
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

https://doi.org/10.1007/s13202-018-0447-2

ORIGINAL PAPER - EXPLORATION ENGINEERING

A comparative study of several metaheuristic algorithms
for optimizing complex 3‑D well‑path designs

Rassoul Khosravanian1 · Vahid Mansouri1 · David A. Wood2 · Masood Reza Alipour1

Received: 3 September 2017 / Accepted: 9 February 2018 / Published online: 10 March 2018

© The Author(s) 2018. This article is an open access publication

Abstract

Considering the importance of cost reduction in the petroleum industry, especially in drilling operations, this study focused

on the minimization of the well-path length, for complex well designs, compares the performance of several metaheuristic

evolutionary algorithms. Genetic, ant colony, artificial bee colony and harmony search algorithms are evaluated to seek the

best performance among them with respect to minimizing well-path length and also minimizing computation time taken to

converge toward global optima for two horizontal wellbore cases: (1) a real well offshore Iran; (2) a well-studied complex

trajectory with several build and hold sections. A primary aim of the study is to derive less time-consuming algorithms that

can be deployed to solve a range of complex well-path design challenges. This has been achieved by identifying flexible

control parameters that can be successfully adjusted to tune each algorithm, leading to the most efficient performance (i.e.,

rapidly locating global optima while consuming minimum computational time), when applied to each well-path case evalu-

ated. The comparative analysis of the results obtained for the two case studies suggests that genetic, artificial bee colony and

harmony search algorithms can each be successively tuned with control parameters to achieve those objectives, whereas the

ant colony algorithm cannot.

Keywords Metaheuristic algorithms · Well-path designing · Well-path optimization · Genetic algorithm · Harmony search ·

Artificial bee colony

List of symbols

Definitions of wellbore trajectory variables (modified

after Shokir et al. 2004)

�1,�2,�3 First, second and third hold

angles, °

�
1
 Azimuth angle at kickoff

point, °

�
2
 Azimuth angle at end of first

build, °

�
3
 Azimuth angle at end of first

hold section, °

�
4
 Azimuth angle at end of

second build or drop, °

�
5
 Azimuth angle at end of

second hold section, °

�
6
 Azimuth angle at end of third

build portion, °

T
1
 Dogleg severities of first

build portion, °/100 ft

T
2
 Dogleg severity of first hold

portion, °/100 ft

T
3
 Dogleg severity of second

build or drop portion, °/100

ft

T
4
 Dogleg severity of second

hold or drop portion, °/100 ft

T
5
 Dogleg severity of third

build or drop portion, °/100

ft

TMD True measured depth

TVD True vertical depth

 * Rassoul Khosravanian

 khosravanian@aut.ac.ir

 Vahid Mansouri

 vahid.mansouri1990@gmail.com

 David A. Wood

 dw@dwasolutions.com

 Masood Reza Alipour

 mass0ood@gmail.com

1 Department of Petroleum Engineering, University

of Amirkabir, Tehran, Iran

2 DWA Energy Limited, Lincoln, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-018-0447-2&domain=pdf

1488 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

D
KOP

 Depth of kickoff point

D
B
 True vertical depth of the

well at the end of drop-off

section (top of third build

section), ft

D
D
 True vertical depth of the

well at the top of drop-off

section (top of second build

section), ft

HD Lateral length (horizontal

length), ft

Introduction

Optimizing the wellbore length of a multi-directional well

requires algorithms that not only find the minimum length,

but do so quickly and effectively, taking into account opera-

tional limitations in design. Hence, the execution time of

algorithms should be taken into account in addition to their

ability to find the optimum well trajectory in a reproducible

manner. This study compares several established metaheuris-

tic optimization algorithms in terms of both their ability to

achieve an acceptable objective function value (i.e., wellbore

length subject to operational constraints applied) and the

algorithms’ computer execution times.

Heuristic algorithms seek “acceptable” solutions to opti-

mization challenges by “trail-and-error” taking a “reason-

able” amount of computational timing. What constitutes

“acceptable” and “reasonable” is clearly subjective and to

an extent depends upon the nature of the optimization task

addressed and the context and urgency in which an optimal

solution is being sought. Heuristic methods generally do not

guarantee finding the best or global optimum, i.e., their solu-

tions often could be improved upon if more computational

time were dedicated to the task. However, in many applied

operational applications a “good/acceptable” solution may

be a rapidly determined local optima situated close to the

global optimum. Hence, heuristic algorithms that search local

regions of a feasible solution space detecting local optima

form important components of metaheuristic methods.

The term metaheuristic refers to higher-level heuris-

tic algorithms (e.g., Bianchi et al. 2009; Yang 2009) that

typically combine several lower-level heuristic processes

in achieving their higher-level strategic optimization objec-

tives. High-performing metaheuristic optimization algo-

rithms efficiently search a feasible solution space which is

too large to be completely sampled in a reasonable time. As

Yang (2009) explains, “intensification” and “diversification”

are two key attributes of modern metaheuristics: “For an

algorithm to be efficient and effective, it must be able to gen-

erate a diverse range of solutions including the potentially

optimal solutions so as to explore the whole search space

effectively, while it intensifies its search around the neigh-

borhood of an optimal or nearly optimal solution.” The

metaheuristic optimization algorithms evaluated, in terms

of wellbore designs of a complex trajectory subject to con-

straints, are: genetic algorithm (GA), artificial bee colony

(ABC), ant colony optimization (ACO) and harmony search

(HS). The results are compared to previously published work

on the particle swarm optimization algorithm applied to one

of the case studies evaluated (Atashnezhad et al. 2014).

Genetic algorithms (GA) involve an evolutionary process,

typically starting with a random set of feasible solutions,

followed by steps of evolution, i.e., successive iterations that

aim to improve their performance in terms of the objective

function by modifying a number of some genetic opera-

tors, using mechanisms akin to those operating in biologi-

cal evolutionary processes (Sivanandam and Deepa 2008).

GAs have been successfully applied to many nonlinear and

non-smooth types of optimization challenges across many

industries (Gallagher and Sambridge 1994).

Artificial bee colony algorithm (ABC) was created based

on swarm intelligence and specifically the food-foraging

strategies of bee colonies (Karaboga and Basturk 2007).

It has been demonstrated that algorithms based upon bee

colony behaviors can solve NP-hard optimization problems

(Karaboga and Basturk 2007). Using ABC algorithms, many

highly constrained and complex models, as well as models

that cannot be solved with deterministic functions (i.e., are

probabilistic in nature), can be solved (Karaboga and Bas-

turk 2007). ABC algorithms typically involve three distinct

types of bees: employed bees, onlooker bees and scout bees.

The location of each potential food source (or meal) is con-

sidered as a possible solution, with the objective function

looking to minimize the distance/time taken to access the

identified target location. In the first step of ABC algorithms,

a number of random routes are selected between the hive

and the specified food source (i.e., target for optimization).

The shorter routes provide the employed bees with more

foraging time at the food source enabling them to return to

the hive with more nectar than those employed bees that

have spent longer traveling. On their return to the hive, the

employed bees exchange information with the onlooker bees

that observe the amount of nectar each bee has collected (in

nature this is achieved by a dancing ritual in the hive). The

routes between hive and the target location taken by the bees

returning with the most nectar are selected with higher pref-

erences for the routes selected by the employed bees for sub-

sequent iterations. In addition, scout bees select a new set of

random routes to the specified target to avoid the algorithm

becoming stuck at local optima solutions. The onlooker

bees accumulate information imparted by employed and

scout bees in successive iterations of the ABC algorithm

1489Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

(Karaboga and Basturk 2007). According to the principles

of swarm intelligence, eventually the optimal route between

the hive and the specified target is found. ABC algorithms

have been successfully applied to solve a number of non-

linear, non-smooth optimization challenges (Karaboga and

Ozturk 2009).

Ant colonies optimization (ACO) is also based on the

behavior of social communities of insects, which operate

as distributed systems that despite the functional simplicity

of the individual members of the colony, a complex social

organization is created by the accumulated knowledge of

multiple individuals which leads to modified behavior trend-

ing toward optimal patterns (Dorigo and Stutzle 2004; Dar-

quennes 2005). Different components of ACO algorithms

are inspired by different aspects of ant colony behavior in

finding optimum routes between the colony’s nest and an

identified food source. Initially the ants follow random trails,

but leave pheromone (or scent) along each path. The high-

est pheromone deposit is located on the shortest route and

that encourages ants to follow that route on future journeys

between the nest and the food source, reinforcing the phero-

mone. Overtime the pheromone deposit evaporates at a spec-

ified rate resulting in the infrequently followed routes being

collectively “forgotten.” As with ABC algorithms, scout ants

can be employed to select some random routes in each itera-

tion to avoid the colony becoming stuck in local optima and

missing a better overall of global optimum solution (i.e.,

the shortest distance between nest and target location). Tra-

ditional ACO algorithms focus upon discrete optimization

problems, but require modification and hybridization with

other metaheuristics to efficiently solve continuous optimiza-

tion problems (Hu et al. 2008).

Harmony search (HS) algorithms apply the principles

employed by musicians and composers when playing exist-

ing musical scores and striving to achieve the best combina-

tion of musical notes to produce a harmonious outcome (Lee

and Geem 2005). Musicians typically take combinations of

three distinct approaches when attempting to improve on

musical scores through improvisation, these are: (1) playing

parts of the original score as initially written, (2) playing the

sections of the piece in a close but slightly different combi-

nation of notes to the original score and (3) creating sections

of the piece through random substitution of notes. Improved

scores resulting from the combination of these processes are

stored in a matrix known as harmony memory (HM) which

is used to converge to the optimum solution (Yang 2009).

The metaheuristic evolutionary algorithms are widely

applied to many complex and NP-hard problems that can-

not be readily solved analytical models. For example, in

the drilling industry GA are applied in many areas, e.g.,

drilling optimization, well placement, well design, anti-col-

lision problems and ROP modeling. GA are also applicable

in multi-objective problems involving several conflicting

objectives, such as simultaneously optimization of drilling

parameters (Guria et al. 2014) that focused on drilling depth,

drilling time and drilling cost. The conflicting objectives

together with nonlinear constraints and large numbers of

variables make such problems difficult to solve with con-

ventional methods. Some of the evolutionary algorithms are

very simple to implement. For example, HS can be read-

ily adapted to solve complex problems such as fluid injec-

tion (Khalili et al. 2013) or well placement (Afshari et al.

2013). Also, ABC and PSO are demonstrated to be efficient

at solving continuous problems, such as well placement area

(Nozohour and Fazelabdolabadi 2016). Despite their sim-

plicity, these algorithms are robust and very fast in terms of

computational running time. Among the algorithms evalu-

ated, ACO is more suited to discrete and network optimiza-

tion problems. For example, the application of ACO is gas

allocation in gas lift operations (Zerafat et al. 2009).

All the above-mentioned evolutionary optimization algo-

rithms have been coded in MATLAB to solve 3-D well-path

design optimization problems. Each optimization algorithm

includes some key parameters that require tuning (i.e., select-

ing optimum values that lead to better or faster performance).

This tuning process is described for each algorithm applied

and results are presented for various values of the key param-

eters for each algorithm, from which the best, or optimally

tuned values, are selected. Results obtained by each optimiza-

tion algorithm applied to the same complex well-path design

are presented and compared. A discussion of the pros and

cons associated with each algorithm applied to the well-path

design optimization is also provided. MATLAB codes were

all run on a PC computer with the following specifications:

Intel Core i5 2430 M 2.4 GHz, 4 GB DDR3 Memory.

Well-path design problem used to test
optimization algorithms

The gas or oil well-path design to be optimized by the optimi-

zation algorithms studied involves determining the combined

wellbore length of a complex well involving multiple straight

and curved sections of various inclinations and orientations.

The objective function is to minimize the combined well bore

length subject to a number of specified constraints. As meas-

ure depth drilled typically is directly proportional to the drill-

ing cost, it follows that the shortest overall wellbore design is

likely to be the cheapest, although other factors such as torque

and casing design also play important roles requiring multiple

objectives to be optimized (e.g., Mansouri et al. 2015). The

particular well-path targets and constraints applied are those

used by Shokir et al. (2004) and further utilized by Atash-

nezhad et al. (2014) to illustrate the performance of tuned-

PSO algorithms and Mansouri et al. (2015) to illustrate the

multi-objective optimization performance of GA. The lengths

1490 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

of the curved sections of the wellbore in the example used

are calculated by the radius-of-curvature method based on the

curves being achieved at constant rates of curvature (Fig. 1).

The curvatures of the curved wellbore sections are achieved

using the following formulas (Shokir et al. 2004):

Two wellbore scenarios are evaluated in this study. The first

Eq. (4) consists of five-component sections, and the second

Eq. (5) consists of seven component sections constituting

the complete well path, as illustrated in Figs. 2 and 3. The

overall wellbore length is therefore calculated by summing

the lengths of the all component sections that are calculated

separately for each well-path design considered.

Symbols and abbreviations are explained in Figs. 1, 2 and 3

and in the nomenclature section.

(1)a =
1

Δm

√

(�
2
− �

1
)2 sin

4(
�

2
+ �

1

2
) + (�

2
+ �

1
)

(2)r =
1

a
=

180 × 100

� × T

(3)Δm = r

√

(�
2
− �

1
)2 sin

4

(

�
2
+ �

1

2

)

+ (�
2
+ �

1
)

(4)TMD
1
= D

KOP
+ D

1
+ D

2
+ D

3
+ D

H

(5)TMD
2
= D

KOP
+ D

1
+ D

2
+ D

3
+ D

4
+ D

5
+ HD

Operational limitations should also be taken into account,

e.g., torque and drag (T&D), wear and fatigue of the drill

string. For example, a deep kickoff point (KOP) reduces

T&D compared to a shallow KOP. There is, therefore, a

need to establish a balance between several different factors

influencing a well path’s design. These factors include T&D,

stuck pipe, damage and wear of the drill string, wellbore

cleaning and stability. For example, a carefully selected KOP

may enable a well to be drilled in less time and at lower

cost, but problem formations or shallow reservoir targets

can place constraints on where the KOP can be located.

Wellbore stability issues related to factors such as wellbore

inclination and azimuth also need to be considered. Gener-

ally, wells drilled parallel to the direction of least in situ

stress demonstrate better stability. Also, in cases where the

difference between the maximum and minimum horizontal

stress is high, wellbore sections with lower inclination are

more stable. Such cases must be considered in determining

the inclinations and azimuth well. Dogleg severity (DLS)

should also be limited in order to lower the risks of drill pipe

failure, casing fatigue and damage, etc. An increase in DLS

results in an increase in lateral force that will cause dam-

age and wear. To limit lateral force in order to prevent tool

joint damage, Lubinski (1961) recommended a limitation

of 2000 lb. DLS proportional to the amount of force can be

calculated using Eq. (6) (Devereux 1998).

(6)DLS =

108, 000F

�LT

Fig. 1 Calculation of the length

for a deviated section of the

well trajectory after Atash-

nezhad et al. (2014) describes

the terms used to define the

different angles and compo-

nents of the wellbore trajec-

tory. MD = measured depth;

TVD = true vertical depth

1491Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

where F is the lateral force, L is half length of the drill pipe

and T is tensile force on the pipe at depth of interest. Thus,

in the upper part of a well the amount of DLS desirable

is limited. In practice, there are typically points along the

trajectory where the DLS may exceed the desirable design

limits and constraints need to be applied. For example, if 2°

is the maximum DLS is desired, the design should consider

values less than 2°.

Case studies

We considered two case studies for examining the perfor-

mance of the trajectory optimization algorithms. The first

case study (Case 1) is for a producing well offshore Iran. The

well is a horizontal well and has two build sections. The res-

ervoir section is located at a TVD of 1200 m from the rig’s

kelly bushing (RKB) and the wellbore involves a horizontal

Fig. 2 The vertical plane of a

horizontal well (first case study)

with the operational parameters.

Note that the scenario involves

two build sections

Fig. 3 The vertical plane of a horizontal well (second case study)

with the operational parameters from Atashnezhad et al. (2014)

developed from the wellbore scenario studied originally by Shokir

et al. (2004). Note that the scenario involves more than one build sec-

tion and a drop-off section separating the build sections. The wellbore

trajectory formulation incorporates all the sections identified in this

diagram

1492 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

section of 1470 m. The plan view of the well is illustrated in

Fig. 2 with operational constraints listed in Table 1. Figure 4

shows the sequence of geological formations encountered in

drilling this first case study well.

In the original plan for the well, the KOP is set at 125 m,

in Aghajari formation, but its TVD can range from 62 to

210 m in that formation. The build section should end before

the high-pressured Gachsaran formation is encountered in

order to set a casing point. The second buildup should be

started in the Ilam formation in order to maintain an accept-

able lateral force and end before entering the reservoir zone.

A long-radius design is applied in order to build angle, as

this can achieve a greater offset from the surface location

(Carden and Grace 2007).

A 2000-lb maximum lateral force constraint for DLS,

already discussed, is applied. Considering a typical bottom-

hole assembly (BHA) and drill pipe grade E for directional

Table 1 Constraints applied to the example well path (Case 1—off-

shore Iran)

TVD 3936 ft (1200 m)

DH 4821 ft (1470 m)

Max DLS for 1st build 6°/100 ft

Inclination angles φ1 = 30–50

φ2 = 90°

Azimuth angle θ = 250°

Kickoff point depth 203–688 ft (62–210 m)

2nd build point depth 3214–3542 ft (980–1080 m)

Fig. 4 Sequence of geological

formations encountered by drill-

ing (Case 1—offshore Iran)

1493Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

drilling, about 60,000 lbs can be imposed on the drill string

as the maximum tension in drill string at the depth of the

first build section, which results in the maximum DLS per-

missible for this section of about 6°/100 ft. The drill pipe at

the depth of second build section experiences less tension

and therefore can tolerate a higher DLS. The DLS for this

second build section needs to be less than about 9°/100 ft

in order to prevent drill pipe fatigue, but the long-radius

build method employed results in the DLS value actually

being less than 6°/100 ft. The tangent section-inclusive (TSI)

method is applied to the design of the horizontal section of

the trajectory. The TSI method enables TVD adjustments for

differences in DLS between the overall well plan and actual

well path (Garden and Grace 2007). Results from previously

drilled offset wells in the field suggest that a hold angle of

30˚ to 50˚ is an appropriate inclination angle to maintain

stability of the well and we apply this limitation as the geo-

mechanical constraint for our design example.

The second case study (Case 2) has been extracted from

(Shokir et al. 2004) and also evaluated by Atashnezhad et al.

(2014). The related information and constraints have been

summarized in Table 2. The plane view of this well has been

presented in Fig. 3.

Genetic algorithm (GA)

Using a genetic algorithm that follows the main five steps,

the optimization has been applied on two wellbore scenarios

as mentioned before. The main steps are:

1. Initialize a set of random feasible solutions (called a

sample population).

2. Calculate the objective function and then rank the solu-

tions (i.e., best solution is rank#1).

3. Assemble high-ranking selected solutions and some ran-

domly generated solutions to act as parents for the next

generation (i.e., iteration of the GA).

4. Apply cross-over and mutation on various parent solu-

tions and to create some new solutions to compare with

the high-ranking solutions of the previous generation.

5. Rank the new generation: reject the lowest-rank solu-

tions; retain the highest ranking solutions to perpetuate

the next generation.

6. Repeat steps 2–5 until the solution converges to an opti-

mum value or a specified number of iterations or com-

putational time has elapsed (i.e., termination criteria are

met).

The GA evaluated in this study adopts a process

sequence illustrated by the flowchart shown in Fig. 5.

For coding the GA for the cases considered, a string of

five-component solution for the first case study represent-

ing five variables in the trajectory design (KOP, second

build depth, inclination angle and DLSs) and 12-compo-

nent solution representing the 12 variables in the second

case study (KOP, second and third build depth, inclina-

tion angles, azimuth angles and DLSs). This type of code

construction is applied to all the algorithms considered

except in ACO.

The main GA operators controlling its behavior are cross-

over and mutation, which involve key behavioral parameters

for the algorithms. Those behavioral parameters are: (1)

cross-over probability (Pc); (2) mutation probability (Pm);

and (3) mutation rate. These three parameters should be set

to appropriate so that the GA functions appropriately achieve

the best result (Gen and Cheng 2008; Lin et al. 2003). Such

tuning of the key behavioral parameters avoids premature

convergence (i.e., getting stuck at local optima) and encour-

ages convergence toward the global optimum as quickly as

possible (i.e., in the fewest iterations). Multiple runs of the

GA for the example well path (see Fig. 6), applying a range

of key behavioral parameter values, reveal that the GA per-

forms better when the values of these parameters vary as

the generations (iterations) progress rather than maintaining

constant values for these parameters across all generations.

The best sequence of variations applied to the behavioral

parameters was found to be: (1) Pm commencing at a higher

value than Pc and then gradually decreasing as the gen-

eration evolve; and (2). Whenever the algorithm becomes

locked into a local minima, Pm is abruptly increased in an

attempt to release the algorithm from that local optima and

continue its search for the global optimum.

Table 3 lists the different values of GA behavioral param-

eters applied in each of the four runs shown in Fig. 6 together

with the key performance results of each run.

Table 2 Constraints applied to the example well path (Case 2, after

Shokir et al. 2004)

TVD 10,850–10,900 ft (3307–3323 m)

HD 2500 ft (762 m)

Dogleg severity T1, T2, T3 ≤ 5°/100 ft

Min. value of inclination angles φ1 = 10°, φ2 = 40°, φ3 = 90

Max. value of inclination angles φ1 = 20°, φ2 = 70°, φ3 = 95

Min. value of azimuth angles θ1 = 270°, θ2 = 270°, θ3 = 270° ͦ
Max. value of azimuth angles θ1 = 280°, θ2 = 280°, θ3 = 280°

Kickoff point depth 600–1000 ft (182–304 m)

Draw down point depth 6000–7000 ft (1829–2134 m)

Third build point depth 10,000–10200 ft (3048–3109 m)

1st casing setting depth 1800–2200 ft (548–670 m)

2nd casing setting depth 7200–8700 ft (2195–2652 m)

3rd casing setting depth 10,300–11000 ft (3140–3353 m)

1494 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

Ant colony optimization (ACO)

Ant colony optimization (ACO), based upon the natural

behavior of ants in finding the shortest path from the nest

to a specific and identified source of food, can be exploited

to find the shortest path among a discrete number of alter-

native routes distributed in 2D or 3D feasible solution

space, honoring defined constraints (Guan et al. 2016).

The ACO algorithm applied here to wellbore trajectory

optimization is illustrated in Fig. 7.

The selection probability of a path is proportional to the

following relation:

(7)P
i
=

⎡
⎢⎢⎣

F
n

i∑
i

F
n

i

⎤
⎥⎥⎦

Fig. 5 Flowchart of GA used for

optimizing well bore length of

the example well bore. Initially

a set of N solutions is generated

randomly and their objective

function values are calculated

and ranked. From the solution

set, some solutions are selected

as “parents” with the probability

of selection proportional to the

rank of their objective func-

tions. The parents are combined

and some of them are mutated

or crossed over to obtain a

new solution set potentially

involving some solutions with

better fitness/objective function

values. This process is repeated

for multiple iterations up to the

maximum number of specified

iterations

Fig. 6 Objective function trends

compared for variable GA

behavioral parameters versus

constant-value GA behavioral

parameters. The four runs (Case

1) illustrated were all conducted

using the same initial popula-

tion, i.e., the trends all begin

with the optimum for an initial

random sample population at

the left side of the graph. Run 4

(i.e., variable behavioral param-

eters) shows better performance

than other runs (i.e., constant

behavioral parameters). The

better performance of Run 4

is characterized by it exiting

local minima more rapidly than

the other runs. Note that the

mutation probability in the GA

is obtained by the relationship

Pm = 1 − Pc

1495Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

The pheromone update rule is calculated as (Guan et al.

2016):

where P is probability of selection for each path, F is phero-

mone intensity on each path, Cevp is evaporation constant

and T is the incremental pheromone concentration to be

added at each iteration. Suffix i refers to the ith path and n

refers to the nth iteration. In each iteration, paths selected

more frequently will establish, via Eqs. (6) and (7), higher

pheromone concentrations. Cevp refers to the effect of phero-

mone evaporation that prevents excessive accumulation of

pheromone concentrations. Higher values of Cevp result

shorter run times for the algorithm, but also increase the

probability of becoming trapped at a local optima. Table 4

show the results of optimization for various values of Cevp.

A variable Cevp that decreases as the iterations increase pro-

duced an acceptable result with a compromise between algo-

rithm run times and objective function values achieved. The

value of T, Eq. (8), should be selected so as not to increase

the pheromone density rapidly. In this study, T is set to 2

(8)F
n

i
= CevpF

n−1
i

+ T
n

i

with the initial pheromone density set at 1, and Cevp is able

to vary between a range of 0.2 and 1.

In order to apply an ACO algorithm to the well trajec-

tory design cases evaluated, it was necessary to modify the

decision space. Traditional ACO algorithms are designed

to optimize discrete decision spaces, and on other hand, the

well trajectory design is composed of a complex and con-

tinuous decision space of various parameters such as inclina-

tions, azimuths, doglegs and vertical depths. To convert this

Table 3 Key GA behavioral parameters values applied to four runs

and the optimal objective function value found after 2000 iterations

The optimal objective function value for each iteration of each run is

illustrated as trends in Fig. 6 (Case 1)

Run 1 Run 2 Run 3 Run 4

Pm 0.8 0.5 0.2 Variable

Pc 0.2 0.5 0.8

Optimal solution

found—TMD (m)

2352 2352 2354 2352

Fig. 7 Flowchart of a gen-

eral ACO algorithm used for

optimizing well bore length

of the example well bore. The

entire feasible range allowable

for each variable is divided

into subsections, such that each

subsection represents a node.

Initially each ant is placed at

a node and the ants then move

through the all nodes in order

to complete the well path. The

lowest-well-path length dictates

the highest pheromone density,

which in turn results in higher

probability of selection for the

next iteration

Table 4 Results of optimization for various values of Cevp in 500

iterations (Case 1)

Cevp Running time (s) Objective func-

tion value (m)

0.95 41 2381

0.75 123 2377

0.5 249 2361

Variable 165 2371

Table 5 ABC algorithm behavioral parameter variations and their

impact on the algorithm’s performance for the well-path example

(Case 1) over 50 iterations

Run 1 Run 2 Run 3 Run 4

L 100 500 750 1000

a 5 5 5 5

Number of bees in popula-

tion

50 50 50 50

Optimal solution found—

TMD (ft) after 50 itera-

tions

2352.65 2352.56 2352.79 2352.82

Computational time (s) 0.65 0.6 0.55 0.45

1496 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

continuous space into a discrete space, the permissible range

of each parameter was divided into smaller sections, with

each subsection considered as a node. This modification cre-

ates a large number of nodes that slows down the speed of

optimization and results in the algorithm consuming high

computation time. In addition, large number of nodes neces-

sitate the deployment of larger numbers of ants, which again

increases the computation time. Figure 8 shows the trend

of optimization of the objective function by dividing the

solution variables into sections (nodes) and deploying 10

ants. Increasing the number of ants yields better results in

terms of objective function values located, but increases the

computation time vice versa.

It is clear that the ACO algorithm applied may produce

good results for the well-path optimization problem stud-

ied here, but the running time will be very high rather than

that obtained by GA in previous section. Actually ACO

algorithm is structured and best suited to discrete optimiza-

tion (Dorigo and Stutzle 2004) and best suited to solving

problems with discontinuous decision spaces in the form of

specified nodes in the space (Blum 2005, Hatampour et al.

2013). Although ACO can be applied to continuous domains

(Socha and Doriga 2008), it is necessary to deform the deci-

sion space of the well-path optimization problem studied

here into a discontinuous space as described above. Because

of high computation time associated with that approach, the

ACO algorithms were not developed further. To improve

the performance of ACO, one approach would be to hybrid-

ize it with other metaheuristics better adapted to deal with

continuous solution spaces (e.g., Hu et al. 2008).

Arti�cial bee colony (ABC) optimization

Artificial bee colony (ABC) is a more recently developed

metaheuristic optimization algorithm than ACO or GA

approaches (Karaboga 2005; Karaboga and Basturk 2007,

2008; Karaboga and Ozturk 2009). ABC is a simple evo-

lutionary algorithm using only common control param-

eters such as colony size and maximum cycle number. This

algorithm provides a population-based search procedure

described above and expressed by the following equations

summarized from Karaboga and Gorkemli (2014):

Initialization phase

All the vectors of the population of food sources, Xm’s, are

initialized (m = 1…SN, SN: population size) by scout bees

and control parameters are set. Since each food source, Xm,

is a solution vector to the optimization problem, each Xm

vector holds n variables, (Xmi, i = 1…n), which are to be

optimized so as to minimize the objective function.

The following definition is used for initialization

purposes:

where Li and Ui are the lower and upper bound of the param-

eter Xmi, respectively. And rand is a random number between

0 and 1.

(9)X
mi

= L
i
+ rand × (U

i
− L

i
)

Fig. 8 The ACO algorithm

behavior with 10 ants and 1000

iterations that takes about 150 s

to complete (Case 1)

0 100 200 300 400 500 600 700 800 900 1000
2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

Iterations

W
e
llb

o
re

 L
e
n
g
th

 (
m

)

1497Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

Employed bees phase

Employed bees search for new food sources (Vm) having

more nectar within the neighborhood of the food source

(Xm) in their memory. They find a neighbor food source

and then evaluate its profitability (fitness). For example,

they can determine a neighbor food source Vm using the

formula given by Eq. (10):

where Xk is a randomly selected food source, i is a randomly

chosen parameter index and ∅mi is a random number within

the range [− a, a]. After producing the new food source Vm,

its fitness is calculated and a greedy selection is applied

between Vm and Xm.

The fitness value of the solution, fitm(Xm), might be cal-

culated for the problem using the following formula (11):

where f(Xm) is the objective function value of solution Xm.

Onlooker bees phase

Unemployed bees consist of two groups of bees: onlooker

bees and scouts. Employed bees share their food source

information with onlooker bees waiting in the hive and

then onlooker bees probabilistically choose their food

sources depending on this information. In ABC, an

onlooker bee chooses a food source depending on the

probability values calculated using the fitness values pro-

vided by employed bees. For this purpose, a fitness-based

selection technique can be used, such as the roulette wheel

selection method (Goldberg 1989).

The probability value pm with which Xm is chosen by

an onlooker bee can be calculated by using the expression

given in Eq. (12):

After a food source Xm for an onlooker bee is probabil-

istically chosen, a neighborhood source Vm is determined

by using Eq. (10), and its fitness value is computed. As in

the employed bees’ phase, a greedy selection is applied

between Vm and Xm. Hence, more onlookers are recruited

to richer sources and positive feedback behavior is

perpetuated.

(10)V
mi

= X
mi
+ �

mi
× (X

mi
− X

ki
)

(11)fitm(Xm) =

{

1

1+f (Xm)
, f (Xm) > 0

1 + abs(f (Xm)), f (Xm) < 0

(12)
P

m
=

fit(X
m
)

SN
∑

m=1

fit(X
m
)

Scout bees phase

The unemployed bees who choose their food sources ran-

domly are called scouts. Employed bees whose solutions

cannot be improved through a predetermined number of

trials, specified as the “limit” or “abandonment criteria,”

become scouts and their solutions from previous iterations

are abandoned. The converted scouts start to search for

new solutions, randomly. For instance, if solution Xm has

been abandoned, the new solution discovered by the scout

who was the employed bee of Xm can be defined by Eq. (9).

Hence, those sources which are initially poor or have failed

to be improved by exploitation are abandoned and negative

feedback behavior is used to trigger new exploration efforts.

ABC algorithms combine local search processes, carried

out by employed and onlooker bees, with global search pro-

cesses, managed by onlookers and scouts, to achieve a bal-

ance between exploration and exploitation efforts. A general

ABC algorithm involves the following steps (Karaboga and

Gorkemli 2014):

1. Initialize the food source positions, i.e., the target loca-

tions (note in the wellbore path problems there is typi-

cally one bottom-hole target location).

2. Employed bees identify new food sources within a site

of specified dimensions and exploits the best food source

within that site.

3. Onlooker bees select a site depending upon the quality

of the performance observed from other bees return-

ing to the hive; they detect new food sources within the

selected site and exploits the best food source located in

that site.

4. Determine which sites should be abandoned and desig-

nate the employed bees visiting it to become scout bees

to searching randomly for new food sites.

5. Memorize the best food sources found so far within the

sites visited.

6. Repeat steps 2–5 until the solution converges to an opti-

mum value or a specified number of iterations or com-

putational time has elapsed (i.e., termination criteria are

met).

In ABC algorithms, two parameters play key roles:

1. Acceleration coefficient (a)—determines the amplitudes

of a random number (phi) used to create a new site to

explore for bees; and

2. Abandonment limit parameter (L)—typically a linear

function of several variables including the population

size. The abandonment limit establishes an upper bound-

ary of another parameter that records how many times

bees encounter a food source at a specific search area. If

the abandonment parameter value exceeds the abandon-

1498 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

ment limit parameter (L), that search area (site) must be

abandoned and scout bees are instead sent out to search

for new promising sites. The purpose of the abandon-

ment limit is to prevent searches becoming trapped at

local optima.

Other parameters, such as the number of bees in the pop-

ulation, are effective at impacting the computational time

required by ABC algorithms to locate global optimum val-

ues of the objective function. The behavioral parameters, a

and L, are used here to tune the ABC algorithm (Table 5).

With regard to behavioral parameter “L,” lower values

result in greater computational time and more iterations

being required to find the global optimum of the objective

function. Better outcomes were achieved for the well-path

optimization example by systematically varying the value of

behavioral parameter “a” as the ABC algorithm progresses

through its iterations. An initial value for “a” (e.g., 1 in

the first iteration) multiplied by a linear coefficient (e.g.,

1.0005), increasing incrementally from one iteration to the

next (according to Eq. 13), combined with higher values for

parameter “L” were found to produce the best outcomes and

fastest convergence for the well-path design cases evaluated.

where “c” is a constant value (e.g., c = 1.0005).

Harmony search (HS) optimization

HS is a relatively recently developed optimization algo-

rithm that has been successfully applied (e.g., Yang 2009)

and adapted to solve various optimization challenges

(Chakraborty et al. 2009; Daham et al. 2014). It is not

though without its critics (e.g., Weyland 2010; Padberg

2012) who conclude that it is similar to other evolutionary

algorithms in searching feasible solutions spaces and lacks

efficiency by repeatedly retracing previously travelled path-

ways. The solutions to an optimization problem derived by

an HS algorithm are progressively enhanced as a harmony

is improved by refining individual improvisations by musi-

cians while the music is being played (Yang 2009). The HS

algorithm consists of five distinct steps:

1. Initializing the problem.

2. Initializing the harmony memory (HM).

3. Creating a new harmony (solution).

4. Updating HM.

5. Repeat steps 2–4 until: (a) the solution converges to an

optimum value; (b) a specified number of iterations; or

(c) computational time has elapsed (i.e., termination cri-

teria are met).

(13)a
i+1

= a
i
× c

HM is a matrix of N × M dimensions that stores N solu-

tions each consisting of M components or variables. A new

solution can be produced either by a random amendment

to an element selected from the whole range of available

variables, or by a small incremental change to an existing

solution from the HM to explore the regions surrounding

that known solution. Comparing a random number between

0 and 1 and the harmony memory considering rate (HMCR)

forms the basis of deciding the manner in which a new solu-

tion will be calculated. If HMCR is set to 0.7 and if the

random number generated in each iteration is lower than 0.7,

the new solution is created using as a starting point a solu-

tion already available in the HM. However, if the random

number generated is greater than the specified HMCR value,

then the new solution is created randomly from the whole

range of available variables (Yang 2009).

Using the HM, the new solution is created using the fol-

lowing equations:

XOLD is chosen randomly from the HM, UB and LB are

the upper and lower boundaries of the variables. And the

ε is a small number between − 1 and +1 causing the new

solution to be close to the old one. (Yang 2009).

The key HS behavior controllers are the number of solu-

tions that are stored in the HM, known as harmony mem-

ory size (HMS), and the rate of change that is applied to

the solutions taken from HM known as harmony memory

considering rate (HMCR) (Weyland 2010). A larger har-

mony memory (i.e., higher HMS) results in a more thor-

ough search of the feasible solution space, but also results

in higher computational time. The HS algorithm evaluated

in this study adopts a process sequence illustrated by the

flowchart shown in Figs. 9, 10.

The effect of the HMCR value on the progress of the

HS algorithm is shown in Fig. 11. Higher HMCR values

tend to yield the better optimal objective function values

as the algorithm progresses. In the HS algorithm applied

here, we set HMCR as a variable so that whenever the algo-

rithm becomes trapped at local minima, the HMCR value

is abruptly decreased, enabling more as-yet-untested solu-

tions from the entire solution space to enter the HM. Such

an approach increases the chances of the algorithm escaping

from local minima in which it has become trapped or locked

into. Figure 11 compares the HS algorithms performance

with different constant HMCR values and compares that

performance with higher performance with variable HMCR

values.

Another key behavioral parameter of HS algorithms is the

mutation rate (Rm), which determines what proportion of the

variables contributing to the existing HM solutions should

(14)X
NEW

= X
OLD

+ B × �

(15)B = UB − LB

1499Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

Fig. 9 Performance of the ABC

algorithm for different values

of “L” (abandonment limit)

applied to the wellbore trajec-

tory (Case 1)

0 5 10 15 20 25 30 35 40 45 50
2370

2380

2390

2400

2410

2420

2430

2440

Iteration

W
e
llb

o
re

 L
e
n
g
th

 (
m

)•

L=100

L=500

L=750

L=1000

Fig. 10 Flowchart of HS applied to the wellbore path optimization

problem. As for the GA, there is a string of components represent-

ing a solution. Each component is responsible for a variable. Initially,

a set of solutions is generated randomly and assembled as the har-

mony memory (HM). Based on their fitness, established from their

respective objective function values, the HM solutions are ranked.

Applying a probabilistic selection method (a random number from

the range 0–1, but closer to 1) a solution with high fitness from the

HM is selected and a slight change is applied to it to generate a new

solution. That new solution replaces the lowest-ranking solution in

the HM. Alternatively, the new solution may be generated indepen-

dently from the whole range of solutions in the HM dependent on a

predetermined threshold for the random number generated. This cycle

is repeated over a significant number of iterations until the specified

maximum iteration is reached

1500 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

be changed to generate new slightly modified solutions to

be evaluated. Rm should be as low as possible to make a

slight change in good solutions and to explore the solution

space around them. A high value of Rm can abruptly disturb

the searching process. Rm of 0.05 is applied in this study. A

potentially negative feature of the HS algorithm evaluated

is that it requires a large number of iterations to achieve an

acceptable “optimum” value for the objective function; how-

ever, each iteration can be conducted with relatively short

computational time.

Comparative results applying tuned
metaheuristic algorithms

Each of the metaheuristic algorithms applied is tuned for the

wellbore path optimization Cases 1 and 2 (i.e., as defined

in Figs. 1 and 3 and Tables 1 and 2) and then evaluated and

compared for performance (i.e., objective function value

and computational time consumed). Tables 6 and 7 list the

results obtained for the optimization of wellbore Cases 1

and 2 of each algorithm evaluated. It is important to bear

in mind that these results were obtained on a PC computer

with specifications “Intel Core i5 2430 M 2.4 GHz., 4 GB

DDR3 Memory.” Attempts to run these algorithms on dif-

ferent computer systems are likely to result in different com-

putation times, but their relative performance order will be

the same.

From Fig. 12 and Tables 6 and 7, its apparent that all the

algorithms evaluated except ACO are very fast solving these

complex cases involving continuous nonlinear solution spaces.

GA, ABC and HS showed that in very complex problems,

for which there may not be single exact analytical solutions,

they can be employed to find an acceptable solution near to

global optima. The modified-discrete ACO algorithm devel-

oped for this study was found not to be an appropriate solver

for wellbore trajectory optimization problems, i.e., involving

continuous solution space and large numbers of variables. This

finding is perhaps not surprising as the original ACO algo-

rithm was developed to address discrete optimization problems

(Dorigo and Stutzle 2004). Clearly A the ACO algorithm is

better suited to solve problems with discontinuous decision

spaces in the form of specified nodes in the space (Hatampour

et al. 2013).

Discussion

A summary of the converged optima achieved by each

metaheuristic algorithm applied to the wellbore path opti-

mization Cases 1 and 2 is provided in Tables 8 and 9,

respectively.

Fig. 11 Performance comparison of tuned HS versus non-tuned con-

stant HMCR–HS for well-path Case 1. Variable HMCR runs tend

to yield better optimum values of the objective function because the

algorithm remains trapped at local minima for less iterations than

for runs applying fixed-HMCR values. The mutation rate in all runs

shown is set at 0.2

Table 6 Comparative results of tuned metaheuristic algorithms

applied to the wellbore optimization Case 1

GA ACO ABC HS

Optimal solution found—TMD (m) 2353 2370 2352 2352

Required number of iterations 1000 2000 100 2000

Computational time (s) 1.02 300 0.46 1.50

1501Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

The minimum total measured depth (TMD) located by

all studied algorithms is similar (except for ACO), but the

computation times and number of iterations taken by each

one are different. The GA and HS algorithms require more

iterations than ABC and PSO to converge toward the global

optima. The same TMD achieved by the algorithms suggest

that all have reached good solutions, but still we cannot say

these are the absolute global optima.

An important consideration in this study is that for all

algorithms evaluated, a strategy of non-constant key-con-

trol parameters is applied. For example, in tuning the GA,

high cross-over probability typically leads to better per-

formance than high mutation probability. This is applied

to the GA in such a way that when the GA becomes

trapped around local minima, mutation probability is

abruptly increased until an improvement in the GA trend

is observed. The same approach has been applied to the

HS algorithm such that by default a high value for har-

mony memory considering rate (HMCR) is applied. How-

ever, when the HS becomes trapped around local minima,

HMCR is decreased to promote exploration of new solu-

tions spaces. This strategy is applied to all the algorithms

evaluated with successful results; multiple runs of each

algorithm with the flexibility to vary key parameters have

proven that non-constant parameters result in significant

improvements in their performance.

Table 7 Comparative results of

tuned metaheuristic algorithms

applied to the wellbore

optimization Case 2

GA ACO ABC HS PSO from Atash-

nezhad et al.

(2014)

Optimal solution found TMD (ft) 15,023 15,239 15,023 15,024 15,023

Required number of iterations 1000 2000 100 2000 100

Computational time (s) 1.60 1350 5.02 2.8 2.2

Fig. 12 Performance trends for

GA, ABC and HS algorithms

applied to the wellbore optimi-

zation Case 1 for 400 iterations.

GA and HS may require more

iterations to be fully converged

0 50 100 150 200 250 300 350 400
2340

2360

2380

2400

2420

2440

2460

Iteration

M
in

 W
e
llb

o
re

 L
e
n
g
th

 (
m

)

Table 8 Comparison of the best results achieved by each tuned

metaheuristic algorithms applied to the wellbore optimization Case 1

GA HS ABC ACO

Optimal solution found

TMD (m)

2352 2352 2352 2370

KOP (ft) 62 62 62 65

2nd BU depth (ft) 980 980 980 987

Inclination (°) 30 30 30 30

1st DLS (°/100 ft) 3.76 3.76 3.76 4.07

2nd DLS (°/100 ft) 3.90 3.90 3.90 3.90

1502 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

An important achievement of the algorithms developed

and tuned for this study is that they can solve a nonlinearly

constrained problem in less than 2 s (e.g., ABC, GA and HS

in Case 1).

The wellbores studied in this paper are evaluated to mini-

mize wellbore length (TMD). Other functions that could be

set as objective functions include torque and drag on the drill

string. The algorithms could also be examined for multi-

objective purposes, but this requires a separate study which

is beyond the scope of this work. Another consideration that

can be developed by means of metaheuristic algorithms is

the anti-collision constraint in a multi-well drilling program.

This can represent a very complicated limitation and is the

subject of work in progress by the authors.

Conclusions

Evaluation of a suite of metaheuristic evolutionary algo-

rithms applied to complex well-path optimization provides

insight to their relative performance and how they might best

be tuned to optimize their performance. Key insights gained

from this study are:

1. GA, HS, ABC and PSO are fast-convergence algorithms

that can be successfully applied and tuned to solve com-

plex and time-consuming wellbore trajectory design

problems.

2. HS is a simple algorithm that typically requires a high

number of iterations to converge toward the global

optima, but does so in low computation times.

3. For each algorithm evaluated, a set of key-control

parameters can be tuned to optimize their performance

when applied to specific wellbore trajectory problems.

Constant values applied to these parameters did not

result in optimal performance. Rather, it was found that

changing these parameters progressively within certain

ranges through successive iterations resulted in the best

performance of each algorithm studied.

4. With the exception of ACO, all algorithms evaluated

in this study demonstrate their ability to solve complex

wellbore trajectory problems rapidly and locate accept-

able solutions close to global optima.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

Afshari S, Aminshahidi B, Pishvaei MR (2013) Application of an

improved harmony search algorithm in well placement optimiza-

tion using streamline simulation. J Pet Sci Eng 78(3–4):664–678

Atashnezhad A, Wood DA, Fereidounpour A, Khosravanian R (2014)

Designing and optimizing deviated wellbore trajectories using

novel particle swarm algorithms. J Nat Gas Sci Eng 21:1184–1204

Blum C (2005) Ant colony optimization: introduction and recent

trends. Phys Life Rev 2:353–373

Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey

on metaheuristics for stochastic combinatorial optimization. Nat

Comput 8(2):239–287

Carden RS, Grace RD (2007) Directional horizontal drilling manual.

Petroskills, Tulsa

Chakraborty P, Roy GG, Das S, Jain D, Abraham A (2009) An

Improved Harmony Search Algorithm with Differential Mutation

Operator. Fundam Inf 95:1–261

Daham BFA, Mohammed NM, Mohammed KS (2014) Parameter con-

trolled harmony search algorithm for solving the four-color map-

ping problem. Int J Comput Inf Technol 3(6):13981402

Darquennes D (2005) Implementation and applications of ant colony

algorithms. Master thesis, The University of Namur

Devereux S (1998) Practical well llanning and drilling manual. Pen-

nWell Books, Houston

Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, USA

Gallagher K, Sambridge M (1994) Genetic algorithm: a powerful tool

for large-scale nonlinear optimization problems. Comput Geosci

20(7/8):1229–1236

Gen M, Cheng R (2008) Network models and optimization. Springer,

Berlin

Goldberg DE (1989) Genetic algorithms in search, optimization

and machine learning. Addison-Wesley Professional, ISBN:

0201157675

Table 9 Comparison of the best results achieved by each tuned

metaheuristic algorithms applied to the wellbore optimization Case 2

GA HS ACO ABC PSO from

Atashnezhad

et al. (2014)

Optimal solu-

tion found

TMD (ft)

15,023 15,023 15,251 15,023 15,023

KOP (ft) 1000 1000 749 1000 1000

2nd BU depth

(ft)

7000 7000 6769 7000 7000

3rd BU depth

(ft)

10,200 10,200 10,060 10,200 10,200

1st inclination 10 10 10 10 10

2nd inclination 40 40 40 40 40

3rd inclination 90 90 90 90 90

1st azimuth 273 270 270 270 270

2nd azimuth 280 276 273 273 271

3rd azimuth 335 340 335 240 332

1st DLS 0.83 0.82 0.82 0.84 0.77

2nd DLS 1.58 1.58 1.38 1.68 1.67

3rd DLS 4.26 4.7 3.55 3.24 3.46

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1503Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

Guan Z-C, Liu Y-M, Liu Y-W, Xu Y-X (2016) Hole cleaning optimi-

zation of horizontal wells with the multidimensional ant colony

algorithm. J Nat Gas Sci Eng 28:347–355

Guria C, Goli KK, Pathak AK (2014) Multi-objective optimization

of oil well drilling using elitist non-dominated sorting genetic

algorithm. J Pet Sci 11(1):97–110

Hatampour A, Razmi R, Sedaghat MH (2013) Improving performance

of a neural network model by artificial ant colony optimization for

predicting permeability of petroleum reservoir rocks. Middle-East

J Sci Res 13(9):1217–1223

Hu XM, Zhang J, Li Y (2008) Orthogonal methods based ant colony

search for solving continuous optimization problems. J Comput

Sci Technol 23(1):2–18

Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical

Optimization. Erciyes University, Engineering Faculty

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC) algo-

rithm. J Global Optim 39(3):459–471

Karaboga D, Basturk B (2008) On the performance of artificial bee

colony (ABC) algorithm. Appl Soft Comput 8:687–697

Karaboga D, Gorkemli B (2014) A quick artificial bee colony (qABC)

algorithm and its performance on optimization problems. Appl

Soft Comput 23:227–238

Karaboga D, Ozturk C (2009) A novel clustering approach: arti-

ficial Bee Colony (ABC) algorithm. Appl Soft Comput

11(2011):652–657

Khalili M, Kharrat R, Salahshoor K, Haghighat Sefat M (2013) Fluid

injection optimization using modified global dynamic harmony

search. Iran J Oil Gas Sci Tech 2(3):57–72

Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continu-

ous engineering optimization: harmony search theory and prac-

tice. Comput Method Appl Mech Eng 194 (36–38):3902–3933

Lin WY, Lee WY, Hong TP (2003) Adapting crossover and mutation

rates in genetic algorithms. J Inf Sci Eng 19:889–903

Lubinski A (1961) Maximum permissible dog legs in rotary boreholes.

J Pet Technol Dallas 13(2):256–275

Mansouri V, Khosravanian R, Wood DA, Aadnoy BS (2015) 3-D well

path design using a multi objective genetic algorithm. J Nat Gas

Sci Eng 27(1):219–235

Nozohour LB, Fazelabdolabadi B (2016) On the application of Artifi-

cial Bee Colony (ABC) algorithm for optimization of well place-

ments in fractured reservoirs; efficiency comparison with the Par-

ticle Swarm Optimization (PSO) methodology. J Pet 2(1):79–89

Padberg M (2012) Harmony Search Algorithms for binary optimization

problems. In: Klatte D, Lüthi HJ, Schmedders K (eds) Operations

Research Proceedings 2011. Springer, Berlin, Heidelberg

Shokir EM, Emera MK, Eid SM, Wally AW (2004) A new optimization

model for 3-D well design. Emir J Eng 9(1):67–74

Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms.

Springer, Berlin

Socha K, Dorigo M (2008) Ant colony optimization for continuous

domains. Eur J Oper Res 185(3):1155–1173

Weyland D (2010) A rigorous analysis of the harmony search algorithm

how the research community can be misled by a “novel” method-

ology. Int J Appl Metaheur Comput 1–2(April-June):50–60

Yang XS (2009) Harmony search as a metaheuristic algorithm. Stud

Comput Intell, Springer, Berlin 191:1–14

Zerafat MM, Ayatollahi S, Roosta AA (2009) Genetic algorithms and

ant colony approach for gas-lift allocation optimization. J Jpn Pet

Inst 52(3):102–107

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and insti-

tutional affiliations.

	A comparative study of several metaheuristic algorithms for optimizing complex 3-D well-path designs
	Abstract
	Introduction
	Well-path design problem used to test optimization algorithms
	Case studies
	Genetic algorithm (GA)
	Ant colony optimization (ACO)
	Artificial bee colony (ABC) optimization
	Initialization phase
	Employed bees phase
	Onlooker bees phase
	Scout bees phase

	Harmony search (HS) optimization
	Comparative results applying tuned metaheuristic algorithms
	Discussion
	Conclusions
	References

