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3Université de Lorraine, CNRS, Inria, LORIA, France

<firstname>.<lastname>@inria.fr

Abstract

Speech anonymization techniques have recently been proposed

for preserving speakers’ privacy. They aim at concealing speak-

ers’ identities while preserving the spoken content. In this study,

we compare three metrics proposed in the literature to assess

the level of privacy achieved. We exhibit through simulation the

differences and blindspots of some metrics. In addition, we con-

duct experiments on real data and state-of-the-art anonymiza-

tion techniques to study how they behave in a practical scenario.

We show that the application-independent log-likelihood-ratio

cost function Cmin
llr provides a more robust evaluation of privacy

than the equal error rate (EER), and that detection-based metrics

provide different information from linkability metrics. Interest-

ingly, the results on real data indicate that current anonymiza-

tion design choices do not induce a regime where the differ-

ences between those metrics become apparent.

Index Terms: anonymization, voice conversion, speaker recog-

nition, privacy metrics.

1. Introduction

With the increasing popularity of smart devices, more users

have access to voice-based interfaces. They offer simple ac-

cess to modern technologies and enable the development of new

services. The building blocks behind these speech-based tech-

nologies are no more handcrafted but learned from large sets of

data. This is the case for instance of automatic speech recogni-

tion (ASR), where vast volumes of speech in different languages

are needed and continuously collected to improve performance

and adapt to new domains. The collection and exploitation of

speech data raises privacy threats. Indeed, speech contains pri-

vate or sensitive information about the speaker (e.g., gender,

emotion, speech content) [1] and it is a biometric characteristic

that can be used to recognize the speaker through, e.g., i-vector

[2] or x-vector [3] based speaker verification.

To address this privacy issue, various anonymization tech-

niques have been studied in the literature1. Their purpose is to

transform speech signals in order to preserve all content except

features related with the speaker identity. These techniques in-

clude noise addition [4], speech transformation [5], voice con-

version [6, 7, 8], speech synthesis [9], or adversarial learning

[10]. As a privacy preservation mechanism, they must achieve

a suitable privacy/utility trade-off. The utility is typically as-

sessed in terms of the accuracy of downstream processing steps

(e.g., the word error rate achieved by an ASR system). The

measurement of privacy is the topic we tackle in this paper.

Historically, the usual metrics employed in the speaker ver-

ification community have been used to assess the (in)ability of

1In the legal community, the term “anonymization” means that this
goal has been achieved. Following the VoicePrivacy Challenge [25], we
use it to refer to the task, even when the technique has failed.

an attacker to recognize the speaker, which is considered as a

proxy for privacy. The most widely used metric is the equal

error rate (EER): it considers an attacker that makes a deci-

sion by comparing speaker similarity scores with a threshold

and it assigns the same cost to false alarms and misses [11].

The application-independent log-likelihood-ratio cost function

Cmin
llr generalizes the EER by considering optimal thresholds

over all possible priors and all possible error costs [12]. In the

following, we consider a third metric called linkability which

has recently emerged from the biometric template protection

community but has received little attention in the speech com-

munity so far [13]. This metric, denoted as Dsys
↔ , estimates the

distributions of scores for mated (same-speaker) vs. non-mated

(different-speaker) trials and computes their overlap.

The goal of this paper is to assess the suitability of these

three metrics for the evaluation of speaker anonymization. In

addition to comparing the metrics in their form and substance,

we generate simulated data to exhibit their blindspots. We also

conduct experiments on real speech data processed by state-of-

the-art anonymization techniques against different attackers (ig-

norant, semi-informed, or informed [14]). Overall, we aim to

understand the complementary factors underlying different met-

rics and ensure that the anonymization techniques being evalu-

ated were not designed to fool attackers that follow one specific

speaker verification method but would fail with others.

We describe the attack model in Section 2 and introduce the

metrics in Section 3. We present the simulations used to exhibit

their blindspots in Section 4. Section 5 reports the results of the

evaluation on real data with various anonymization techniques

and attack types. We conclude in Section 6.

2. Attack Model

The attack scenario is depicted in Fig. 1. Speakers process their

voice through an anonymization technique. This anonymization

step takes as input one or more private speech utterances along

Figure 1: Anonymization procedure and attack model.



with some configuration parameters, and outputs a new speech

signal or some kind of derived representation. The transformed

utterances from one or more speakers form a public speech

dataset that is processed by a third-party user for, e.g., ASR

training/decoding or any other downstream task.

Given unprocessed or anonymized utterances from a known

speaker, an attacker attempts to find which anonymized utter-

ances in the public dataset are spoken by this speaker [15, 14].

Formally, an attacker has access to two sets of utterances: A
(enrollment/found data) and B (trial/public speech), but knows

the corresponding speakers in A only. The attacker designs a

linkage function LF (a, b) that outputs a score for any a ∈ A
and b ∈ B. Typically, this score is a similarity score obtained

through a speaker verification system. The attacker then makes

a decision (same vs. different) based on this score.

Anonymization techniques must achieve a suitable privacy/

utility trade-off. Utility is measured by the performance of the

desired downstream task(s), e.g., the word error rate of an ASR

system or the intelligibility for a human listener. Different pri-

vacy metrics exist in the literature.

3. Privacy Metrics

We describe three candidate privacy metrics, which model the

attacker’s decision making process or the score distribution.

3.1. Equal Error Rate (EER)

The EER is the classical metric used in speaker recognition. It

assumes a threshold-based decision on the score. If LF (a, b) is

greater than a certain threshold t, the two utterances a and b are

considered to be mated. Two types of errors can be made: false

alarms with rate Pfa(t), and misses with rate Pmiss(t). The EER

is the error rate corresponding to the threshold t∗ for which the

two types of errors are equally likely:

EER = Pmiss(t
∗) = Pfa(t

∗). (1)

3.2. Log-Likelihood-Ratio Cost Function Cllr and Cmin
llr

Cllr is also a common speaker recognition metric [12]. It is

application-independent in the sense that it pools across all pos-

sible costs for false alarm vs. miss errors, and all possible priors

for mated vs. non-mated trials. Let M (resp., M ) be the set of

mated (resp., non-mated) trials and |M | (resp., |M |) its cardi-

nality. Denoting by llr(p) be the log-likelihood ratio for trial

p = (a, b), Cllr is defined as

Cllr =
1

log 2

[

1

|M |

∑

p∈M

log
(

1 + e−llr(p)
)

+
1

|M |

∑

p∈M

log
(

1 + ellr(p)
)

]

. (2)

Cllr assesses the overall detection which includes both discrimi-

nation and calibration. In practice, discrimination alone is more

relevant as a privacy metric. To measure it, a derived met-

ric called Cmin
llr can be computed by optimal calibration of the

scores LF (p) into log-likelihood ratios using a monotonic ris-

ing transformation. This transformation is found via the Pool

Adjacent Violators algorithm (PAV), see [17] for details.

3.3. Linkability

A linkability metric was proposed in [13] for biometric tem-

plate protection systems. This metric can be generalized for

any two sets of items. Denoting by H (resp., H) the binary

variable expressing whether two random utterances a and b are

mated (resp., non-mated), the local linkability metric for a score

s = LF (a, b) is defined as p(H | s) − p(H | s). When the

local metric is negative, an attacker can deduce with some con-

fidence that the two utterances are from different speakers. The

authors of [13] argued that the local metric should estimate the

strength of the link described by a score rather than measure

how much a score describes non-mated relationships. There-

fore they propose a clipped version of the difference:

D↔(s) = max(0, p(H | s)− p(H | s)). (3)

The global linkability metric Dsys
↔ is the mean value of D↔(s)

over all mated scores:

Dsys
↔ =

∫

p(s | H) ·D↔(s) ds.

In practice, D↔(s) is rewritten as (2·ω·lr(s))/(1+ω·lr(s))−1
where the likelihood ratio lr(s) is p(s | H)/p(s | H) and the

prior probability ratio ω is p(H)/p(H), and p(s | H) and p(s |
H) are computed via one-dimensional histograms.

3.4. Comparison of the Metrics

Based on the above definitions, we already note that the three

metrics do not provide the same information. Both the EER and

Cmin
llr measure the probability of error of an attacker that makes

decisions based on a threshold on the linkage function (one par-

ticular threshold for EER and all possible ones for Cmin
llr ). Link-

ability measures something different: it evaluates how different

the distributions of mated vs. non-mated scores are. There is no

attacker making a decision and there is no threshold or, from

another perspective, the best possible oracle attacker (not nec-

essarily threshold-based) is assumed. In addition, if we consider

how general are the metrics, on the one hand Cmin
llr is a direct ex-

tension of the EER as it does not focus on one single threshold.

On the other hand, Dsys
↔ is evaluated over all the encountered

mated scores. In the next section, we provide experimental ex-

amples that highlight the differences of information provided

and generality of the metrics.

4. Exhibiting Differences and Blindspots
through Simulation

We design two experiments over simulated scores in order to ex-

hibit the differences between the metrics. The first experiment

relies on discrete scores to highlight the lack of generality of

the EER. The second experiment relies on Gaussian distributed

scores to exhibit the differences between Cmin
llr and linkability.

All of the metrics are integrated in the Voice Privacy Challenge

20202 and we developed an easy to use toolkit3

4.1. Discrete Scores

Let us assume that there are 8 trials p1, . . . , p8 and that the score

for the i-th trial is given by the integer LF (pi) = i. The values

of EER and Cmin
llr vary with the label (mated vs. non-mated) of

each trial. In Table 1, we show 3 particular cases where only

the labels of the last three trials (associated with scores 6, 7,

and 8) change. We notice that this has an effect on Cmin
llr but

not on the EER. This is because the EER searches for a single

2https://www.voiceprivacychallenge.org/#Soft
3https://gitlab.inria.fr/magnet/anonymization˙metrics



Table 1: Cmin
llr and EER with discrete scores in {1, . . . , 8}. H

(resp. H) denote mated (resp. non-mated) scores.

Score 1 2 3 4 5 6 7 8 Cmin
llr EER

Case 1 H H H H H H H H 0.50 0.25

Case 2 H H H H H H H H 0.59 0.25

Case 3 H H H H H H H H 0.65 0.25

threshold of the linkage function while Cmin
llr averages over all

possible thresholds that the attacker might choose. We also no-

tice that the EER indicates a privacy of 0.25 that is half of the

best achievable privacy (0.5), while Cmin
llr increases from half of

the best achievable privacy (0.5 over 1) to higher values (0.69).

4.2. Gaussian Scores

Since Dsys
↔ relies on density estimation, we now generate Gaus-

sian distributed scores to compare Dsys
↔ and Cmin

llr . We con-

sider three Gaussians: G1 ∼ N (1, σ1), G2 ∼ N (2, σ2) and

G3 ∼ N (3, σ3). Each Gaussian Gi is used to sample either

mated or non-mated scores according to a key ki ∈ {H,H}. In

total, we have four different cases depending on the values of

(k1, k2, k3): Mated higher for (H,H,H) or (H,H,H); Non-

mated higher for (H,H,H) or (H,H,H); Mated in-between

for (H,H,H); Non-mated in-between for (H,H,H). We sam-

ple from those three distributions in order to obtain 5, 000 mated

and 5, 000 non-mated scores. Multiple standard deviations are

chosen to obtain different degrees of overlap between the distri-

butions: (σ1, σ2, σ3) ∈ {0.1, 0.5, 1, 1.5}3.

The results are presented in Fig. 2. We consider that Cmin
llr

and Dsys
↔ are equivalent when Cmin

llr is equal to 1−Dsys
↔ (diago-

nal line). The two metrics agree to a large extent only when the

mated scores are higher. When the non-mated scores are higher,

Cmin
llr is always close to 1 while Dsys

↔ varies depending on the

overlap between the distributions. In the two remaining cases

when the mated scores are surrounded by the non-mated scores

or vice-versa, Cmin
llr is lower-bounded by 0.6 and the two met-

rics do not agree on the strength of anonymization. This is ex-

plained by the fact that threshold-based decision is meaningful

in the mated higher case and its performance is then strongly re-

lated to the overlap between distributions, while it fails partially

or totally in the three other cases.
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Two Mated Gaussians

Figure 2: Cmin
llr vs. 1−Dsys

↔ on simulated Gaussian scores.

To illustrate why this an issue and how this may happen in

practice, in Figure 3, we draw (simulated) x-vectors for multi-

ple utterances of two speakers, which have all been anonymized

by mapping them to another (pseudo) speaker’s voice. Each ut-

terance of speaker A has been randomly mapped to the left or

the right cluster, while the utterances of speaker B have been

mapped to the center cluster. The resulting score distributions

match the non-mated in-between case above. As expected, the

two metrics strongly disagree: Dsys
↔ = 0.99 (low privacy) and

Cmin
llr = 0.81 (high privacy). While this situation is unlikely to

occur with unprocessed data (scores are then expected to match

the mated higher case), it becomes likely once the utterances

have been anonymized and the anonymization design choices

(see [18] for example choices) result in multimodal score distri-

butions.
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Figure 3: Simulated ‘non-mated in-between’ data. Top: x-

vectors visualized in 2D. Bottom: resulting score distributions.

5. Evaluation on Real Anonymized Speech

In order to further compare Dsys
↔ , Cmin

llr and the EER, we con-

duct a second experiment on real speech data. In the following,

we present the dataset, the anonymization techniques and the

attackers considered. Then we discuss the results.

The experiment is conducted on LibriSpeech [19]. The

train-clean-460 set (∼1k speakers, ∼130k utterances and 460

hours of speech) is used to train the x-vector model and the

probabilistic linear discriminant analysis (PLDA) model with

Kaldi [20]. Part of the test-clean set (40 speakers, 1,496 utter-

ances) is anonymized to form the trial/public data. The remain-

ing part (29 speakers, 438 utterances) is considered as unpro-

cessed enrollment/found data.

5.1. Anonymization Techniques and Target Selection

We use the following four anonymization techniques. Except

for the first one, these are voice conversion techniques which

map the input (source) signal to another (target) speaker’s voice.

VoiceMask (VM) [21] is a frequency warping method. It

has two parameters, α and β, they are chosen uniformly at ran-

dom from a predefined range which is found to produce intelli-

gible speech while perceptually concealing the speaker identity.

VTLN-based VC [22] clusters each speaker’s data into un-

supervised pseudo-phonetic classes. For each source speaker

class, the closest target speaker class is found and the corre-

sponding warping parameters are applied to the input signal.

The third approach is based on disentangled representa-

tion (DAR) [23, 24]. It uses a speaker encoder and a content



encoder to separate speaker and content information and replace

the source speaker information by that of the target speaker.

Finally, the primary baseline of the VoicePrivacy Chal-

lenge 2020 (VPC) [25] uses a neural synthesizer [9, 26] to syn-

thesize speech given the target x-vector and fundamental fre-

quency and bottleneck features extracted from the source.

VTLN and DAR require speakers to be anonymized using

target speakers from a given pool. Following [14], we evalu-

ate three different target selection strategies: (1) CONST: all

utterances of all source speakers are mapped to one single tar-

get speaker; (2) PERM: each source speaker has all her utter-

ances mapped to one specific target speaker; (3) RAND: each

utterance of each speaker is mapped to a random target speaker.

Rather than an actual target speaker, VPC constructs a target

x-vector by averaging several x-vectors from the pool.

5.2. Attacker Knowledge and Linkage Function

Following [14], we also consider different attackers based on

their knowledge about the anonymization. (1) Ignorant: the at-

tacker has no knowledge of the anonymization and uses unpro-

cessed enrollment data; (2) Informed: the attacker has complete

knowledge of the anonymization technique including the target

speakers, and he/she processes the enrollment data accordingly;

(3) Semi-informed: the attacker knows the anonymization tech-

nique and the target selection strategy but not the particular tar-

get speaker selected for a given source speaker, and she pro-

cesses the enrollment data accordingly. The attacker performs

linkage attacks by computing the x-vectors of a trial utterance

and an enrollment utterance and comparing them using one of

three linkage functions: PLDA affinity, cosine distance, or Eu-

clidean distance. This results in a total of 72 combinations of

anonymization techniques, target selection strategies, attacker

knowledge levels, and linkage functions.

5.3. Results

Figures 4 and 5 compare the resulting metrics, where each dot

corresponds to one of the 72 combinations above. The compar-

ison between the EER and Cmin
llr (Fig. 4) shows a clear relation

between the two metrics. In some cases the EER is stable and

Cmin
llr varies a little bit but not significantly so. Regarding the

comparison between Dsys
↔ and Cmin

llr , we see a clear difference

between Fig. 5 on real data and Fig. 2 on simulated Gaussian

scores: on real data, the two metrics follow a clear relation.

These results can be explained by the fact that, with few ex-

ceptions, the score distributions for the specific target selection

and attack strategies considered here fall into the mated higher

case, as can be seen from the colors associated with the dots. It

is however likely that advanced target selection strategies aim-

ing for score distributions akin to Fig. 2 will be developed in

the near future, as these would provide an advantage against at-

tackers making threshold-based decisions. For that reason, we

believe Dsys
↔ should be privileged as a privacy metric, since it

provides very similar results to established metrics with current

target selection and attack strategies, while being more robust

to advanced strategies that will likely be developed soon.

6. Conclusion

In this study, we compare three metrics to assess the effective-

ness of anonymization: the EER, the application-independent

log-likelihood-ratio min cost function Cmin
llr , and the linkabil-

ity Dsys
↔ . The EER and Cmin

llr assume that the attacker makes

threshold-based decisions on the linkage score, while Dsys
↔ im-
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Figure 4: Cmin
llr vs. EER on real data. The color scale µ− µ is

the difference of the means of mated and non-mated scores.
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Figure 5: Cmin
llr vs. 1−Dsys

↔ on real data. The color scale µ−µ
is the difference of the means of mated and non-mated scores.

plicitly models a more powerful, non-threshold-based oracle

attacker. The comparison on real speech data processed via 4

anonymization techniques with different target selection strate-

gies and with 9 attackers suggests that these metrics behave

similarly. Yet, experiments on simulated data highlight fun-

damental differences. Specifically, the EER may yield a fixed

value for situations involving different levels of privacy cor-

rectly captured by Cmin
llr , and Cmin

llr becomes less informative

than Dsys
↔ when the mated scores are lower or interleaved with

non-mated scores. While such situations were unlikely to occur

in the field of speaker verification, which involves unprocessed

speech data, we expect them to become frequent in the field of

anonymization when more advanced target selection and attack

strategies are built. For this reason, we advocate for the use of

Dsys
↔ as a robust privacy metric capable of handling both current

approaches and future developments in this field.
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