though they mostly did not
necessarily expose any natural P2P-like usage scenario in practice.

One of the few applications that naturally fit with a fully decentralized set-
ting are publish/subscribe (pub/sub) applications. We bring forward the follow-
ing two archetypical pub/sub scenarios that we will characterize and refer to
throughout the paper. Consider a User-to-user scenario in which users want to
share community knowledge, e.g., on computer troubleshooting, or discuss re-
cent events in Blogs or Wikis. In this scenario, all users are interested in (i.e.,
subscribe to) a certain subset of new content, and become publishers themselves
at a low rate, publishing a new article or adding a comment to an existing Blog
entry. For example, imagine a publish/subscribe application where subscribers
want to be notified when any participating Blog publishes a new article that
contains the term P2P. In the Publisher-to-user scenario, a smaller set of pub-
lishers (e.g., news agencies like Reuters or AP) publish new content at a much
higher rate, and a large number of users (typically distinct from the set of pub-
lishers) is interested in monitoring a developing news story, staying up-to-date
on a competing business, or getting the latest tabs on a celebrity of the favorite
sports team.

In spite of exposing some very distinctive characteristics, both sample sce-
narios expose a system model of fully distributed and autonomous informa-
tion providers and information consumers, which is well-suited for a P2P-style
organization. Indeed, numerous approaches on how to efficiently design pub-
lish/subscribe in a fully distributed manner have independently emerged from
the P2P research community. Unfortunately, the sheer number of proposals
and their often hard-to-compare assumptions regarding the underlying network
structure and usage patterns render the comparison a troublesome task. Typi-
cally, the approaches are only evaluated for a very specific set of system param-
eters, and not compared to other existing approaches for different settings.

1.2 Contribution

This paper’s contribution is threefold. First, it identifies and introduces two
design patterns that can be used to implement pub/sub applications over struc-
tured P2P networks. Second, the paper provides an analytical characterization
of the complexity of both approaches and provides guidelines regarding which
approach might be preferable for which usage patterns. Third, we present mea-
surements that back up both our analytical results and our suggestions for design
guidelines, also in the presence of network dynamics. We explicitly model net-
work dynamics, as peers constantly enter and leave the system. Note that this
paper does not compare any concrete prototypes, but instead focuses on evalu-
ating the design approaches for various system parameters.

The remainder of the paper is structured as follows: After Section 2 reviews
related work, Section 3 introduces and discusses our system model. Section 4
introduces Store-Sub and Store-Pub, two design patterns that can be used to
implement pub/sub functionality on top of a structured overlay network. Section
5 analyzes the message complexity of both approaches and subsequently gives
guidelines as to which approach is well-suited for which usage scenario. Analyt-
ical results and experimental results from simulations are presented in Section
6, before Section 7 concludes this work and points at future research directions.

2 Related Work

Distributed hash tables, DHTs, (such as Chord [16], CAN [12], Pastry [13], or
P-Grid [1]) have emerged as the preferred family of structured architectures for
overlay P2P networks. The main advantage of DHTs compared to unstructured
P2P networks stems from the performance guarantees that they can offer regard-
ing the routing efficiency and ultimately the network scalability, even in the pres-
ence of high network dynamics (such as high rates of node arrivals/departures
and failures/recoveries). P2P data networks over structured and/or unstructured
networks has been a hot research topic for years [6, 9, 4, 21, 18, 11, 10].

More recently there have been numerous proposals for distributed pub/sub
systems [20, 2, 7, 17, 14, 19, 8]. Most of them can be classified into three cate-
gories: topic based systems, content based systems, and hybrid solutions. Topic
based systems usually consider that users subscribe to a publisher that regularly
publishes documents of a certain topic (e.g. mailing lists), whereas in content
based systems users subscribe to publishers that do not have a particular topic
but employ a, usually, term based filtering to distinguish between relevant and

2

non-relevant documents w.r.t. the users’ interests. Hybrid systems basically con-
sider subscriptions to topics but allow for a term based filtering. The first step
reduces the communication overhead compared to the term-subscriptions case
whereas the second design choice drastically reduces the number of actually
shipped documents, i.e. preventing the delivery of irrelevant documents to the
end user. [3] reasons on the difference between information filtering and infor-
mation retrieval that can be interpreted as P2P pub/sub versus P2P retrieval.

A nice introduction into various aspects of P2P systems is given in [15].

3 System Model

We consider a network of nodes N = {n1, ..., nk}. Each node can take one or
both of the following roles: Subscribers S = {s1, ..., sm} express their interest in
selected newly-published content, Publishers P = {p1, ..., pl} regularly generate
new content. Subscribers issue subscriptions. subi,j denotes the j-th subscription
of si, i.e., each subscriber can have more than one subscription. The average
number of subscriptions per subscriber is denoted subavg. Each subi,j is a set of
terms t from a domain T , i.e., subi,j ⊂ T . sub denotes the average number of
terms per subscription.

Publishers generate content in form of documents d ∈ D ⊂ 2T , i.e., documents
are a set of terms t ∈ T . Publishers issue their new content at a certain publishing
rate r, measured in new documents per time interval. The notation is summarized
in Table 1.

si ∈ S, si Subscriber from set of all subscribers
pi ∈ P Publisher from set of all publishers
ni ∈ N Node in the network
t ∈ T Term from term domain
subi,j j-th subscription of si

subavg average number of subscriptions per subscriber

sub average number of terms per subscription
d, |d| document, length of document

Table 1. Notation

3.1 Discussion

For this work, we assume subscribers to express their interests in form of terms,
i.e., they are interested in all new content that contains all subscription terms.
We feel that more sophisticated means of subscriptions are a high burden for
non-expert users, which make up a large fraction of users in a large-scale real-
world network. Nevertheless, we will, at appropriate steps, present enhancements
that can also accommodate more expressive subscription methods, e.g., based
on XQuery expressions over RSS feeds.

Note that the ratio between publishers and subscribers and also the average
number of subscriptions per subscriber highly depends on the targeted applica-
tion scenario. While in the User-to-user scenario, typically all subscribing users
also play the role of publishers (typically at low rates), the Publisher-to-user sce-
nario with a limited set of news agencies as publishers exposes a small number
of publishers that publish at high rates. The ratio between subscribers and pub-
lishers highly influences the optimal design pattern of the system; an extreme
ratio could render either approach infeasible.

3

This work focuses on structured P2P architectures, such as distributed hash
tables (DHTs), as a network overlay. Not limiting ourselves to a particular DHT
implementation, we only assume a basic nodeID ← lookup(k) functionality that
maps a key k to the node identified by nodeID currently responsible for that key.
DHTs can straightforwardly be used to construct conceptually global, but phys-
ically distributed directories. This paper focuses on structured overlays because
we strongly believe that gossiping in unstructured networks inevitably leads to
scalability and performance issues, in particular for application classes which
aim at efficiently locating specific information such as publish/subscribe.

Our study does not include publish/subscribe approaches that let publishers
circulate their documents through the whole network and that make subscribers
“pick” all content that they are actually interested in, as we feel that distributing
content to all peers even though they might not be interested in it exposes scal-
ability issues already for medium-sized networks. In this context, we also point
out that our analytical model and our measurements do not consider the actual
document dissemination, but only the matchmaking between the subscriptions
in the network and newly-published content. While we will sketch possible ways
of efficiently disseminating the documents at a later stage for both design pat-
terns, our evaluation ends as soon as the set of all matching subscribers for a
new content is identified.

4 Design Patterns

The common basis for the following two design patterns to implement pub/sub
functionality is the presence of a conceptually global, but physically distributed
directory, built on top of all nodes in the network, i.e., subscribers and publishers
alike. We use the term directory peer to refer to a node, stressing its participation
in the distributed directory. The directory maps keys in form of features (e.g.,
terms or topics) to appropriate values describing the key value, e.g., in form of
statistical aggregations. Such a directory can straight-forwardly be implemented
on top of any DHT, offering a basic nodeID ← lookup(key) method, as follows:
Each node that wants to learn (or add to) the statistics for a certain key issues
the corresponding lookup(key) request to retrieve the peer that is currently re-
sponsible for maintaining the value for that key. In a point-to-point fashion (not
stressing the directory), the user can subsequently contact that peer to retrieve
or add the desired information.

We strongly believe that storing (pointers to) individual documents in the
distributed directory is not feasible, as (e.g., for Blogs in the Publisher-to-user
scenario) the number of publications increases rapidly. We think it is unavoidable
to abstract and aggregate the information, yielding a light-weight system that
offers scalability to support an a-priori unlimited number of nodes. The following
subsections describe two design patterns to implement pub/sub functionality,
storing different metadata in the distributed directory.

4.1 Store-Sub

Most of the existing approaches of implementing a publish/subscribe infrastruc-
ture over structured P2P networks follow the general paradigm that we sub-
sequently refer to as Store-Sub: The subscribers store their subscriptions in
a conceptually global, but physically distributed directory implemented on top

4

of the DHT. When publishers publish new content, they retrieve all applicable
subscriptions from the directory, which is feasible because publishers can inverse
the subscription process to find all subscriptions that match their new content.
Perhaps the most obvious way to actually implement this for each subi,j is to let
each si send a message for each term t occurring in at least one of its subscription
to the directory peer identified by lookup(t) and to attach subi,j completely. A
publisher that wants to publish new content has to retrieve these lists from the
appropriate directory peers for each term t of its new content in order to identify
all subscribers that have issued a subscription that is matched by the content.

The bottlenecks of this approach are obvious: Publishers need to retrieve a
large number of potentially huge lists of subscribers to find all appropriate sub-
scribers when they publish new content, because they have to retrieve the sub-
scriptions for all terms that occur in the content, in order to make sure not to
miss any matching subscribers. One typical way to tackle this issue is to re-
duce the number of features that a publisher needs to check in order to find
all appropriate subscribers. For example, this can be achieved by mapping all
terms to a much smaller number of topics1. Subscribers send their subscription
to the directory peer responsible for the appropriate topic and attach a more
expressive subscription (e.g., the complete set of subscription terms or XQuery
expressions). In this case, publishers only need to check for potential subscribers
at a much smaller subset of directory peers.

While the most obvious way of eventually matching all such attached sub-
scriptions might be for the publisher to retrieve the list of all subscribers for
the appropriate topic(s) of a new content item and to perform the matchmaking
locally, this may require to transfer an excessive number of (eventually non-
matching) subscriptions from the directory peer(s) back to the publishers. An-
other possibility is, thus, for the publisher to transfer the actual document to
the applicable directory peer(s) and let them perform the matchmaking locally,
without transferring the lists of subscriptions. Subsequently, the directory peer
can either start the document dissemination itself immediately or return the
(much smaller) list of matching subscribers back to the publisher.

Figure 1 illustrates an example of the Store-Sub infrastructure on top of a
DHT. N17, N45, and N76 are directory nodes responsible for topics sports,
politics, comedy, and music. The mapping from topics to directory nodes is given
by the DHT’s lookup() method that, e.g., maps the topic “sport” to the directory
node with nodeID 17. N17, for example, has already received subscriptions from
S42 regarding the combination of terms (worldcup, 2006, germany, opening)
and is currently receiving another subscription from S14. Directory peers store
incoming subscriptions in a subscriber list. All publishers that generate content
about the topic “sport” will turn to N17 to identify all matching subscribers,
either by retrieving the complete lists of subscribers for all relevant topics (and
subsequent local filtering) or by sending the document itself to the directory
node, which will return an appropriately prefiltered subscriber list (or start the
document dissemination itself).

1 Building such a topic hierarchy is a well-addressed research problem and out of scope
for this paper.

5

Fig. 1. Store-Sub Architecture

4.2 Store-Pub

Another approach towards implementing a publish/subscribe infrastructure over
structured P2P networks is a design pattern which we will subsequently refer
to as Store-Pub: Each publisher pi announces its existence together with some
statistical profile profi in the distributed directory. profi describes the content
that Pi has previously published (or, potentially the expected and forecasted be-
havior in the near future). The distributed directory again partitions the feature
(term, topic, ...) space, so that subscribers can access this (regularly updated)
data to find potentially promising publishers for their information needs, and
register directly with selected publisher(s).

To our knowledge, this approach has not been used so far to actually imple-
ment a publish/subscribe infrastructure. When comparing it to the Store-Sub
approach, the following advantages (+) and disadvantages (-) can be identified:

+ Subscribers have full control over which publishers to contact and, e.g., prefer
reputable publishers.

+ Subscribers can finetune the amount of content they receive by adapting the
number of publishers they register with.

+ Subscribers do not expose information to the public that may be used for
social reengineering.

+ Subscribers can subscribe to particular publishers, without being overwhelmed
by content from all publishers.

- Publishers need to announce profiles. Depending on the number of publishers,
that may lead to extensive network resource consumption.

- Subscribers base their decision on publishers’ profiles describing the past. Sub-
scribers may miss prospective publishers if they have not published relevant
content before. If a new story arises, they cannot find any matching publishers
until publishers have refreshed their profiles.

6

In other words, Store-Sub is an exact approach to pub/sub, i.e., a subscriber
will in principle not miss any content that matches its subscriptions. On the
other hand, Store-Pub is an approximate approach, there is no guarantee that a
subscriber actually receives all content that matches its subscriptions, because
he may not have selected the appropriate publisher based on its profile or the
publisher did not yet have an appropriate profile at the time of subscription
(e.g., for a developing news story). To overcome the last issue, we assume that
subscribers revisit the directory on a regular basis to check whether other or
better publishers have arisen to match their subscriptions, i.e., they conceptually
repeat their subscription process regularly.

Fig. 2. Store-Pub Architecture

Figure 2 illustrates an example of the Store-Pub infrastructure on top of a
DHT. N17, N45, and N76 are again directory nodes responsible for topics
sports, politics, comedy and music. This time, they maintain profile informa-
tion describing publishers P . The mapping from features to directory nodes is
given by the DHT’s lookup() method that, e.g., maps “sport” to the directory
node with nodeID 172. Subscribers interested in the soccer worldcup can turn to
N17 and identify publishers at their discretion. Registering their subscriptions
is a point-to-point communication with publishers, which store the subscriptions
locally.

5 Complexity Analysis

For the upcoming complexity analysis, we assume a distributed directory on
top of a DHT network. As messages to an arbitrary remote node of an |N |-node
network require an expected log2(|N |) message hops in most popular DHT archi-
tectures, we use this factor for each message sent to actually reach its destination.
Regarding the notation, readers might want to refer back to Table 1.

2 Note that it is due to the random assignment of topics/terms to peers that the
statistics for “comedy” and “politics” are stored on the same peers. This does not
reflect the authors’ opinion ...

7

5.1 Store-Sub

The messaging complexity of Store-Sub consists of two ingredients:

– Subscribers joining the network need to issue their subscriptions to the dis-
tributed directory

– When publishing new content, a publisher needs to retrieve candidate sub-
scriptions from the directory

Note again that we do not model the actual document dissemination, which is
an orthogonal task as soon as all matching subscriptions are identified.

The number of messages necessary to dispatch all subscriptions of new sub-
scribers Snew depends on the size of the network N , the average number of
subscriptions subavg, and the number of directory nodes fs that each subscrip-
tion has to be sent to. Depending on the actual implementation, fs can be as
high as sub if the subscription needs to be sent to the directory nodes for each
subscription term, or as low as 1, if the subscription only needs to be sent to a
single topic directory peer (cf. Section 4.1).

The number of messages caused by publishers publishing new content depends
on the number of publishers |P |, the rate at which they publish new content,
the number of directory peers fp that they need to retrieve subscriptions from
(which, analogously, can be as high as the number of terms in a new document
or as low as 1, if each document can be mapped to exactly one topic) and the
total size of the network |N |. Table 2 summarizes the complexity of Store-Sub.

Complexity
Send subscriptions (subscribers) O (|Snew| ∗ subavg ∗ fs ∗ log(N))
Retrieve subscriptions (publishers) O (|P | ∗ rate ∗ fp ∗ log(N))

Table 2. Complexity Store-Sub

5.2 Store-Pub

The messaging complexity of Store-Pub again consists of two ingredients:

– Publishers need to announce their profiles
– Subscribers need to retrieve the profiles from the directory to identify promis-

ing publishers

As the publisher’s profiles can only describe previous behavior of the publishers
(or, at best, forecast the future based on this previous behavior), we assume that
not only new publishers Pnew entering the system have to distribute their profiles,
but also existing publishers |P | have to update their profiles at regular intervals.
Since the profiles are feature-(i.e., term- or topic-)specific (i.e., publishers may
want to issue their profile w.r.t. each available feature), the number of messages
necessary to distribute the profiles depends on the size of the feature space |F |,
and the size of the network |N |.

Analogously, we expect subscribers to regularly re-check whether new pub-
lishers have become promising sources for their subscriptions, so they regularly
retrieve the appropriate profiles from the directory. The messages necessary for
this purpose depend on the number of subscribers, Snew and S, respectively, the
average number of subscriptions per subscriber subavg, the number of directory
nodes fs that carry profiles relevant to a subscription, and the size of the network
|N |. Table 3 summarizes the complexity of Store-Pub.

8

Complexity

Send profiles (publishers) O
(
(|Pnew| + |P |

interval
) ∗ F ∗ log(N)

)
Retrieve profiles (subscribers) O

(
(|Snew| + |S|

interval
) ∗ subavg ∗ fs ∗ log(N)

)
Table 3. Complexity Store-Pub

5.3 Discussion

For Store-Sub, which of the two contributing message types is responsible for the
majority of the traffic highly depends on the system parameters. If the network
volatility is high, i.e., many new subscribers Snew enter the system per time
interval, the messages necessary to announce their subscriptions may exceed the
traffic caused by the publishers generating content at low rates. Analogously,
which of the two contributing message types is responsible for the majority of
the traffic in Store-Pub also highly depends on the system parameters, in par-
ticular the degree of network dynamics and the average number of subscriptions
per subscriber. This dependency is illustrated in Figures 3 and 4. The number
of messages necessary to retrieve the subscriptions by the publishers in Store-
Sub clearly dominates the messages necessary to store the subscriptions in the
directory as the publishing rate increases. The number of messages to retrieve
the profiles in Store-Pub dominates the number of messages to actually store
the profiles if the average number of subscriptions per subscriber increases (or,
analogously, if the average length of subscription increases).

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000

#M
es

sa
ge

s

Publish rate

Store-Sub

Sent subscription
Retrieve subscription

Fig. 3. Store-Sub message types

 10000

 100000

 1e+06

 1e+07

 1 10 100

#M
es

sa
ge

s

#Subscriptions

Store-Pub

Retrieve profile
Sent profile

Fig. 4. Store-Pub message types

Store-Sub Store-Pub
User-to-user + o
Publisher-to-user - +

Table 4. Design Pattern Guidelines

Table 4 summarizes the analytical results by providing guidelines which design
pattern is well-suited (+) or ill-suited (-) for certain usage patterns of a pub/sub
system.

9

6 Experiments

Our experimental contribution is threefold. First, we support our analytical
model of the previous section with actual simulations to verify the validity of our
cost formulas. The simulation results almost exactly match the numbers fore-
casted by our analysis; we do not show the corresponding figures as they do not
offer any insights. Second, we provide evidence based on our analytical results
that, depending on the usage scenario, either one of Store-Sub or Store-Pub is
the method of choice for efficiently implementing a scalable pub/sub application,
as they are sensitive to different system parameters. Third, we conducted more
elaborate simulations with user and document models in order to measure the
actual message and traffic counts for concrete usage scenarios. The numbers back
up our analysis that the resource consumption is well below reasonable limits if
the implementation method of choice is in line with the expected usage pattern.

6.1 Analytical Results

For the upcoming analytical results we fix the following system parameters (cf.
Table 1): |P | = 100, |S| = 100, 000, subavg = 3, sub = 5, |T | = 100, 000,
Snew = 10, |d| = log(|T |) ∼ 16.

Figure 5 shows the sensitivity of both Store-Sub and Store-Pub to changes in
the publishing rate, i.e., the amount of new content that each publisher publishes
per time interval. While Store-Pub is not sensitive to this parameter, the number
of messages in the Store-Sub approach increase as the publishing rate increases,
as the publishers have to retrieve data from the distributed directory more often.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000

#M
es

sa
ge

s

Publish rate

Store-Sub
Store-Pub, intervall = 50

Store-Pub, intervall = 100

Fig. 5. Sensitivity to Publishing Rate

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000

#M
es

sa
ge

s

Intervall

Store-Sub
Store-Pub

Fig. 6. Sensitivity to refresh time interval

For Figure 6 we fix the publishing rate at 10 documents per round and vary
the interval at which publishers refresh their profiles in the directory and at
which subscribers recheck for promising publishers. While Store-Sub is immune
against these parameters, Store-Pub exposes a linear dependency. This indicates
that Store-Pub is ill-suited for scenarios in which the profiles of publishers are
expected to change quickly, causing the necessity to frequent profile updates.

10

6.2 Simulations

We have implemented a discrete event simulator mimicking the behavior of
Store-Sub and Store-Pub. For this purpose, 10 publishers synthetically gener-
ate 100,000 documents using a Zipf-distribution over 100,000 terms. To achieve
thematically distinct peers, we shift the terms by 20, i.e., pi starts at ti∗20 as
its most frequent term to generate its documents. For each publisher, the first
50,000 documents were used as “seeds” to generate the publisher’s profiles; the
remaining 50,000 were used sequentially whenever a publisher publishes new
content. The simulation starts at 5.000 subscribers (subavg = 3; sub = 5); the
average number of subscribers does not change, as expected in the Publisher-to-
user scenario. At each round, a random set of 1-10 subscribers leave the system
(without any notice to the system), while another 1-10 new subscribers join the
system.

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

#M
es

sa
ge

s

Round

Store-Sub
Store-Pub

Fig. 7. Publishing rate 1 per round

 10000

 100000

 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

#M
es

sa
ge

s

Round

Store-Sub
Store-Pub

Fig. 8. Publishing rate 100 per round

Figures 7 and 8 show the total number of messages that were generated per
round, where one round corresponds to one time interval (as explained for Store-
Pub). It can be seen that Store-Sub generally has a larger variation in the number
of messages, as the randomness introduced by new subscribers entering the sys-
tem with a varying number of subscriptions is larger than for Store-Pub, where
most of the traffic is introduced by the publishers refreshing their profiles (which
is constant over time). Additionally, Store-Sub, as expected performs well at a
lower publishing rate, while Store-Pub is immune against changes in the pub-
lishing rate.

7 Conclusion and Future Work

We have introduced two general design patterns, Store-Sub and Store-Pub, to
implement pub/sub functionality on top of a structured P2P network. While
Store-Sub has frequently been the basis for P2P pub/sub prototype system, we
are not aware of any prototype implementing the principles of Store-Pub.

One key insight of this work is that there is no “one-fits-all” pub/sub approach,
but that the optimal design pattern highly depends on a large number of system
parameters, such as the expected ratio between subscribers and publishers or

11

the rate at which publishers generate new content. While Store-Sub seems well-
suited for a User-to-user scenario where publishers generate content at lower
rates, Store-Pub seems attractive for a Publisher-to-user scenario where a small
number of publishers generates content at high rates.

We will implement both design patterns on top of our Minerva [5] architecture.
For Store-Pub, one particularly interesting field of research is how to forecast
the future behavior of a publisher based on its previously published content.

References

1. K. Aberer. P-grid: A self-organizing access structure for p2p information systems.
In CoopIS, 2001.

2. I. Aekaterinidis and P. Triantafillou. Internet scale string attribute pub-
lish/subscribe data networks. In CIKM, 2005.

3. N. J. Belkin and W. B. Croft. Information filtering and information retrieval: Two
sides of the same coin? Commun. ACM, 35(12), 1992.

4. M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Improving
collection selection with overlap awareness in p2p search engines. In SIGIR, 2005.

5. M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Minerva:
Collaborative p2p search. In VLDB, 2005.

6. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. Planetp: Using
gossiping to build content addressable peer-to-peer information sharing communi-
ties. In HPDC, 2003.

7. A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: Content-based
publish/subscribe over p2p networks. In Middleware, 2004.

8. S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2p-diet: An extensible p2p
service that unifies ad-hoc and continuous querying in super-peer networks. In
SIGMOD Conference, 2004.

9. G. Koloniari and E. Pitoura. Content-based routing of path queries in peer-to-peer
systems. In EDBT, 2004.

10. J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical
peer-to-peer networks. In ECIR, 2005.

11. I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Beyond term indexing:
A p2p framework for web information retrieval. In Informatica, Special Issue on
Specialised Web Search., 2006.

12. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In SIGCOMM 2001. 2001.

13. A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware, 2001.

14. A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The
design of a large-scale event notification infrastructure. In NGC, 2001.

15. R. Steinmetz and K. Wehrle. Peer-to-Peer Systems and Applications (Lecture
Notes in Computer Science). Springer-Verlag New York, 2005.

16. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM 2001.

17. D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-based publish/subscribe
systems with distributed hash tables. In DBISP2P, 2003.

18. C. Tang and S. Dwarkadas. Hybrid global-local indexing for efficient peer-to-peer
information retrieval. In NSDI, 2004.

19. W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A peer-to-
peer approach to content-based publish/subscribe. In DEBS, 2003.

20. C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/subscribe functionality
in ir environments using structured overlay networks. In SIGIR, 2005.

21. Y. Wang, L. Galanis, and D. J. de Witt. Galanx: An efficient peer-to-peer search
engine system. Available at http://www.cs.wisc.edu/ yuanwang.

12

