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Abstract

Background: Molecular structures can be represented as strings of special characters using SMILES. Since each
molecule is represented as a string, the similarity between compounds can be computed using SMILES-based string
similarity functions. Most previous studies on drug-target interaction prediction use 2D-based compound similarity
kernels such as SIMCOMP. To the best of our knowledge, using SMILES-based similarity functions, which are
computationally more efficient than the 2D-based kernels, has not been investigated for this task before.

Results: In this study, we adapt and evaluate various SMILES-based similarity methods for drug-target interaction
prediction. In addition, inspired by the vector space model of Information Retrieval we propose cosine similarity based
SMILES kernels that make use of the Term Frequency (TF) and Term Frequency-Inverse Document Frequency (TF-IDF)
weighting approaches. We also investigate generating composite kernels by combining our best SMILES-based
similarity functions with the SIMCOMP kernel. With this study, we provided a comparison of 13 different ligand
similarity functions, each of which utilizes the SMILES string of molecule representation. Additionally, TF and TF-IDF
based cosine similarity kernels are proposed.

Conclusion: The more efficient SMILES-based similarity functions performed similarly to the more complex 2D-based
SIMCOMP kernel in terms of AUC-ROC scores. The TF-IDF based cosine similarity obtained a better AUC-PR score than
the SIMCOMP kernel on the GPCR benchmark data set. The composite kernel of TF-IDF based cosine similarity and
SIMCOMP achieved the best AUC-PR scores for all data sets.

Keywords: Chemoinformatics, SMILES, SMILES based drug similarity, Drug-target interaction prediction

Background
Identification of potential interactions between target

proteins and drugs is a difficult task and computer sci-

entists and medicinal chemists alike consider it a chal-

lenge before the whole drug discovery field. Efficient

prediction of target-compound interactions using com-

putational methods accelerates research efforts in this

area. There have been two generally accepted approaches

to drug discovery, ligand-based and structure-based or

docking [1]. Ligand-based approaches are based on the

known ligands of a protein and lack applicability when

the target has no known ligands (orphan target), while
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structure-based approaches utilize the three dimensional

structure of the target, if it is known [1]. Literature min-

ing, where interacting genes and compounds are extracted

from the related articles, can also be used [2]. Chemoge-

nomics relates the chemical properties of ligands with

the sequence properties of proteins, with the final goal

of protein-ligand interaction prediction. The underlying

assumption is that chemically similar compounds will

bind to the same or similar proteins and that targets with

similar binding sites should also bind to the same ligands

[3]. In this work, we combine protein sequence similarity

and ligand chemical similarity information for protein-

drug interaction prediction using machine learning. Our

main goal is to evaluate the performance of different lig-

and similarity functions that utilize their SMILES strings

for this task.
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Chemogenomics has three main components: (i) set of

compounds (ii) set of targets (iii) reliable interaction infor-

mation [4]. Recent studies have adopted chemogenomics

approaches for predicting drug-target interactions [5–17]

based on genomic similarity of proteins and/or chemical

similarity of ligands using different computational mod-

els and classification algorithms. One of the first studies

utilizing machine learning methods for ligand-based vir-

tual screening tested different target kernels with Support

Vector Machines (SVM). Three different protein data sets

were examined to predict drugs even for targets with

no known ligands using the similarity between proteins

[6]. The same year, chemical compound similarity and

protein sequence similarity were used to propose three

different profile kernel methods by Yamanishi et al. for

interaction prediction [5]. The database of drug-target

interactions curated in this work is commonly used as

a reference/benchmark data set [5]. Gaussian Interaction

Profile (GIP) kernel, introduced by Laarhoven et al., was

built on binary vectors named interaction profiles that are

defined for each drug and protein in the data set [16].

The interaction profile of a drug indicates its interaction

status (present (1)/ absent (0)) with every target in the

data set. Similarly, the interaction profile of a target is a

binary vector representing its interaction status with all

the drugs in the data set. The model was later improved

using the Weighted Nearest Neighbor algorithm (WNN-

GIP), so that it was possible to make predictions for

new drug compounds by predicting their interaction

profiles [17].

The chemical similarity of ligands can be based on the

1D, 2D, and 3D representations of molecules [4]. The

most commonly used descriptors are based on 2D and

3D representations of the compounds [18–22]. A detailed

comparison of different chemical descriptors and 2D

graph similarity kernels used in predicting protein-drug

interactions was recently reported in [23]. A popular 1D

representation for molecular structures is the Simpli-

fied Molecular Input Line Entry System (SMILES) that

describes molecular structures in the form of strings

[24, 25]. SMILES strings convey information about

molecular structures by using symbols such as C, c, N,

O for atoms and =, # for bonds (www.daylight.com/

dayhtml/doc/theory/theory.smiles.html). The SMILES

representation has been used to obtain molecular sim-

ilarity for purposes such as toxicity prediction, virtual

screening, and Quantitative structure-activity relation-

ship (QSAR) modelling [26–30]. To the best of our

knowledge, SMILES strings have not been previously

used to represent similarities among compounds for the

task of drug-target interaction prediction. Most previous

studies on drug-target interaction prediction make use of

the more complex 2D representations of the compounds

such as SIMCOMP.

In this study, we seek to answer whether a SMILES rep-

resentation based compound similarity method can per-

form as well as the widely used 2D representation based

similarity method, SIMCOMP [31], in the drug-target

interaction prediction task. The methods we discussed

in this paper can be used in any drug-target interac-

tion prediction algorithm that makes use of the com-

pound similarity information. For evaluation purposes,

we use one of the state-of-the-art algorithms for drug-

target interaction prediction, namely the Weighted Near-

est Neighbor-Gaussian Interaction Profile (WNN-GIP)

model proposed in [17] and we use the benchmark data

sets curated by Yamanishi et al.; GPCRs, enzymes, nuclear

receptors, ion channels, and their interacting ligands [5].

We adapt and evaluate various string similarity functions,

which are based on the SMILES representations of the

ligands, for the task of drug-target interaction predic-

tion. The string similarity methods that we utilize include

edit distance [32], normalized longest common subse-

quence (NLCS), and amodel that combines three different

longest common subsequence (LCS) [33] algorithms, as

well as SMILES specialized algorithms such as LINGO

[26], SMILES fingerprint (SMIfp) [28], and SMILES-

based substring kernel [27]. We also present two novel

models that combine the LINGO representation with

the term frequency (TF) weighting and term frequency-

inverse document frequency (TF-IDF) weighting schemes

adopted from the Information Retrieval domain. In addi-

tion, two composite kernels are constructed by combining

the 2D-based similarity kernel SIMCOMP with TF-IDF

based cosine similarity kernel and LINGOsim kernel. Our

results show that SMILES-based similarity kernels per-

form close to the 2D-based similarity kernel, SIMCOMP,

at a fraction of the computational time. The composite

kernel comprising the SMILES-based TF-IDF cosine simi-

larity kernel and 2D-based SIMCOMPkernel obtained the

best performance in terms of AUC-PR scores for all data

sets.

Methods
In this section we first describe the data sets that we used

for evaluation and the drug-target interaction predic-

tion algorithm (i.e., Weighted Nearest Neighbor-Gaussian

Interaction Profile (WNN-GIP) [17]), into which we inte-

grated the SMILES-based compound similarity functions.

Next, we present the SMILES-based compound similar-

ity functions that we adapted and evaluated for the task of

drug-target interaction prediction.

Data sets

Drug-target interaction data

We used the benchmark drug-target interaction data sets

for enzymes, ion channels, GPCRs, and nuclear recep-

tors provided by Yamanishi et al. [5] for evaluation. The

www.daylight.com/dayhtml/doc/theory/theory.smiles.html
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data sets are publicly available at http://web.kuicr.kyoto-

u.ac.jp/supp/yoshi/drugtarget/. Yamanishi et al. retrieved

the interaction information between target proteins and

compounds from the KEGG BRITE [34], BRENDA [35],

SuperTarget [36], and DrugBank [37] databases. The

properties of the interaction data sets are provided in

Table 1.

Genomic data

Target proteins are retrieved from the KEGG GENES

database [34], and the normalized version of the Smith-

Waterman score is used to calculate the similarity between

the amino-acid sequences of the target proteins [5].

Chemical data

The DRUG and COMPOUND sections of KEGG DRUG

database [34] are used to obtain the chemical struc-

tures. SIMCOMP is used to construct the original com-

pound similarity matrix [5]. SIMCOMP treats chemical

molecules as graphs, then produces a score represent-

ing the similarity between two graphs [31, 38]. In order

to calculate our own compound similarity matrices, we

first downloaded the MOL files from KEGG DRUG for

each of the compounds included in the data sets. Then,

we used JChem 6.0.2 for .NET (ChemAxon, https://www.

chemaxon.com/) to convert the MOL files into unique

SMILES strings [25].

Prediction algorithm

We used the WNN-GIP drug-target interaction pre-

diction model [16, 17] in order to compare the

different SMILES string based compound similarity

methods.WNN-GIP requires a bipartite drug-target inter-

action network, which is represented as an adjacency

matrix in which a cell is set to 1 if the drug and the tar-

get interact, and to 0 otherwise. Each row of the adjacency

matrix corresponds to the interaction profile of a drug and

each column corresponds to the interaction profile of a

target. The interaction profiles of the drugs and targets,

as well as the chemical similarity information of the com-

pounds and the genomic similarity information of the pro-

teins are provided as inputs to the WNN-GIP algorithm.

First, the kernels for the drugs and targets are created from

the chemical similarity and genomic similarity informa-

tion, respectively by modifying their similarity matrices

Table 1 Number of components included in the drug-target
interaction data sets of Yamanishi et al. [5]

Dataset Drugs Targets Interactions

Enzyme 445 664 2926

Ion Channels 210 204 1476

GPCR 223 95 635

Nuclear Receptor 54 26 90

so that they become symmetric and positive definite (i.e.,

well-defined kernel functions). Then, the Gaussian kernel

is used to construct a kernel from the interaction pro-

files, which is combined with the chemical kernel and the

genomic kernel. Finally, the Kronecker product is used to

merge the kernel for drugs and the kernel for targets into

a kernel directly representing drug-target pairs. The Reg-

ularized Least Squares (RLS) algorithm is employed for

the prediction of drug target interactions [16]. In the orig-

inal study, WNN-GIP used the SIMCOMP method based

on the 2D representation of the compounds to compute

the compound chemical similarity scores. In this study,

we investigated using the computationally more efficient

1D SMILES-based similarity functions to compute the

compound similarity scores instead of SIMCOMP in the

WNN-GIP algorithm.

SMILES-based compound similarity functions

In this sub-section we provide the methods that

we adopted and evaluated to measure the similar-

ity of compounds using their SMILES string repre-

sentations. The source code comprising the SMILES-

based similarity algorithms discussed in this section

is publicly available at: https://github.com/hkmztrk/

SMILESbasedSimilarityKernels.

All SMILES strings are modified such that atoms rep-

resented with two characters such as ‘Cl’ and ‘Br’ are

replaced with single characters. For illustration purposes,

we use the imaginary SMILES strings SMI1: “OC(O)=O”

and SMI2: “CCCCC(O)=C4” to demonstrate the SMILES-

based similarity methods.

Edit distance

Edit distance is one of the most widely used measures to

make comparisons between strings. Given two strings S1
and S2, the edit distance between them is defined as the

number of minimum edit operations required to convert

S1 into S2 [39]. There are three main operations allowed,

namely insertion, deletion, and substitution [39]. For our

samples, edit(SMI1, SMI2) = 6. In order to convert SMI1
to SMI2, we have to perform four insertion operations

(for inserting three characters “C” and for inserting one

character “4”), and two substitution operations (for substi-

tuting the first and last “O” with “C”) . Then, the similarity

is calculated as,

EditSim(SMI1, SMI2) = 1 −
edit(SMI1, SMI2)

MAX(length(SMI1), length(SMI2))

Normalized longest common subsequence (NLCS)

The Longest Common Subsequence (LCS) algorithm

finds the common subsequence with the maximum pos-

sible length of two strings [40]. The algorithm does not

require the characters in the common subsequence to be

consecutive. Normalized LCSmodifies the algorithm such

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
https://www.chemaxon.com/
https://www.chemaxon.com/
https://github.com/hkmztrk/SMILESbasedSimilarityKernels
https://github.com/hkmztrk/SMILESbasedSimilarityKernels
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that the lengths of both strings are considered. Given two

strings S1 and S2 the NLCS is [33],

NLCS(S1, S2) =
length (LCS (S1, S2))

2

length (S1) × length (S2)

For our sample SMILES strings, the longest common

subsequence is “C(O)=”. Therefore,

NLCS (SMI1, SMI2) = 0.32

Combination of LCSmodels (CLCS)

Islam and Inkpen proposed a method to measure seman-

tic similarity of the texts by combining three algorithms

each of which modifies the LCS algorithm in a different

way [33].Wewill refer to this method as CLCS throughout

the paper. The first algorithm is Normalized LCS (NLCS),

described in the previous section. The second algorithm

is called Maximal Consecutive Longest Common Subse-

quence starting from the character 1,MCLCS1. It requires

the common subsequences to be consecutive and to start

from the first index of the shorter string. The last algo-

rithm is named Maximal Consecutive Longest Common

Subsequence starting from character n, MCLCSn [33].

Similarly toMCLCS1,MCLCSn requires the common sub-

sequences to be successive. However unlike MCLCS1, the

consecutive symbols don’t have to start from the first

index in theMCLCSn, i.e, they can start from any position

in the string. MCLCS1 and MCLCSn are also normalized

and named as NMCLCS1 and NMCLCSn, respectively.

Given two strings S1 and S2,NMCLCS1 andNMCLCSn are

calculated as [33],

NMCLCS1(S1, S2) =
length (MCLCS1 (S1, S2))

2

length (S1) × length (S2)

NMCLCSn(S1, S2) =
length (MCLCSn (S1, S2))

2

length(S1) × length(S2)

In order to compute the similarity between S1 and S2,

the weighted sum of these three algorithms is taken as

follows [33]:

K(S1, S2) = v1 ×w1 + v2 ×w2 + v3 ×w3, where w1, w2,

w3 are the weights and

v1 = NLCS (S1, S2)

v2 = NMCLCS1 (S1, S2)

v3 = NMCLCSn (S1, S2)

The original method gives each algorithm the same

weight (w1 = w2 = w3 = 0.33)[33].

Let us demonstrate this model with our sam-

ple SMILES strings. For the first algorithm,

NLCS(SMI1, SMI2) = 0.32. NMCLCS1 requires the

longest common subsequence to be consecutive and

to start from the first index, which is equal to “O” and

therefore, NMCLCS1 (SMI1, SMI2) = 0.012. For

NMCLCSn, the longest common subsequence is “C(O)=”.

NMCLCSn (SMI1, SMI2) = 0.32. Finally, the similarity

score becomes 0.218.

SMILES representation-based string kernel

SMILES representation-based string kernel is proposed as

a compound similarity kernel and combined with SVM to

predict in silico toxicity of the compounds in [27]. Given

two SMILES texts S1 and S2, θ (S1) and θ (S2) respectively

denote the frequencies of all the possible substrings with

at least q = 2 character length. The string similarity kernel

is defined as the inner product of these frequencies [27].

K (S1, S2) = 〈θ (S1) , θ (S2)〉

Consider our sample SMILES strings SMI1 and SMI2.

The frequency of each SMI1 substring, {OC, C(, (O, . . . ,

OC(, C(O, . . . , OC(O, C(O), . . . , OC(O), C(O)=, (O)=O,

OC(O)=, C(O)=O, OC(O)=O }, is 1. The frequency

of the SMI2 substrings {C(, (O, O), . . . ,CC(, C(O,. . . ,

CCCCC(O)=C, CCCC(O)=C4, CCCCC(O)=C4 } is also

1 except for the SMI2 substrings {CC, CCC, CCCC }

that have frequencies of 4, 3, and 2, respectively. The

shared substrings from these sets are, {C(, (O, O), )=, C(O,

(O), O)=, C(O), (O)=, C(O)= }, all of which have a fre-

quency of 1. Therefore, the inner product,K (SMI1, SMI2),

is 10.

SMILES fingerprint (SMIfp)

SMILES Fingerprint (SMIfp) was introduced by Schwartz

et al. to perform ligand-based virtual screening [28].

SMIfp is based on representing SMILES strings in a 34-

dimensional space where each of the dimensions corre-

spond to the frequency of a different symbol such as

C, c, N, and # [28]. More than 32 million compounds

in PubChem are analyzed in order to identify the most-

frequent symbols in a SMILES string to form the best-

representative scalar fingerprint and as a result, 34 rele-

vant symbols are selected. Once SMILES strings are con-

verted to scalar fingerprints, City Block Distance (CBD)

[41] is used to measure similarities. Aside from CBD, we

use Tanimoto coefficient to observe whether the distance

metric affects the performance of the model.

CBD treats the common absence or low values of fea-

tures as an indication of similarity, whereas Tanimoto

does not [18]. On the other hand, unlike CBD, Tanimoto

considers size normalization. For the chemical domain,

Tanimoto is recommended to be used to measure the

absolute similarity between two molecules, whereas CBD

and Euclidian distance are useful to measure relative sim-

ilarity, i.e. the relative similarities of two molecules to the

some other molecule [42].
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LINGO

LINGO refers to q-character substrings of a SMILES

text [26]. LINGO representation of compounds has been

used as input for Quantitative Structure-Property Rela-

tionships (QSPR) models as well as for calculation of

intermolecular similarities. A SMILES string of length n

can be represented with (n − (q − 1)) q-length substrings

(LINGOs). The original method requires SMILES strings

to be canonical, and LINGO length is fixed as q = 4.

Before the LINGO creation process, all ring numbers in

the SMILES string are set to ‘0’. Then, the LINGOsim

function is used to calculate the similarity between two

SMILES strings S1 and S2 with the Tanimoto coefficient

based on their LINGO profiles [26],

LINGOsim =

∑m
i=1 1 −

∣

∣NS1,i
−NS2,i

∣

∣

∣

∣NS1,i
+NS2,i

∣

∣

m

where m is the total number of unique LINGOs created

from S1 and S2, while NS1,i represents the frequency of

LINGOs of type i in compound S1 andNS2,i represents the

frequency of LINGOs of type i in compound S2.

Let us demonstrate how compound similarity is calcu-

lated using the LINGO model with our sample strings,

SMI1 and SMI2. SMI1: “OC(O)=O” doesn’t require any

modification, whereas for SMI2: “CCCCC(O)=C4” we

have to set ring numbers to 0 and the string is converted

into the following form, “CCCCC(O)=C0”.We then create

LINGOs with the substring length of q = 4.

Once we extract the LINGOs from the SMILES

strings and retrieve their corresponding term frequencies

(Table 2), we calculate LINGOsim. We have nine unique

LINGOs two of which are shared by both SMILES strings.

LINGOsim =

∑9
i=1 1 −

∣

∣NSMI1,i
−NSMI2,i

∣

∣

∣

∣NSMI1,i
+NSMI2,i

∣

∣

9

=

∑6
i=1

(

1−
|1−0|
|1+0|

)

+
∑8

i=7

(

1 −
|1−1|
|1+1|

)

+
∑9

i=9

(

1 −
|2−0|
|2+0|

)

9

=
0 + 2 + 0

9
= 0.22

LINGO length q = 3, 4, 5 are tested in this work.

Table 2 LINGOs with their corresponding frequencies in the
sample SMILES strings SMI1 and SMI2

SMI1 SMI2

LINGO Freq LINGO Freq

OC(O 1 CCCC 2

C(O) 1 CCC( 1

(O)= 1 CC(O 1

O)=O 1 C(O) 1

(O)= 1

O)=C 1

)=C0 1

LINGO based TF cosine similarity

Term-Frequency (TF) based cosine similarity is the first of

the weighting models that we adopted from the Informa-

tion Retrieval domain. TF reflects the number of times a

term occurs in a document [43]. Originally in TF weight-

ing, a weight representing the frequency of a term is

assigned to each term in the document. In this domain,

we treat each SMILES string as a document and four char-

acter LINGOs, which are created from these strings, are

denoted as terms. The TFweight of a LINGO L in SMILES

string S is calculated as follows.

TFweightL,S

=

{

1 +log10(termfrequencyL,S), if termfrequencyL,S > 0

0, otherwise

In order to compute the similarity between two SMILES

strings using this method, each string has to be converted

into a feature vector Vs. The dimensionality of Vs is equal

to the number of unique terms (LINGOs) in the cor-

pus (compound data set). Each feature contains the TF

score of the corresponding term (LINGO) in the string

(SMILES). The similarity of two SMILES strings S1 and S2

is determined according to the cosine angle between their

vectors.

CosSim(S1, S2) =

∑m
i=1 VS1,iVS2,i

‖VS1‖‖VS2‖
(1)

VS1 and VS2 are feature vectors and m denotes the lengths

(L2 norm) of the vectors in Eq. 1 [44].

Let us demonstrate the computation of LINGO based

TF cosine similarity using the sample SMILES strings

SMI1 and SMI2, whose term frequencies are shown in

Table 2. Since we have nine unique LINGOs, the lengths of

the feature vectors are equal to nine, m = 9. Each dimen-

sion in the feature vector represents the term frequency

weight of the corresponding LINGO in the SMILES

strings. Thus, the feature vectors for SMI1 and SMI2 are

[1, 1, 1, 1, 0, 0, 0, 0, 0 ] and [0, 1, 1, 0, 1.3, 1, 1, 1, 1], respec-

tively for the following order of the LINGOs [OC(O, C(O),

(O)=, O)=O, CCCC, CCC(, CC(O, O)=C, )=C0]. Finally,

the cosine similarity is computed as follows:

CosSim(SMI1, SMI2)

=

∑9
i=1 VSMI1 ,iVSMI2 ,i

‖VSMI1‖‖VSMI2‖

=
(1 × 0)+

∑3
i=2(1 × 1) +(1 × 0) + (0 × 1.3) +

∑9
i=6(0 × 1)

2

√

4 ×
(

12
)

2

√

6 ×
(

12
)

+ 1.32

= 2/5.54 = 0.36

LINGO based TF-IDF cosine similarity

Term Frequency-Inverse Document Frequency (TF-IDF)

cosine similarity is the second model that we adopt

to measure compound similarity by utilizing SMILES

text. This method combines LINGO representation with
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the TF-IDF weighting-scheme. TF-IDF has originally

been developed in the Information Retrieval domain for

weighting the words in the documents just as TF weight-

ing. This method is especially useful for filtering or assign-

ing low weights to stop words such as ‘the’, ‘a’, and ‘an’.

Words are the terms of a document corpus and each docu-

ment is treated as a collection of terms (words). TF assigns

higher weights to those terms that occur frequently in a

document, IDF on the other hand, assigns higher weights

to the rare terms in the document collection. Terms that

are very common in the document collection are assumed

to have little discriminating power. IDF is described as,

idf (t,D) = log N
|d∈D:t∈d|

where t, D and N denote the

term, document corpus, and number of documents in

the corpus, respectively [45]. TF-IDF weighting is equal

to the product of term frequency and inverse document

frequency.

As shown in Eq. 1, the similarity between the feature

vectors is computed by using cosine similarity. Each fea-

ture now contains the TF-IDF score of the corresponding

term in the string. In this model, we treat each SMILES

string as a document that comprises a set of LINGOs, and

LINGOs are the terms of our system. LINGO length q is

selected as four as it is in the original algorithm.

Let us illustrate this model by using samples from the

compounds of the enzyme data set, which is one of the

benchmark data sets used in this study [5]. As shown

in Table 1, the enzyme data set comprises 445 different

compounds each represented as unique SMILES strings.

There are 1707 unique LINGOs created from 445 differ-

ent SMILES strings. In other words, it is a system of 445

documents and 1707 terms.

For instance, “O)CO” and “(=O)” are two LINGOs.

“(=O)” is a very frequent LINGO appearing in 300 out of

the 445 SMILES strings. Its IDF is 0.17 and therefore, this

LINGO can be considered as a stop word. “O)CO”, on the

other hand, is a rather rare LINGO, which is included in

only 18 SMILES strings. The IDF of this LINGO is 1.39.

The IDF weighting-scheme allows the model to assign

importance to the rare LINGOs. SMILES strings that

share infrequent LINGOs are favored and selected as

more similar in this model. After term frequencies and

IDFs of all the LINGOs are calculated, cosine similar-

ity is computed to measure the similarity between two

compounds.

Let us demonstrate the calculation of TF-IDF based

cosine similarity by using our sample SMILES strings

SMI1 and SMI2. The TF weights of the LINGOS in each

string are computed as described in the previous sub-

section (Section ‘LINGO based TF cosine similarity’). The

IDF scores of the LINGOs, which are computed by assum-

ing that the imaginary SMILES strings SMI1 and SMI2 are

compounds in the enzyme data set, are shown in Table 3.

Since the enzyme data set contains 445 compounds, the

Table 3 The IDF scores for the LINGOs in the sample imaginary
SMILES strings SMI1 and SMI2 . The IDF scores are computed by
assuming that SMI1 and SMI2 are compounds in the enzyme data
set consisting of 445 compounds in total

LINGO Dictionary IDF (log10(N/df))

OC(O log10(445/2)

C(O) log10(445/113)

(O)= log10(445/105)

O)=O log10(445/143)

CCCC log10(445/61)

CCC( log10(445/49)

CC(O log10(445/36)

O)=C log10(445/4)

)=C0 log10(445/5)

numerator in the IDF formula is 445. For a LINGO L, the

denominator in the IDF formula is the number of com-

pounds in the enzyme data set that contain the LINGO L.

Thus, the TF-IDF weighted feature vectors for SMI1 and

SMI2 are [ 2.3, 0.5, 0.6, 0.4, 0, 0, 0, 0, 0 ] and [0, 0.5, 0.6,

0, 1.04, 0.9, 1, 2, 1.9], respectively. The cosine similarity

between them is computed as follows.

CosSim(SMI1, SMI2)

=

∑9
i=1 VSMI1 ,iVSMI2 ,i

‖VSMI1‖‖VSMI2‖

=
0 + (0.5 × 0.5) + (0.6 × 0.6) + 0 + 0 + 0 + 0 + 0 + 0

2
√

2.32+0.52+0.62+0.42
2
√

10.52+0.62+1.042+0.92+12+22+1.92

= 0.61/8.2 = 0.07

Composite kernels

Composite kernels are created by combining the similar-

ity matrices obtained from two different methods, namely

the 2D-based similarity function SIMCOMP and one of

our SMILES-based similarity functions. Scomposite, repre-

senting the similarity matrix of the composite kernel, is

derived by taking the unweighted average (i.e., λ = 0.5)

of the similarity matrix produced by SIMCOMP, Ssimcomp,

and the similarity matrix Sf produced by a SMILES-based

similarity function f,

Scomposite = λ ∗ Ssimcomp + (1 − λ) ∗ Sf

To obtain Sf , we experimented with our best perform-

ing SMILES-based similarity functions LINGO-based TF-

IDF cosine similarity and LINGOsim (q = 4).

Experiment setup

Experiments followed the procedure proposed by

Laarhoven [17]. For each interaction data set, five-fold
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cross validation is performed on the drug compounds.

In other words, the data sets are divided into five equal-

sized subsets and for each fold, one subset is used for

testing while the system is trained with the remaining

four subsets. This process is repeated five times.

Results and discussion
In this study, 13 different similarity kernels that utilize

SMILES (1D) representation of molecules are evaluated.

In order to assess the performances of these drug ker-

nels for the drug-target interaction prediction task, the

WNN-GIP approach is adopted. We compare the results

obtained using the SMILES representations of the com-

pounds with the 2D-based similarity method, SIMCOMP,

as well as two composite kernels formed by SIMCOMP

and a 1D-based similarity method. In the original appli-

cation of the WNN-GIP method, a compound simi-

larity matrix was computed by the 2D representation

based similarity method, SIMCOMP [17]. In this work,

the similarity matrix is computed by SIMCOMP or the

SMILES-based similarity functions. The compound sim-

ilarity matrix is then processed by WNN-GIP to predict

the protein-drug pairs in four different data sets. The

enzyme data is the largest data set with more than 400

drugs and 600 proteins, while the ion channel and GPCR

data sets are about half the size in terms of the number

of drugs, and the nuclear receptor data set is the smallest

with 54 drugs and 26 proteins.

A summary of the results for five-fold cross valida-

tion experiments for enzyme, ion channels, GPCR, and

nuclear receptors data sets are presented in Table 4. The

Table 4 Average AUC-ROC and AUC-PR scores for 5 repetitions
of 5 fold cv. on each of the four data sets. The standard deviations
are given in parenthesis

Method AUC-ROC (std) AUC-PR (std) Time (sec)

Enzyme

SIMCOMP 0.863 (0.016) 0.303 (0.027) 413,7 min

Edit 0.833 (0.016) 0.178 (0.004) 6

NLCS 0.837 (0.014) 0.228 (0.013) 4

CLCS 0.834 (0.013) 0.234 (0.019) 331

SMILES-based substring 0.752 (0.006) 0.169 (0.010) 133

SMIfp CBD (34D) 0.846 (0.009) 0.199 (0.008) 1

SMIfp Tanimoto (34D) 0.832 (0.012) 0.191 (0.012) 1

SMIfp CBD (38D) 0.852 (0.009) 0.205 (0.009) 1

SMIfp Tanimoto (38D) 0.844 (0.012) 0.201 (0.006) 1

LINGOsim (q=3) 0.846 (0.013) 0.290 (0.013) 3

LINGOsim (q=4) 0.823 (0.010) 0.294 (0.006) 3

LINGOsim (q=5) 0.819 (0.015) 0.264 (0.013) 3

LINGO-based TF 0.811 (0.017) 0.259 (0.008) 19

LINGO-based TF-IDF 0.822 (0.012) 0.292 (0.031) 47

TF-IDF+SIMCOMP 0.852 (0.010) 0.348 (0.017)a

LINGOsim+SIMCOMP 0.852 (0.016) 0.318 (0.019)a

Table 4 Average AUC-ROC and AUC-PR scores for 5 repetitions
of 5 fold cv. on each of the four data sets. The standard deviations
are given in parenthesis (Continued)

Ion Channels

SIMCOMP 0.776 (0.012) 0.224(0.032) 48,7 min

Edit 0.754 (0.013) 0.199 (0.025) 1

NLCS 0.753 (0.007) 0.189 (0.037) 0,9

CLCS 0.755 (0.018) 0.185 (0.028) 47

SMILES-based substring 0.743 (0.004) 0.197 (0.031) 21

SMIfp CBD (34D) 0.717 (0.019) 0.136 (0.036) 0,3

SMIfp Tanimoto (34D) 0.698 (0.015) 0.125 (0.022) 0,3

SMIfp CBD (38D) 0.722 (0.012) 0.137 (0.024) 0,3

SMIfp Tanimoto (38D) 0.699 (0.028) 0.156 (0.028) 0,4

LINGOsim (q=3) 0.737 (0.015) 0.192 (0.046) 0,8

LINGOsim (q=4) 0.737 (0.011) 0.197 (0.037) 1

LINGOsim (q=5) 0.727 (0.009) 0.188 (0.026) 1

LINGO-based TF 0.738 (0.018) 0.204 (0.024) 3

LINGO-based TF-IDF 0.712 (0.014) 0.178 (0.029) 7

TF-IDF+SIMCOMP 0.763 (0.010) 0.234 (0.017)

LINGOsim+SIMCOMP 0.773 (0.012) 0.229 (0.018)

GPCR

SIMCOMP 0.867 (0.009) 0.307 (0.018) 71,2 min

Edit 0.844 (0.015) 0.248 (0.030) 1

NLCS 0.853 (0.006) 0.247 (0.013) 1

CLCS 0.855 (0.014) 0.279 (0.030) 52

SMILES-based substring 0.782 (0.019) 0.205 (0.032) 21

SMIfp CBD (34D) 0.852 (0.014) 0.209 (0.018) 0,3

SMIfp Tanimoto (34D) 0.847 (0.006) 0.213 (0.016) 0,3

SMIfp Tanimoto (38D) 0.856 (0.009) 0.228 (0.015) 0,3

LINGOsim (q=3) 0.875 (0.003) 0.317 (0.015) 1

LINGOsim (q=4) 0.876 (0.004) 0.333 (0.020)a 1

LINGOsim (q=5) 0.874 (0.006)a 0.337 (0.019)a 1

LINGO-based TF 0.872 (0.004) 0.335 (0.012)a 3

LINGO-based TF-IDF 0.871 (0.007) 0.348 (0.018)a 9

TF-IDF+SIMCOMP 0.885 (0.006)a 0.371 (0.017)a

LINGOsim+SIMCOMP 0.879 (0.009)a 0.335 (0.016)a

Nuclear Receptors

SIMCOMP 0.856 (0.015) 0.435 (0.008) 2,9 min

Edit 0.828 (0.009) 0.305 (0.029) 0,2

NLCS 0.815 (0.018) 0.302 (0.032) 0,2

CLCS 0.813 (0.037) 0.319 (0.039) 10

SMILES-based substring 0.766 (0.028) 0.335 (0.035) 2

SMIfp CBD (34D) 0.809 (0.026) 0.296 (0.015) 0,1

SMIfp Tanimoto (34D) 0.784 (0.031) 0.281 (0.020) 0,1

SMIfp CBD (38D) 0.815 (0.017) 0.307 (0.024) 0,1

SMIfp Tanimoto (38D) 0.787 (0.030) 0.322 (0.034) 0,1

LINGOsim (q=3) 0.800 (0.013) 0.351 (0.036) 0,2

LINGOsim (q=4) 0.829 (0.013) 0.414 (0.031) 0,2

LINGOsim (q=5) 0.834 (0.013) 0.389 (0.023) 0,2

LINGO-based TF 0.820 (0.013) 0.373 (0.035) 0,4

LINGO-based TF-IDF 0.855 (0.022) 0.418 (0.016) 0,8

TF-IDF+SIMCOMP 0.861 (0.008) 0.436 (0.049)

LINGOsim+SIMCOMP 0.840 (0.015) 0.399 (0.031)

The best AUC-ROC and AUC-PR results for each data set are indicated in bold. The
results that are significantly better than SIMCOMP according to the paired t-test
(α = 0.05) are indicated witha . The p-values range between 0.0004 and 0.0329, and
they are provided in the Additional file 1: Table S1.
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performances of the methods are compared using the

Area Under the ROC Curve (AUC-ROC) and Area Under

the Precision-Recall curve (AUC-PR) metrics. AUC-ROC

presents the relation of True-Positive rate to the False-

Positive rate, whereas AUC-PR shows the proportion of

precision to recall. AUC-PR is favored when dealing with

unbalanced data sets with one class domination [46].

Protein-drug interaction data sets contain small number

of interacting pairs making them skewed.The AUC-ROC

and AUC-PR results, with standard deviations given in

parentheses, and the total time it takes to create a com-

pound similarity matrix for each kernel are tabulated.

The p-values for the statistical significance test compar-

ing each method and SIMCOMP are given in Additional

file 1: Table S1.

An overall comparison of the AUC-ROC values shows

that the 2D-based method SIMCOMP gives the best

results for the enzyme and ion channels data sets. The

edit distance performs as well as the other SMILES-

based methods, even though it is one of the most basic

approaches to measure similarity between two strings.

The SMILES-based substring kernel performs signifi-

cantly worse than the other kernels on the enzyme and

GPCR data sets. A detailed investigation of the results

obtained with each similarity method is presented below.

The NLCS and CLCS kernels perform close to the edit

distance. The CLCS, which combines three different mod-

ifications of the NLCS function, does not significantly

improve upon the original NLCS method for this domain.

CLCS achieves significantly better AUC-PR results than

NLCS only on the GPCR data set (p-value 0.019).

The original SMILES-based fingerprint approach

(SMIfp) converts SMILES representation into a 34D fin-

gerprint, where each dimension represents the frequency

of a pre-determined character for a given SMILES string.

In our study, we compared the frequent characters of our

compound data sets with the original 34 character list of

SMIfp. The comparison revealed that the characters ‘@’,

‘\’, ‘/’, ‘.’ which are ignored in the original SMIfp approach,

were among the most frequent characters in our data

sets. In addition, the ‘%’ character, which is listed as fre-

quent, was a rare character in our data set. ‘@’ and ‘@@’

characters give information on the chirality while ‘/’ and

‘\’ are the directional bonds. Therefore, we decided to

update the SMIfp design according to this information

by adding five more characters, ‘@’, ‘@@’, ‘.’, ‘\’, and ‘/’,

and removing ‘%’. As a result, we created a 38D SMIfp,

which was also tested with CBD and Tanimoto similarity

coefficient. Both AUC-ROC and AUC-PR results show

that 38D SMIfp performs significantly better than 34D

SMIfp on the enzyme data set (p-values 0.0007 and

0.0016, respectively) when used with CBD and on the

GPCR data set when used with Tanimoto (p-values 0.014

and 0.034, respectively). In addition, for 34D SMIfp, use

of CBD provides a statistically significant advantage over

Tanimoto on the enzyme and ion channels data sets in

terms of AUC-ROC score with p-values 0.014 and 0.032,

respectively.

LINGOsim (q = 4) produces significantly better AUC-

PR results than SIMCOMP with p-value 0.0017 on the

GPCR data set (Table 4). AUC-ROC results show that

LINGOsim with three character LINGO setting performs

better than with four and five character settings on the

enzyme data set, whereas setting substring length to five

works better on the nuclear receptors data set, suggesting

that the performance of LINGOsim with different sub-

string lengths depends on the data set. Therefore, we may

infer that it is better to test and see the best suitable setting

for each data set.

Both the SMILES-based substring kernel and the LIN-

GOsim kernels are based on partitioning the SMILES

string into substrings to calculate similarity. While the

LINGOsimmethod uses fixed length substrings, the other

uses all possible lengths of substrings starting with two

characters. The results show that use of different sub-

string lengths for LINGOsim does not drastically change

the results. Therefore, the success of LINGOsim over the

SMILES-based substring kernel may be due to the fact

that the SMILES-based substring kernel does not perform

length normalization.

LINGO-based TF-IDF cosine similarity kernel produces

significantly better AUC-PR results than SIMCOMP on

the GPCR data set with p-value 0.009. This approach uses

TF-IDF weighting and combines it with the LINGO rep-

resentation of SMILES. It treats each SMILES string as a

document and each LINGO in the SMILES is considered

as a term. TF weighting produces comparable AUC-ROC

and AUC-PR results with TF-IDF weighting for the GPCR

and enzyme data sets. In the Nuclear Receptors data

set, the TF-IDF based method performs significantly bet-

ter (p-value 0.033) than the TF based method in terms

of AUC-ROC scores, whereas in the Ion Channels data

set the TF-based method produces a significantly better

(p-value 0.030) AUC-ROC score than TF-IDF based

method. The better performance of TF-IDF weighting

over TF weighting suggests that, Nuclear Receptors data

set might contain some distinguishable LINGOs.
The application of the TF-IDF weighting also allows

us to further investigate the LINGO structures of each

compound data set based on their IDF values. LINGOs

with lower IDF values indicate that they are very common

in the SMILES strings for the given data sets, similar to

the stop words of a document corpus. Therefore, we list

and investigate the top ten LINGOs with the lowest IDF

values for each compound data set and provide the num-

ber of compounds they appear in Table 5. For instance,

“(=O)”, carboxyl group, is a common LINGO in all

data sets.
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Table 5 Top 10 most common LINGOs of each compound data
set

Enzyme/445 GPCR/223

LINGO Num. of drugs LINGO Num. of drugs

c0cc 321 c0cc 180

(=O) 300 0ccc 170

0ccc 279 (=O) 117

C(=O 228 cccc 108

ccc0 197 ccc0 107

cccc 171 ccc( 94

)c0c 155 C(=O 87

@H]( 149 )c0c 84

ccc( 144 Cc0c 78

[C@H 144 C(O) 72

Ion Channels/210 Nuclear Receptors/54

LINGO Num. of drugs LINGO Num. of drugs

c0cc 165 (=O) 37

0ccc 148 [C@H 35

(=O) 130 C@H] 35

ccc0 116 C(=O 35

cccc 105 H]0C 35

C(=O 101 [C@@ 35

)c0c 94 C@@H 35

ccc( 72 @@H] 35

O)c0 56 @H]0 35

=O)c 54 )[C@ 34

As shown in Table 5 more than half of the top-ten LIN-

GOs in the GPCR, enzyme, and ion channels data sets are

shared. On the other hand, the top-ten LINGOs in the

nuclear receptors data set are slightly different from these.

We observe that substrings of “[C@@H]” are common

LINGOs in the nuclear receptors data set. These symbols

indicate tetrahedral chirality in clockwise direction, for

example, at the Cα carbon of the peptide bond.
We also tested two composite kernels in which we

combine SIMCOMP with TF-IDF based cosine similarity

and LINGOsim (q=4). Combination of SIMCOMP with

TF-IDF based cosine similarity kernel produces the best

AUC-PR results on all data sets. It also has better AUC-

ROC scores amongst all other kernels on the GPCR and

nuclear receptors data sets.

Except for the ion channels data set, the SMILES-based

similarity methods perform almost as well as SIMCOMP,

a 2D-based method using graph representation to mea-

sure similarity. In terms of time complexity, all SMILES-

based methods perform significantly better than SIM-

COMP. For instance, on the GPCR data set, while it takes

more than an hour to compute the pairwise similarities

among the compounds using SIMCOMP, it only takes one

second when the LINGO kernel is used. Furthermore,

LINGO (q=4) manages to achieve a comparable AUC-PR

score with SIMCOMP, even though it only uses SMILES

to measure similarity.

The improvement of the TF-IDF/SIMCOMP composite

kernel over SIMCOMP, especially on the GPCR data set

with a statistical significance in terms of both AUC-ROC

and AUC-PR values (p-values 0.002 and 0.0005, respec-

tively), shows that the TF-IDF based cosine kernel might

be useful while combining different types of chemical

similarity kernels.

In order to illustrate the improvement of the compos-

ite kernel over SIMCOMP, let us investigate a case in

which an interaction was not predicted when SIMCOMP

was used, but was successfully predicted when the com-

posite kernel of SIMCOMP and TF-IDF was used: The

interaction of Adrenoceptor alpha 2A (hsa150) with Phen-

tolamine mesilate (D00509) (in the GPCR data set). The

SMILES string of Phentolamine mesilate contains some

rare LINGOs, namely “NCCN” and “=NCC” with IDF

values 1.8 and 1.9, respectively. Considering the IDF value

of 0.3 for the most frequent LINGO (“c0cc”) in the GPCR

data set, it becomes more apparent that these rare LIN-

GOs represent some specific features of a compound.

Further investigation of other drugs that interact with

Adrenoceptor alpha 2A shows that, Brimonidine tartrate

(D02076), also has the same two rare LINGOs and the

interaction with this drug is successfully predicted by the

composite kernel, but not by SIMCOMP alone. Similarly,

the interactions of Adrenoceptor alpha 2A with Clonidine

(D00281) and Clonidine hydrochloride (D00604), which

contain the “NCCN” LINGO are also predicted success-

fully by the composite kernel. Therefore, we can suggest

that these LINGOs reveal a pattern among the drugs

that bind to Adrenoceptor alpha 2A. The inclusion of the

TF-IDF kernel to the composite kernel helps us discover

hidden patterns by highlighting such rare LINGOs.

Conclusion
This work aims to provide a comparison of the avail-

able chemical similarity measurement methods that uti-

lize SMILES representation of molecules. The methods

presented here can be used in any model that requires

the computation of compound similarity. In this study, we

evaluated these methods using one of the state-of-the-art

approaches in the drug-target interaction prediction task,

namely WNN-GIP [17]. This model makes use of both

chemical similarity of compounds and sequence similar-

ity of proteins and is used on four different drug-protein

data sets proposed by Yamanishi and coworkers [5]. In

total, 13 string similarity functions including two novel

drug similarity methods adopted from the Information

Retrieval domain, namely cosine kernel with TF and TF-

IDF weighting are tested to assess their performances

in predicting protein-drug interactions. We also test two
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composite kernels created from SIMCOMP and two 1D

kernels, TF-IDF based cosine similarity and LINGOsim,

respectively. The results are compared with those found

using the 2D representation based method SIMCOMP.

With the WNN-GIP method, an adjacency matrix is

built using the bipartite drug-target interaction network.

This adjacency matrix and the compound chemical sim-

ilarity (calculated using the similarity kernels) and pro-

tein sequence similarity (calculated using the Smith-

Waterman algorithm) are combined to convert drugs and

targets into feature vectors. The bipartite drug-target

interaction network includes information on pairs that

are known to interact, but lacks information to differenti-

ate between inactives (known absence of interaction) and

untested compounds (absence of knowledge on interac-

tion) and the limitation expressed in Laarhoven et al.’s

work is present in this work as well [17]. The adjacency

matrix can be enriched by including information about

the strengths of the interactions in the form of IC50 values

to include inactives.

The comparison of the results using 1D-based sim-

ilarity methods with those found using the commonly

used 2D-based similarity kernel SIMCOMP shows that

the 1D-based methods of molecular similarity compar-

ison perform almost as well as the 2D-based meth-

ods in the protein-drug interaction task. However, when

the run times obtained using the two approaches are

compared, 2D representation based descriptors, which

use graph algorithms to compare similarity amongst

molecules, are computationally more complex than the

1D SMILES representation, which is a string of characters.

The experiments indicate that SMILES-based kernels are

significantly faster than the 2D-based SIMCOMP. Using

SMILES string as a molecular similarity kernel is not only

fast and straightforward, but also more flexible since any

string similarity algorithm can be applied to this repre-

sentation. Furthermore, 2D and 3D representation of a

molecule can be derived from its SMILES string by apply-

ing an efficient reconstruction algorithm [26]. Our study

shows that 1D SMILES representation based methods

perform close to SIMCOMP with significant computa-

tional flexibility and time advantage.

In this work inspired by the Information Retrieval

domain, we proposed the application of cosine similarity

with TF and TF-IDF weighting as novel ligand similar-

ity kernels. For the GPCR data set, AUC-PR results show

that the LINGO-based TF-IDF cosine similarity kernel

performs slightly better than SIMCOMP in the task of

protein-drug interaction prediction and LINGOsim with

q = 4 has comparable AUC-ROC results. Furthermore,

the composition of TF-IDF based cosine similarity ker-

nel with SIMCOMP proves to be promising given its

AUC-PR results are the best amongst all kernels. Use of

LINGO based TF-IDF weighting also allows identification

of differences in the distribution of LINGOs in the com-

pound data sets. It is observed that nuclear receptor drugs

differ from the other drugs in terms of common LINGOs.
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