
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503 

https://doi.org/10.1007/s13202-018-0447-2

ORIGINAL PAPER - EXPLORATION ENGINEERING

A comparative study of several metaheuristic algorithms 
for optimizing complex 3‑D well‑path designs

Rassoul Khosravanian1 · Vahid Mansouri1 · David A. Wood2 · Masood Reza Alipour1

Received: 3 September 2017 / Accepted: 9 February 2018 / Published online: 10 March 2018 

© The Author(s) 2018. This article is an open access publication

Abstract

Considering the importance of cost reduction in the petroleum industry, especially in drilling operations, this study focused 

on the minimization of the well-path length, for complex well designs, compares the performance of several metaheuristic 

evolutionary algorithms. Genetic, ant colony, artificial bee colony and harmony search algorithms are evaluated to seek the 

best performance among them with respect to minimizing well-path length and also minimizing computation time taken to 

converge toward global optima for two horizontal wellbore cases: (1) a real well offshore Iran; (2) a well-studied complex 

trajectory with several build and hold sections. A primary aim of the study is to derive less time-consuming algorithms that 

can be deployed to solve a range of complex well-path design challenges. This has been achieved by identifying flexible 

control parameters that can be successfully adjusted to tune each algorithm, leading to the most efficient performance (i.e., 

rapidly locating global optima while consuming minimum computational time), when applied to each well-path case evalu-

ated. The comparative analysis of the results obtained for the two case studies suggests that genetic, artificial bee colony and 

harmony search algorithms can each be successively tuned with control parameters to achieve those objectives, whereas the 

ant colony algorithm cannot.

Keywords Metaheuristic algorithms · Well-path designing · Well-path optimization · Genetic algorithm · Harmony search · 

Artificial bee colony

List of symbols

Definitions of wellbore trajectory variables (modified 

after Shokir et al. 2004)

�1,�2,�3  First, second and third hold 

angles, °

�
1
  Azimuth angle at kickoff 

point, °

�
2
  Azimuth angle at end of first 

build, °

�
3
  Azimuth angle at end of first 

hold section, °

�
4
  Azimuth angle at end of 

second build or drop, °

�
5
  Azimuth angle at end of 

second hold section, °

�
6
  Azimuth angle at end of third 

build portion, °

T
1
  Dogleg severities of first 

build portion, °/100 ft

T
2
  Dogleg severity of first hold 

portion, °/100 ft

T
3
  Dogleg severity of second 

build or drop portion, °/100 

ft

T
4
  Dogleg severity of second 

hold or drop portion, °/100 ft

T
5
  Dogleg severity of third 

build or drop portion, °/100 

ft

TMD  True measured depth

TVD  True vertical depth
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D
KOP

  Depth of kickoff point

D
B
  True vertical depth of the 

well at the end of drop-off 

section (top of third build 

section), ft

D
D
  True vertical depth of the 

well at the top of drop-off 

section (top of second build 

section), ft

HD  Lateral length (horizontal 

length), ft

Introduction

Optimizing the wellbore length of a multi-directional well 

requires algorithms that not only find the minimum length, 

but do so quickly and effectively, taking into account opera-

tional limitations in design. Hence, the execution time of 

algorithms should be taken into account in addition to their 

ability to find the optimum well trajectory in a reproducible 

manner. This study compares several established metaheuris-

tic optimization algorithms in terms of both their ability to 

achieve an acceptable objective function value (i.e., wellbore 

length subject to operational constraints applied) and the 

algorithms’ computer execution times.

Heuristic algorithms seek “acceptable” solutions to opti-

mization challenges by “trail-and-error” taking a “reason-

able” amount of computational timing. What constitutes 

“acceptable” and “reasonable” is clearly subjective and to 

an extent depends upon the nature of the optimization task 

addressed and the context and urgency in which an optimal 

solution is being sought. Heuristic methods generally do not 

guarantee finding the best or global optimum, i.e., their solu-

tions often could be improved upon if more computational 

time were dedicated to the task. However, in many applied 

operational applications a “good/acceptable” solution may 

be a rapidly determined local optima situated close to the 

global optimum. Hence, heuristic algorithms that search local 

regions of a feasible solution space detecting local optima 

form important components of metaheuristic methods.

The term metaheuristic refers to higher-level heuris-

tic algorithms (e.g., Bianchi et al. 2009; Yang 2009) that 

typically combine several lower-level heuristic processes 

in achieving their higher-level strategic optimization objec-

tives. High-performing metaheuristic optimization algo-

rithms efficiently search a feasible solution space which is 

too large to be completely sampled in a reasonable time. As 

Yang (2009) explains, “intensification” and “diversification” 

are two key attributes of modern metaheuristics: “For an 

algorithm to be efficient and effective, it must be able to gen-

erate a diverse range of solutions including the potentially 

optimal solutions so as to explore the whole search space 

effectively, while it intensifies its search around the neigh-

borhood of an optimal or nearly optimal solution.” The 

metaheuristic optimization algorithms evaluated, in terms 

of wellbore designs of a complex trajectory subject to con-

straints, are: genetic algorithm (GA), artificial bee colony 

(ABC), ant colony optimization (ACO) and harmony search 

(HS). The results are compared to previously published work 

on the particle swarm optimization algorithm applied to one 

of the case studies evaluated (Atashnezhad et al. 2014).

Genetic algorithms (GA) involve an evolutionary process, 

typically starting with a random set of feasible solutions, 

followed by steps of evolution, i.e., successive iterations that 

aim to improve their performance in terms of the objective 

function by modifying a number of some genetic opera-

tors, using mechanisms akin to those operating in biologi-

cal evolutionary processes (Sivanandam and Deepa 2008). 

GAs have been successfully applied to many nonlinear and 

non-smooth types of optimization challenges across many 

industries (Gallagher and Sambridge 1994).

Artificial bee colony algorithm (ABC) was created based 

on swarm intelligence and specifically the food-foraging 

strategies of bee colonies (Karaboga and Basturk 2007). 

It has been demonstrated that algorithms based upon bee 

colony behaviors can solve NP-hard optimization problems 

(Karaboga and Basturk 2007). Using ABC algorithms, many 

highly constrained and complex models, as well as models 

that cannot be solved with deterministic functions (i.e., are 

probabilistic in nature), can be solved (Karaboga and Bas-

turk 2007). ABC algorithms typically involve three distinct 

types of bees: employed bees, onlooker bees and scout bees. 

The location of each potential food source (or meal) is con-

sidered as a possible solution, with the objective function 

looking to minimize the distance/time taken to access the 

identified target location. In the first step of ABC algorithms, 

a number of random routes are selected between the hive 

and the specified food source (i.e., target for optimization). 

The shorter routes provide the employed bees with more 

foraging time at the food source enabling them to return to 

the hive with more nectar than those employed bees that 

have spent longer traveling. On their return to the hive, the 

employed bees exchange information with the onlooker bees 

that observe the amount of nectar each bee has collected (in 

nature this is achieved by a dancing ritual in the hive). The 

routes between hive and the target location taken by the bees 

returning with the most nectar are selected with higher pref-

erences for the routes selected by the employed bees for sub-

sequent iterations. In addition, scout bees select a new set of 

random routes to the specified target to avoid the algorithm 

becoming stuck at local optima solutions. The onlooker 

bees accumulate information imparted by employed and 

scout bees in successive iterations of the ABC algorithm 
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(Karaboga and Basturk 2007). According to the principles 

of swarm intelligence, eventually the optimal route between 

the hive and the specified target is found. ABC algorithms 

have been successfully applied to solve a number of non-

linear, non-smooth optimization challenges (Karaboga and 

Ozturk 2009).

Ant colonies optimization (ACO) is also based on the 

behavior of social communities of insects, which operate 

as distributed systems that despite the functional simplicity 

of the individual members of the colony, a complex social 

organization is created by the accumulated knowledge of 

multiple individuals which leads to modified behavior trend-

ing toward optimal patterns (Dorigo and Stutzle 2004; Dar-

quennes 2005). Different components of ACO algorithms 

are inspired by different aspects of ant colony behavior in 

finding optimum routes between the colony’s nest and an 

identified food source. Initially the ants follow random trails, 

but leave pheromone (or scent) along each path. The high-

est pheromone deposit is located on the shortest route and 

that encourages ants to follow that route on future journeys 

between the nest and the food source, reinforcing the phero-

mone. Overtime the pheromone deposit evaporates at a spec-

ified rate resulting in the infrequently followed routes being 

collectively “forgotten.” As with ABC algorithms, scout ants 

can be employed to select some random routes in each itera-

tion to avoid the colony becoming stuck in local optima and 

missing a better overall of global optimum solution (i.e., 

the shortest distance between nest and target location). Tra-

ditional ACO algorithms focus upon discrete optimization 

problems, but require modification and hybridization with 

other metaheuristics to efficiently solve continuous optimiza-

tion problems (Hu et al. 2008).

Harmony search (HS) algorithms apply the principles 

employed by musicians and composers when playing exist-

ing musical scores and striving to achieve the best combina-

tion of musical notes to produce a harmonious outcome (Lee 

and Geem 2005). Musicians typically take combinations of 

three distinct approaches when attempting to improve on 

musical scores through improvisation, these are: (1) playing 

parts of the original score as initially written, (2) playing the 

sections of the piece in a close but slightly different combi-

nation of notes to the original score and (3) creating sections 

of the piece through random substitution of notes. Improved 

scores resulting from the combination of these processes are 

stored in a matrix known as harmony memory (HM) which 

is used to converge to the optimum solution (Yang 2009).

The metaheuristic evolutionary algorithms are widely 

applied to many complex and NP-hard problems that can-

not be readily solved analytical models. For example, in 

the drilling industry GA are applied in many areas, e.g., 

drilling optimization, well placement, well design, anti-col-

lision problems and ROP modeling. GA are also applicable 

in multi-objective problems involving several conflicting 

objectives, such as simultaneously optimization of drilling 

parameters (Guria et al. 2014) that focused on drilling depth, 

drilling time and drilling cost. The conflicting objectives 

together with nonlinear constraints and large numbers of 

variables make such problems difficult to solve with con-

ventional methods. Some of the evolutionary algorithms are 

very simple to implement. For example, HS can be read-

ily adapted to solve complex problems such as fluid injec-

tion (Khalili et al. 2013) or well placement (Afshari et al. 

2013). Also, ABC and PSO are demonstrated to be efficient 

at solving continuous problems, such as well placement area 

(Nozohour and Fazelabdolabadi 2016). Despite their sim-

plicity, these algorithms are robust and very fast in terms of 

computational running time. Among the algorithms evalu-

ated, ACO is more suited to discrete and network optimiza-

tion problems. For example, the application of ACO is gas 

allocation in gas lift operations (Zerafat et al. 2009).

All the above-mentioned evolutionary optimization algo-

rithms have been coded in MATLAB to solve 3-D well-path 

design optimization problems. Each optimization algorithm 

includes some key parameters that require tuning (i.e., select-

ing optimum values that lead to better or faster performance). 

This tuning process is described for each algorithm applied 

and results are presented for various values of the key param-

eters for each algorithm, from which the best, or optimally 

tuned values, are selected. Results obtained by each optimiza-

tion algorithm applied to the same complex well-path design 

are presented and compared. A discussion of the pros and 

cons associated with each algorithm applied to the well-path 

design optimization is also provided. MATLAB codes were 

all run on a PC computer with the following specifications: 

Intel Core i5 2430 M 2.4 GHz, 4 GB DDR3 Memory.

Well-path design problem used to test 
optimization algorithms

The gas or oil well-path design to be optimized by the optimi-

zation algorithms studied involves determining the combined 

wellbore length of a complex well involving multiple straight 

and curved sections of various inclinations and orientations. 

The objective function is to minimize the combined well bore 

length subject to a number of specified constraints. As meas-

ure depth drilled typically is directly proportional to the drill-

ing cost, it follows that the shortest overall wellbore design is 

likely to be the cheapest, although other factors such as torque 

and casing design also play important roles requiring multiple 

objectives to be optimized (e.g., Mansouri et al. 2015). The 

particular well-path targets and constraints applied are those 

used by Shokir et al. (2004) and further utilized by Atash-

nezhad et al. (2014) to illustrate the performance of tuned-

PSO algorithms and Mansouri et al. (2015) to illustrate the 

multi-objective optimization performance of GA. The lengths 
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of the curved sections of the wellbore in the example used 

are calculated by the radius-of-curvature method based on the 

curves being achieved at constant rates of curvature (Fig. 1). 

The curvatures of the curved wellbore sections are achieved 

using the following formulas (Shokir et al. 2004):

Two wellbore scenarios are evaluated in this study. The first 

Eq. (4) consists of five-component sections, and the second 

Eq. (5) consists of seven component sections constituting 

the complete well path, as illustrated in Figs. 2 and 3. The 

overall wellbore length is therefore calculated by summing 

the lengths of the all component sections that are calculated 

separately for each well-path design considered.

Symbols and abbreviations are explained in Figs. 1, 2 and 3 

and in the nomenclature section.
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Operational limitations should also be taken into account, 

e.g., torque and drag (T&D), wear and fatigue of the drill 

string. For example, a deep kickoff point (KOP) reduces 

T&D compared to a shallow KOP. There is, therefore, a 

need to establish a balance between several different factors 

influencing a well path’s design. These factors include T&D, 

stuck pipe, damage and wear of the drill string, wellbore 

cleaning and stability. For example, a carefully selected KOP 

may enable a well to be drilled in less time and at lower 

cost, but problem formations or shallow reservoir targets 

can place constraints on where the KOP can be located. 

Wellbore stability issues related to factors such as wellbore 

inclination and azimuth also need to be considered. Gener-

ally, wells drilled parallel to the direction of least in situ 

stress demonstrate better stability. Also, in cases where the 

difference between the maximum and minimum horizontal 

stress is high, wellbore sections with lower inclination are 

more stable. Such cases must be considered in determining 

the inclinations and azimuth well. Dogleg severity (DLS) 

should also be limited in order to lower the risks of drill pipe 

failure, casing fatigue and damage, etc. An increase in DLS 

results in an increase in lateral force that will cause dam-

age and wear. To limit lateral force in order to prevent tool 

joint damage, Lubinski (1961) recommended a limitation 

of 2000 lb. DLS proportional to the amount of force can be 

calculated using Eq. (6) (Devereux 1998).

(6)DLS =

108, 000F

�LT

Fig. 1  Calculation of the length 

for a deviated section of the 

well trajectory after Atash-

nezhad et al. (2014) describes 

the terms used to define the 

different angles and compo-

nents of the wellbore trajec-

tory. MD = measured depth; 

TVD = true vertical depth
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where F is the lateral force, L is half length of the drill pipe 

and T is tensile force on the pipe at depth of interest. Thus, 

in the upper part of a well the amount of DLS desirable 

is limited. In practice, there are typically points along the 

trajectory where the DLS may exceed the desirable design 

limits and constraints need to be applied. For example, if 2° 

is the maximum DLS is desired, the design should consider 

values less than 2°.

Case studies

We considered two case studies for examining the perfor-

mance of the trajectory optimization algorithms. The first 

case study (Case 1) is for a producing well offshore Iran. The 

well is a horizontal well and has two build sections. The res-

ervoir section is located at a TVD of 1200 m from the rig’s 

kelly bushing (RKB) and the wellbore involves a horizontal 

Fig. 2  The vertical plane of a 

horizontal well (first case study) 

with the operational parameters. 

Note that the scenario involves 

two build sections

Fig. 3  The vertical plane of a horizontal well (second case study) 

with the operational parameters from Atashnezhad et  al. (2014) 

developed from the wellbore scenario studied originally by Shokir 

et al. (2004). Note that the scenario involves more than one build sec-

tion and a drop-off section separating the build sections. The wellbore 

trajectory formulation incorporates all the sections identified in this 

diagram
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section of 1470 m. The plan view of the well is illustrated in 

Fig. 2 with operational constraints listed in Table 1. Figure 4 

shows the sequence of geological formations encountered in 

drilling this first case study well.

In the original plan for the well, the KOP is set at 125 m, 

in Aghajari formation, but its TVD can range from 62 to 

210 m in that formation. The build section should end before 

the high-pressured Gachsaran formation is encountered in 

order to set a casing point. The second buildup should be 

started in the Ilam formation in order to maintain an accept-

able lateral force and end before entering the reservoir zone. 

A long-radius design is applied in order to build angle, as 

this can achieve a greater offset from the surface location 

(Carden and Grace 2007).

A 2000-lb maximum lateral force constraint for DLS, 

already discussed, is applied. Considering a typical bottom-

hole assembly (BHA) and drill pipe grade E for directional 

Table 1  Constraints applied to the example well path (Case 1—off-

shore Iran)

TVD 3936 ft (1200 m)

DH 4821 ft (1470 m)

Max DLS for 1st build 6°/100 ft

Inclination angles φ1 = 30–50 

φ2 = 90°

Azimuth angle θ = 250°

Kickoff point depth 203–688 ft (62–210 m)

2nd build point depth 3214–3542 ft (980–1080 m)

Fig. 4  Sequence of geological 

formations encountered by drill-

ing (Case 1—offshore Iran)
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drilling, about 60,000 lbs can be imposed on the drill string 

as the maximum tension in drill string at the depth of the 

first build section, which results in the maximum DLS per-

missible for this section of about 6°/100 ft. The drill pipe at 

the depth of second build section experiences less tension 

and therefore can tolerate a higher DLS. The DLS for this 

second build section needs to be less than about 9°/100 ft 

in order to prevent drill pipe fatigue, but the long-radius 

build method employed results in the DLS value actually 

being less than 6°/100 ft. The tangent section-inclusive (TSI) 

method is applied to the design of the horizontal section of 

the trajectory. The TSI method enables TVD adjustments for 

differences in DLS between the overall well plan and actual 

well path (Garden and Grace 2007). Results from previously 

drilled offset wells in the field suggest that a hold angle of 

30˚ to 50˚ is an appropriate inclination angle to maintain 

stability of the well and we apply this limitation as the geo-

mechanical constraint for our design example.

The second case study (Case 2) has been extracted from 

(Shokir et al. 2004) and also evaluated by Atashnezhad et al. 

(2014). The related information and constraints have been 

summarized in Table 2. The plane view of this well has been 

presented in Fig. 3.

Genetic algorithm (GA)

Using a genetic algorithm that follows the main five steps, 

the optimization has been applied on two wellbore scenarios 

as mentioned before. The main steps are:

1. Initialize a set of random feasible solutions (called a 

sample population).

2. Calculate the objective function and then rank the solu-

tions (i.e., best solution is rank#1).

3. Assemble high-ranking selected solutions and some ran-

domly generated solutions to act as parents for the next 

generation (i.e., iteration of the GA).

4. Apply cross-over and mutation on various parent solu-

tions and to create some new solutions to compare with 

the high-ranking solutions of the previous generation.

5. Rank the new generation: reject the lowest-rank solu-

tions; retain the highest ranking solutions to perpetuate 

the next generation.

6. Repeat steps 2–5 until the solution converges to an opti-

mum value or a specified number of iterations or com-

putational time has elapsed (i.e., termination criteria are 

met).

The GA evaluated in this study adopts a process 

sequence illustrated by the flowchart shown in Fig. 5. 

For coding the GA for the cases considered, a string of 

five-component solution for the first case study represent-

ing five variables in the trajectory design (KOP, second 

build depth, inclination angle and DLSs) and 12-compo-

nent solution representing the 12 variables in the second 

case study (KOP, second and third build depth, inclina-

tion angles, azimuth angles and DLSs). This type of code 

construction is applied to all the algorithms considered 

except in ACO.

The main GA operators controlling its behavior are cross-

over and mutation, which involve key behavioral parameters 

for the algorithms. Those behavioral parameters are: (1) 

cross-over probability (Pc); (2) mutation probability (Pm); 

and (3) mutation rate. These three parameters should be set 

to appropriate so that the GA functions appropriately achieve 

the best result (Gen and Cheng 2008; Lin et al. 2003). Such 

tuning of the key behavioral parameters avoids premature 

convergence (i.e., getting stuck at local optima) and encour-

ages convergence toward the global optimum as quickly as 

possible (i.e., in the fewest iterations). Multiple runs of the 

GA for the example well path (see Fig. 6), applying a range 

of key behavioral parameter values, reveal that the GA per-

forms better when the values of these parameters vary as 

the generations (iterations) progress rather than maintaining 

constant values for these parameters across all generations. 

The best sequence of variations applied to the behavioral 

parameters was found to be: (1) Pm commencing at a higher 

value than Pc and then gradually decreasing as the gen-

eration evolve; and (2). Whenever the algorithm becomes 

locked into a local minima, Pm is abruptly increased in an 

attempt to release the algorithm from that local optima and 

continue its search for the global optimum.

Table 3 lists the different values of GA behavioral param-

eters applied in each of the four runs shown in Fig. 6 together 

with the key performance results of each run.

Table 2  Constraints applied to the example well path (Case 2, after 

Shokir et al. 2004)

TVD 10,850–10,900 ft (3307–3323 m)

HD 2500 ft (762 m)

Dogleg severity T1, T2, T3 ≤ 5°/100 ft

Min. value of inclination angles φ1 = 10°, φ2 = 40°, φ3 = 90

Max. value of inclination angles φ1 = 20°, φ2 = 70°, φ3 = 95

Min. value of azimuth angles θ1 = 270°, θ2 = 270°, θ3 = 270° ͦ
Max. value of azimuth angles θ1 = 280°, θ2 = 280°, θ3 = 280°

Kickoff point depth 600–1000 ft (182–304 m)

Draw down point depth 6000–7000 ft (1829–2134 m)

Third build point depth 10,000–10200 ft (3048–3109 m)

1st casing setting depth 1800–2200 ft (548–670 m)

2nd casing setting depth 7200–8700 ft (2195–2652 m)

3rd casing setting depth 10,300–11000 ft (3140–3353 m)



1494 Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503

1 3

Ant colony optimization (ACO)

Ant colony optimization (ACO), based upon the natural 

behavior of ants in finding the shortest path from the nest 

to a specific and identified source of food, can be exploited 

to find the shortest path among a discrete number of alter-

native routes distributed in 2D or 3D feasible solution 

space, honoring defined constraints (Guan et al. 2016). 

The ACO algorithm applied here to wellbore trajectory 

optimization is illustrated in Fig. 7.

The selection probability of a path is proportional to the 

following relation:

(7)P
i
=

⎡
⎢⎢⎣

F
n

i∑
i

F
n

i

⎤
⎥⎥⎦

Fig. 5  Flowchart of GA used for 

optimizing well bore length of 

the example well bore. Initially 

a set of N solutions is generated 

randomly and their objective 

function values are calculated 

and ranked. From the solution 

set, some solutions are selected 

as “parents” with the probability 

of selection proportional to the 

rank of their objective func-

tions. The parents are combined 

and some of them are mutated 

or crossed over to obtain a 

new solution set potentially 

involving some solutions with 

better fitness/objective function 

values. This process is repeated 

for multiple iterations up to the 

maximum number of specified 

iterations

Fig. 6  Objective function trends 

compared for variable GA 

behavioral parameters versus 

constant-value GA behavioral 

parameters. The four runs (Case 

1) illustrated were all conducted 

using the same initial popula-

tion, i.e., the trends all begin 

with the optimum for an initial 

random sample population at 

the left side of the graph. Run 4 

(i.e., variable behavioral param-

eters) shows better performance 

than other runs (i.e., constant 

behavioral parameters). The 

better performance of Run 4 

is characterized by it exiting 

local minima more rapidly than 

the other runs. Note that the 

mutation probability in the GA 

is obtained by the relationship 

Pm = 1 − Pc
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The pheromone update rule is calculated as (Guan et al. 

2016):

where P is probability of selection for each path, F is phero-

mone intensity on each path, Cevp is evaporation constant 

and T is the incremental pheromone concentration to be 

added at each iteration. Suffix i refers to the ith path and n 

refers to the nth iteration. In each iteration, paths selected 

more frequently will establish, via Eqs. (6) and (7), higher 

pheromone concentrations. Cevp refers to the effect of phero-

mone evaporation that prevents excessive accumulation of 

pheromone concentrations. Higher values of Cevp result 

shorter run times for the algorithm, but also increase the 

probability of becoming trapped at a local optima. Table 4  

show the results of optimization for various values of Cevp. 

A variable Cevp that decreases as the iterations increase pro-

duced an acceptable result with a compromise between algo-

rithm run times and objective function values achieved. The 

value of T, Eq. (8), should be selected so as not to increase 

the pheromone density rapidly. In this study, T is set to 2 

(8)F
n

i
= CevpF

n−1
i

+ T
n

i

with the initial pheromone density set at 1, and Cevp is able 

to vary between a range of 0.2 and 1. 

In order to apply an ACO algorithm to the well trajec-

tory design cases evaluated, it was necessary to modify the 

decision space. Traditional ACO algorithms are designed 

to optimize discrete decision spaces, and on other hand, the 

well trajectory design is composed of a complex and con-

tinuous decision space of various parameters such as inclina-

tions, azimuths, doglegs and vertical depths. To convert this 

Table 3  Key GA behavioral parameters values applied to four runs 

and the optimal objective function value found after 2000 iterations

The optimal objective function value for each iteration of each run is 

illustrated as trends in Fig. 6 (Case 1)

Run 1 Run 2 Run 3 Run 4

Pm 0.8 0.5 0.2 Variable

Pc 0.2 0.5 0.8

Optimal solution 

found—TMD (m)

2352 2352 2354 2352

Fig. 7  Flowchart of a gen-

eral ACO algorithm used for 

optimizing well bore length 

of the example well bore. The 

entire feasible range allowable 

for each variable is divided 

into subsections, such that each 

subsection represents a node. 

Initially each ant is placed at 

a node and the ants then move 

through the all nodes in order 

to complete the well path. The 

lowest-well-path length dictates 

the highest pheromone density, 

which in turn results in higher 

probability of selection for the 

next iteration

Table 4  Results of optimization for various values of Cevp in 500 

iterations (Case 1)

Cevp Running time (s) Objective func-

tion value (m)

0.95 41 2381

0.75 123 2377

0.5 249 2361

Variable 165 2371

Table 5  ABC algorithm behavioral parameter variations and their 

impact on the algorithm’s performance for the well-path example 

(Case 1) over 50 iterations

Run 1 Run 2 Run 3 Run 4

L 100 500 750 1000

a 5 5 5 5

Number of bees in popula-

tion

50 50 50 50

Optimal solution found—

TMD (ft) after 50 itera-

tions

2352.65 2352.56 2352.79 2352.82

Computational time (s) 0.65 0.6 0.55 0.45
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continuous space into a discrete space, the permissible range 

of each parameter was divided into smaller sections, with 

each subsection considered as a node. This modification cre-

ates a large number of nodes that slows down the speed of 

optimization and results in the algorithm consuming high 

computation time. In addition, large number of nodes neces-

sitate the deployment of larger numbers of ants, which again 

increases the computation time. Figure 8 shows the trend 

of optimization of the objective function by dividing the 

solution variables into sections (nodes) and deploying 10 

ants. Increasing the number of ants yields better results in 

terms of objective function values located, but increases the 

computation time vice versa.

It is clear that the ACO algorithm applied may produce 

good results for the well-path optimization problem stud-

ied here, but the running time will be very high rather than 

that obtained by GA in previous section. Actually ACO 

algorithm is structured and best suited to discrete optimiza-

tion (Dorigo and Stutzle 2004) and best suited to solving 

problems with discontinuous decision spaces in the form of 

specified nodes in the space (Blum 2005, Hatampour et al. 

2013). Although ACO can be applied to continuous domains 

(Socha and Doriga 2008), it is necessary to deform the deci-

sion space of the well-path optimization problem studied 

here into a discontinuous space as described above. Because 

of high computation time associated with that approach, the 

ACO algorithms were not developed further. To improve 

the performance of ACO, one approach would be to hybrid-

ize it with other metaheuristics better adapted to deal with 

continuous solution spaces (e.g., Hu et al. 2008).

Arti�cial bee colony (ABC) optimization

Artificial bee colony (ABC) is a more recently developed 

metaheuristic optimization algorithm than ACO or GA 

approaches (Karaboga 2005; Karaboga and Basturk 2007, 

2008; Karaboga and Ozturk 2009). ABC is a simple evo-

lutionary algorithm using only common control param-

eters such as colony size and maximum cycle number. This 

algorithm provides a population-based search procedure 

described above and expressed by the following equations 

summarized from Karaboga and Gorkemli (2014):

Initialization phase

All the vectors of the population of food sources, Xm’s, are 

initialized (m = 1…SN, SN: population size) by scout bees 

and control parameters are set. Since each food source, Xm, 

is a solution vector to the optimization problem, each Xm 

vector holds n variables, (Xmi, i = 1…n), which are to be 

optimized so as to minimize the objective function.

The following definition is used for initialization 

purposes:

where Li and Ui are the lower and upper bound of the param-

eter Xmi, respectively. And rand is a random number between 

0 and 1.

(9)X
mi

= L
i
+ rand × (U

i
− L

i
)

Fig. 8  The ACO algorithm 

behavior with 10 ants and 1000 

iterations that takes about 150 s 

to complete (Case 1)
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Employed bees phase

Employed bees search for new food sources (Vm) having 

more nectar within the neighborhood of the food source 

(Xm) in their memory. They find a neighbor food source 

and then evaluate its profitability (fitness). For example, 

they can determine a neighbor food source Vm using the 

formula given by Eq. (10):

where Xk is a randomly selected food source, i is a randomly 

chosen parameter index and ∅mi is a random number within 

the range [− a, a]. After producing the new food source Vm, 

its fitness is calculated and a greedy selection is applied 

between Vm and Xm.

The fitness value of the solution,  fitm(Xm), might be cal-

culated for the problem using the following formula (11):

where f(Xm) is the objective function value of solution Xm.

Onlooker bees phase

Unemployed bees consist of two groups of bees: onlooker 

bees and scouts. Employed bees share their food source 

information with onlooker bees waiting in the hive and 

then onlooker bees probabilistically choose their food 

sources depending on this information. In ABC, an 

onlooker bee chooses a food source depending on the 

probability values calculated using the fitness values pro-

vided by employed bees. For this purpose, a fitness-based 

selection technique can be used, such as the roulette wheel 

selection method (Goldberg 1989).

The probability value pm with which Xm is chosen by 

an onlooker bee can be calculated by using the expression 

given in Eq. (12):

After a food source Xm for an onlooker bee is probabil-

istically chosen, a neighborhood source Vm is determined 

by using Eq. (10), and its fitness value is computed. As in 

the employed bees’ phase, a greedy selection is applied 

between Vm and Xm. Hence, more onlookers are recruited 

to richer sources and positive feedback behavior is 

perpetuated.

(10)V
mi

= X
mi
+ �

mi
× (X

mi
− X

ki
)

(11)fitm(Xm) =

{

1

1+f (Xm)
, f (Xm) > 0

1 + abs(f (Xm)), f (Xm) < 0

(12)
P

m
=

fit(X
m
)

SN
∑

m=1

fit(X
m
)

Scout bees phase

The unemployed bees who choose their food sources ran-

domly are called scouts. Employed bees whose solutions 

cannot be improved through a predetermined number of 

trials, specified as the “limit” or “abandonment criteria,” 

become scouts and their solutions from previous iterations 

are abandoned. The converted scouts start to search for 

new solutions, randomly. For instance, if solution Xm has 

been abandoned, the new solution discovered by the scout 

who was the employed bee of Xm can be defined by Eq. (9). 

Hence, those sources which are initially poor or have failed 

to be improved by exploitation are abandoned and negative 

feedback behavior is used to trigger new exploration efforts.

ABC algorithms combine local search processes, carried 

out by employed and onlooker bees, with global search pro-

cesses, managed by onlookers and scouts, to achieve a bal-

ance between exploration and exploitation efforts. A general 

ABC algorithm involves the following steps (Karaboga and 

Gorkemli 2014):

1. Initialize the food source positions, i.e., the target loca-

tions (note in the wellbore path problems there is typi-

cally one bottom-hole target location).

2. Employed bees identify new food sources within a site 

of specified dimensions and exploits the best food source 

within that site.

3. Onlooker bees select a site depending upon the quality 

of the performance observed from other bees return-

ing to the hive; they detect new food sources within the 

selected site and exploits the best food source located in 

that site.

4. Determine which sites should be abandoned and desig-

nate the employed bees visiting it to become scout bees 

to searching randomly for new food sites.

5. Memorize the best food sources found so far within the 

sites visited.

6. Repeat steps 2–5 until the solution converges to an opti-

mum value or a specified number of iterations or com-

putational time has elapsed (i.e., termination criteria are 

met).

In ABC algorithms, two parameters play key roles:

1. Acceleration coefficient (a)—determines the amplitudes 

of a random number (phi) used to create a new site to 

explore for bees; and

2. Abandonment limit parameter (L)—typically a linear 

function of several variables including the population 

size. The abandonment limit establishes an upper bound-

ary of another parameter that records how many times 

bees encounter a food source at a specific search area. If 

the abandonment parameter value exceeds the abandon-
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ment limit parameter (L), that search area (site) must be 

abandoned and scout bees are instead sent out to search 

for new promising sites. The purpose of the abandon-

ment limit is to prevent searches becoming trapped at 

local optima.

Other parameters, such as the number of bees in the pop-

ulation, are effective at impacting the computational time 

required by ABC algorithms to locate global optimum val-

ues of the objective function. The behavioral parameters, a 

and L, are used here to tune the ABC algorithm (Table 5).

With regard to behavioral parameter “L,” lower values 

result in greater computational time and more iterations 

being required to find the global optimum of the objective 

function. Better outcomes were achieved for the well-path 

optimization example by systematically varying the value of 

behavioral parameter “a” as the ABC algorithm progresses 

through its iterations. An initial value for “a” (e.g., 1 in 

the first iteration) multiplied by a linear coefficient (e.g., 

1.0005), increasing incrementally from one iteration to the 

next (according to Eq. 13), combined with higher values for 

parameter “L” were found to produce the best outcomes and 

fastest convergence for the well-path design cases evaluated.

where “c” is a constant value (e.g., c = 1.0005).

Harmony search (HS) optimization

HS is a relatively recently developed optimization algo-

rithm that has been successfully applied (e.g., Yang 2009) 

and adapted to solve various optimization challenges 

(Chakraborty et  al. 2009; Daham et  al. 2014). It is not 

though without its critics (e.g., Weyland 2010; Padberg 

2012) who conclude that it is similar to other evolutionary 

algorithms in searching feasible solutions spaces and lacks 

efficiency by repeatedly retracing previously travelled path-

ways. The solutions to an optimization problem derived by 

an HS algorithm are progressively enhanced as a harmony 

is improved by refining individual improvisations by musi-

cians while the music is being played (Yang 2009). The HS 

algorithm consists of five distinct steps:

1. Initializing the problem.

2. Initializing the harmony memory (HM).

3. Creating a new harmony (solution).

4. Updating HM.

5. Repeat steps 2–4 until: (a) the solution converges to an 

optimum value; (b) a specified number of iterations; or 

(c) computational time has elapsed (i.e., termination cri-

teria are met).

(13)a
i+1

= a
i
× c

HM is a matrix of N × M dimensions that stores N solu-

tions each consisting of M components or variables. A new 

solution can be produced either by a random amendment 

to an element selected from the whole range of available 

variables, or by a small incremental change to an existing 

solution from the HM to explore the regions surrounding 

that known solution. Comparing a random number between 

0 and 1 and the harmony memory considering rate (HMCR) 

forms the basis of deciding the manner in which a new solu-

tion will be calculated. If HMCR is set to 0.7 and if the 

random number generated in each iteration is lower than 0.7, 

the new solution is created using as a starting point a solu-

tion already available in the HM. However, if the random 

number generated is greater than the specified HMCR value, 

then the new solution is created randomly from the whole 

range of available variables (Yang 2009).

Using the HM, the new solution is created using the fol-

lowing equations:

XOLD is chosen randomly from the HM, UB and LB are 

the upper and lower boundaries of the variables. And the 

ε is a small number between − 1 and +1 causing the new 

solution to be close to the old one. (Yang 2009).

The key HS behavior controllers are the number of solu-

tions that are stored in the HM, known as harmony mem-

ory size (HMS), and the rate of change that is applied to 

the solutions taken from HM known as harmony memory 

considering rate (HMCR) (Weyland 2010). A larger har-

mony memory (i.e., higher HMS) results in a more thor-

ough search of the feasible solution space, but also results 

in higher computational time. The HS algorithm evaluated 

in this study adopts a process sequence illustrated by the 

flowchart shown in Figs. 9, 10.  

The effect of the HMCR value on the progress of the 

HS algorithm is shown in Fig. 11. Higher HMCR values 

tend to yield the better optimal objective function values 

as the algorithm progresses. In the HS algorithm applied 

here, we set HMCR as a variable so that whenever the algo-

rithm becomes trapped at local minima, the HMCR value 

is abruptly decreased, enabling more as-yet-untested solu-

tions from the entire solution space to enter the HM. Such 

an approach increases the chances of the algorithm escaping 

from local minima in which it has become trapped or locked 

into. Figure 11 compares the HS algorithms performance 

with different constant HMCR values and compares that 

performance with higher performance with variable HMCR 

values.

Another key behavioral parameter of HS algorithms is the 

mutation rate (Rm), which determines what proportion of the 

variables contributing to the existing HM solutions should 

(14)X
NEW

= X
OLD

+ B × �

(15)B = UB − LB
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Fig. 9  Performance of the ABC 

algorithm for different values 

of “L” (abandonment limit) 

applied to the wellbore trajec-

tory (Case 1)
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Fig. 10  Flowchart of HS applied to the wellbore path optimization 

problem. As for the GA, there is a string of components represent-

ing a solution. Each component is responsible for a variable. Initially, 

a set of solutions is generated randomly and assembled as the har-

mony memory (HM). Based on their fitness, established from their 

respective objective function values, the HM solutions are ranked. 

Applying a probabilistic selection method (a random number from 

the range 0–1, but closer to 1) a solution with high fitness from the 

HM is selected and a slight change is applied to it to generate a new 

solution. That new solution replaces the lowest-ranking solution in 

the HM. Alternatively, the new solution may be generated indepen-

dently from the whole range of solutions in the HM dependent on a 

predetermined threshold for the random number generated. This cycle 

is repeated over a significant number of iterations until the specified 

maximum iteration is reached
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be changed to generate new slightly modified solutions to 

be evaluated. Rm should be as low as possible to make a 

slight change in good solutions and to explore the solution 

space around them. A high value of Rm can abruptly disturb 

the searching process. Rm of 0.05 is applied in this study. A 

potentially negative feature of the HS algorithm evaluated 

is that it requires a large number of iterations to achieve an 

acceptable “optimum” value for the objective function; how-

ever, each iteration can be conducted with relatively short 

computational time.

Comparative results applying tuned 
metaheuristic algorithms

Each of the metaheuristic algorithms applied is tuned for the 

wellbore path optimization Cases 1 and 2 (i.e., as defined 

in Figs. 1 and 3 and Tables 1 and 2) and then evaluated and 

compared for performance (i.e., objective function value 

and computational time consumed). Tables 6 and 7 list the 

results obtained for the optimization of wellbore Cases 1 

and 2 of each algorithm evaluated. It is important to bear 

in mind that these results were obtained on a PC computer 

with specifications “Intel Core i5 2430 M 2.4 GHz., 4 GB 

DDR3 Memory.” Attempts to run these algorithms on dif-

ferent computer systems are likely to result in different com-

putation times, but their relative performance order will be 

the same.

From Fig. 12 and Tables 6 and 7, its apparent that all the 

algorithms evaluated except ACO are very fast solving these 

complex cases involving continuous nonlinear solution spaces. 

GA, ABC and HS showed that in very complex problems, 

for which there may not be single exact analytical solutions, 

they can be employed to find an acceptable solution near to 

global optima. The modified-discrete ACO algorithm devel-

oped for this study was found not to be an appropriate solver 

for wellbore trajectory optimization problems, i.e., involving 

continuous solution space and large numbers of variables. This 

finding is perhaps not surprising as the original ACO algo-

rithm was developed to address discrete optimization problems 

(Dorigo and Stutzle 2004). Clearly A the ACO algorithm is 

better suited to solve problems with discontinuous decision 

spaces in the form of specified nodes in the space (Hatampour 

et al. 2013). 

Discussion

A summary of the converged optima achieved by each 

metaheuristic algorithm applied to the wellbore path opti-

mization Cases 1 and 2 is provided in Tables 8 and 9, 

respectively.

Fig. 11  Performance comparison of tuned HS versus non-tuned con-

stant HMCR–HS for well-path Case 1. Variable HMCR runs tend 

to yield better optimum values of the objective function because the 

algorithm remains trapped at local minima for less iterations than 

for runs applying fixed-HMCR values. The mutation rate in all runs 

shown is set at 0.2

Table 6  Comparative results of tuned metaheuristic algorithms 

applied to the wellbore optimization Case 1

GA ACO ABC HS

Optimal solution found—TMD (m) 2353 2370 2352 2352

Required number of iterations 1000 2000 100 2000

Computational time (s) 1.02 300 0.46 1.50
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The minimum total measured depth (TMD) located by 

all studied algorithms is similar (except for ACO), but the 

computation times and number of iterations taken by each 

one are different. The GA and HS algorithms require more 

iterations than ABC and PSO to converge toward the global 

optima. The same TMD achieved by the algorithms suggest 

that all have reached good solutions, but still we cannot say 

these are the absolute global optima.

An important consideration in this study is that for all 

algorithms evaluated, a strategy of non-constant key-con-

trol parameters is applied. For example, in tuning the GA, 

high cross-over probability typically leads to better per-

formance than high mutation probability. This is applied 

to the GA in such a way that when the GA becomes 

trapped around local minima, mutation probability is 

abruptly increased until an improvement in the GA trend 

is observed. The same approach has been applied to the 

HS algorithm such that by default a high value for har-

mony memory considering rate (HMCR) is applied. How-

ever, when the HS becomes trapped around local minima, 

HMCR is decreased to promote exploration of new solu-

tions spaces. This strategy is applied to all the algorithms 

evaluated with successful results; multiple runs of each 

algorithm with the flexibility to vary key parameters have 

proven that non-constant parameters result in significant 

improvements in their performance.

Table 7  Comparative results of 

tuned metaheuristic algorithms 

applied to the wellbore 

optimization Case 2

GA ACO ABC HS PSO from Atash-

nezhad et al. 

(2014)

Optimal solution found TMD (ft) 15,023 15,239 15,023 15,024 15,023

Required number of iterations 1000 2000 100 2000 100

Computational time (s) 1.60 1350 5.02 2.8 2.2

Fig. 12  Performance trends for 

GA, ABC and HS algorithms 

applied to the wellbore optimi-

zation Case 1 for 400 iterations. 

GA and HS may require more 

iterations to be fully converged
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Table 8  Comparison of the best results achieved by each tuned 

metaheuristic algorithms applied to the wellbore optimization Case 1

GA HS ABC ACO

Optimal solution found 

TMD (m)

2352 2352 2352 2370

KOP (ft) 62 62 62 65

2nd BU depth (ft) 980 980 980 987

Inclination (°) 30 30 30 30

1st DLS (°/100 ft) 3.76 3.76 3.76 4.07

2nd DLS (°/100 ft) 3.90 3.90 3.90 3.90
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An important achievement of the algorithms developed 

and tuned for this study is that they can solve a nonlinearly 

constrained problem in less than 2 s (e.g., ABC, GA and HS 

in Case 1).

The wellbores studied in this paper are evaluated to mini-

mize wellbore length (TMD). Other functions that could be 

set as objective functions include torque and drag on the drill 

string. The algorithms could also be examined for multi-

objective purposes, but this requires a separate study which 

is beyond the scope of this work. Another consideration that 

can be developed by means of metaheuristic algorithms is 

the anti-collision constraint in a multi-well drilling program. 

This can represent a very complicated limitation and is the 

subject of work in progress by the authors.

Conclusions

Evaluation of a suite of metaheuristic evolutionary algo-

rithms applied to complex well-path optimization provides 

insight to their relative performance and how they might best 

be tuned to optimize their performance. Key insights gained 

from this study are:

1. GA, HS, ABC and PSO are fast-convergence algorithms 

that can be successfully applied and tuned to solve com-

plex and time-consuming wellbore trajectory design 

problems.

2. HS is a simple algorithm that typically requires a high 

number of iterations to converge toward the global 

optima, but does so in low computation times.

3. For each algorithm evaluated, a set of key-control 

parameters can be tuned to optimize their performance 

when applied to specific wellbore trajectory problems. 

Constant values applied to these parameters did not 

result in optimal performance. Rather, it was found that 

changing these parameters progressively within certain 

ranges through successive iterations resulted in the best 

performance of each algorithm studied.

4. With the exception of ACO, all algorithms evaluated 

in this study demonstrate their ability to solve complex 

wellbore trajectory problems rapidly and locate accept-

able solutions close to global optima.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

References

Afshari S, Aminshahidi B, Pishvaei MR (2013) Application of an 

improved harmony search algorithm in well placement optimiza-

tion using streamline simulation. J Pet Sci Eng 78(3–4):664–678

Atashnezhad A, Wood DA, Fereidounpour A, Khosravanian R (2014) 

Designing and optimizing deviated wellbore trajectories using 

novel particle swarm algorithms. J Nat Gas Sci Eng 21:1184–1204

Blum C (2005) Ant colony optimization: introduction and recent 

trends. Phys Life Rev 2:353–373

Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey 

on metaheuristics for stochastic combinatorial optimization. Nat 

Comput 8(2):239–287

Carden RS, Grace RD (2007) Directional horizontal drilling manual. 

Petroskills, Tulsa

Chakraborty P, Roy GG, Das S, Jain D, Abraham A (2009) An 

Improved Harmony Search Algorithm with Differential Mutation 

Operator. Fundam Inf 95:1–261

Daham BFA, Mohammed NM, Mohammed KS (2014) Parameter con-

trolled harmony search algorithm for solving the four-color map-

ping problem. Int J Comput Inf Technol 3(6):13981402

Darquennes D (2005) Implementation and applications of ant colony 

algorithms. Master thesis, The University of Namur

Devereux S (1998) Practical well llanning and drilling manual. Pen-

nWell Books, Houston

Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, USA

Gallagher K, Sambridge M (1994) Genetic algorithm: a powerful tool 

for large-scale nonlinear optimization problems. Comput Geosci 

20(7/8):1229–1236

Gen M, Cheng R (2008) Network models and optimization. Springer, 

Berlin

Goldberg DE (1989) Genetic algorithms in search, optimization 

and machine learning. Addison-Wesley Professional, ISBN: 

0201157675

Table 9  Comparison of the best results achieved by each tuned 

metaheuristic algorithms applied to the wellbore optimization Case 2

GA HS ACO ABC PSO from 

Atashnezhad 

et al. (2014)

Optimal solu-

tion found 

TMD (ft)

15,023 15,023 15,251 15,023 15,023

KOP (ft) 1000 1000 749 1000 1000

2nd BU depth 

(ft)

7000 7000 6769 7000 7000

3rd BU depth 

(ft)

10,200 10,200 10,060 10,200 10,200

1st inclination 10 10 10 10 10

2nd inclination 40 40 40 40 40

3rd inclination 90 90 90 90 90

1st azimuth 273 270 270 270 270

2nd azimuth 280 276 273 273 271

3rd azimuth 335 340 335 240 332

1st DLS 0.83 0.82 0.82 0.84 0.77

2nd DLS 1.58 1.58 1.38 1.68 1.67

3rd DLS 4.26 4.7 3.55 3.24 3.46

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1503Journal of Petroleum Exploration and Production Technology (2018) 8:1487–1503 

1 3

Guan Z-C, Liu Y-M, Liu Y-W, Xu Y-X (2016) Hole cleaning optimi-

zation of horizontal wells with the multidimensional ant colony 

algorithm. J Nat Gas Sci Eng 28:347–355

Guria C, Goli KK, Pathak AK (2014) Multi-objective optimization 

of oil well drilling using elitist non-dominated sorting genetic 

algorithm. J Pet Sci 11(1):97–110

Hatampour A, Razmi R, Sedaghat MH (2013) Improving performance 

of a neural network model by artificial ant colony optimization for 

predicting permeability of petroleum reservoir rocks. Middle-East 

J Sci Res 13(9):1217–1223

Hu XM, Zhang J, Li Y (2008) Orthogonal methods based ant colony 

search for solving continuous optimization problems. J Comput 

Sci Technol 23(1):2–18

Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical 

Optimization. Erciyes University, Engineering Faculty

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for 

numerical function optimization: artificial bee colony (ABC) algo-

rithm. J Global Optim 39(3):459–471

Karaboga D, Basturk B (2008) On the performance of artificial bee 

colony (ABC) algorithm. Appl Soft Comput 8:687–697

Karaboga D, Gorkemli B (2014) A quick artificial bee colony (qABC) 

algorithm and its performance on optimization problems. Appl 

Soft Comput 23:227–238

Karaboga D, Ozturk C (2009) A novel clustering approach: arti-

ficial Bee Colony (ABC) algorithm. Appl Soft Comput 

11(2011):652–657

Khalili M, Kharrat R, Salahshoor K, Haghighat Sefat M (2013) Fluid 

injection optimization using modified global dynamic harmony 

search. Iran J Oil Gas Sci Tech 2(3):57–72

Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continu-

ous engineering optimization: harmony search theory and prac-

tice. Comput Method Appl Mech Eng 194 (36–38):3902–3933

Lin WY, Lee WY, Hong TP (2003) Adapting crossover and mutation 

rates in genetic algorithms. J Inf Sci Eng 19:889–903

Lubinski A (1961) Maximum permissible dog legs in rotary boreholes. 

J Pet Technol Dallas 13(2):256–275

Mansouri V, Khosravanian R, Wood DA, Aadnoy BS (2015) 3-D well 

path design using a multi objective genetic algorithm. J Nat Gas 

Sci Eng 27(1):219–235

Nozohour LB, Fazelabdolabadi B (2016) On the application of Artifi-

cial Bee Colony (ABC) algorithm for optimization of well place-

ments in fractured reservoirs; efficiency comparison with the Par-

ticle Swarm Optimization (PSO) methodology. J Pet 2(1):79–89

Padberg M (2012) Harmony Search Algorithms for binary optimization 

problems. In: Klatte D, Lüthi HJ, Schmedders K (eds) Operations 

Research Proceedings 2011. Springer, Berlin, Heidelberg

Shokir EM, Emera MK, Eid SM, Wally AW (2004) A new optimization 

model for 3-D well design. Emir J Eng 9(1):67–74

Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. 

Springer, Berlin

Socha K, Dorigo M (2008) Ant colony optimization for continuous 

domains. Eur J Oper Res 185(3):1155–1173

Weyland D (2010) A rigorous analysis of the harmony search algorithm 

how the research community can be misled by a “novel” method-

ology. Int J Appl Metaheur Comput 1–2(April-June):50–60

Yang XS (2009) Harmony search as a metaheuristic algorithm. Stud 

Comput Intell, Springer, Berlin 191:1–14

Zerafat MM, Ayatollahi S, Roosta AA (2009) Genetic algorithms and 

ant colony approach for gas-lift allocation optimization. J Jpn Pet 

Inst 52(3):102–107

Publisher’s Note Springer Nature remains neutral with 

regard to jurisdictional claims in published maps and insti-

tutional affiliations.


	A comparative study of several metaheuristic algorithms for optimizing complex 3-D well-path designs
	Abstract
	Introduction
	Well-path design problem used to test optimization algorithms
	Case studies
	Genetic algorithm (GA)
	Ant colony optimization (ACO)
	Artificial bee colony (ABC) optimization
	Initialization phase
	Employed bees phase
	Onlooker bees phase
	Scout bees phase

	Harmony search (HS) optimization
	Comparative results applying tuned metaheuristic algorithms
	Discussion
	Conclusions
	References


