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A Comparative Study of Staff Removal Algorithms
Christoph Dalitz, Michael Droettboom, Bastian Pranzas, andIchiro Fujinaga

Abstract— This paper presents a quantitative comparison of
different algorithms for the removal of stafflines from music
images. It contains a survey of previously proposed algorithms
and suggests a new skeletonization based approach. We define
three different error metrics, compare the algorithms with respect
to these metrics and measure their robustness with respect to
certain image defects. Our test images are computer-generated
scores on which we apply various image deformations typically
found in real-world data. In addition to modern western music
notation our test set also includes historic music notation such
as mensural notation and lute tablature. Our general approach
and evaluation methodology is not specific to staff removal, but
applicable to other segmentation problems as well.

Index Terms— Document page segmentation, OMR, perfor-
mance evaluation, performance metric, pixel classification

I. I NTRODUCTION

T HE MOST characteristic feature of western music scores is
groups of parallel horizontal lines, thestafflines. While they

are necessary for a human reader to determine the pitch, they
are an obstacle to symbol segmentation in most Optical Music
Recognition (OMR) systems. Almost every paper on OMR deals
with the problem and suggests a specific staff removal algorithm
[1]. Although their primary application is as a preprocessing step
in the recognition of western music notation, the staff removal
problem also occurs in different contexts, e.g. the recognition of
bank transfer forms [2].

The goal of staff removal is to remove the lines as much as
possible while leaving the symbols on the lines intact. Thisis
achieved by different algorithms with varying success and not
all algorithms are equally successful in all situations. Despite the
wide variety of suggested staff removal techniques, a comparative
evaluation of their quality has not yet been done. A first stepin
this direction was made by Bainbridge and Bell [3]. In this work,
two different staff finding algorithms and three slightly different
staff removal algorithms were considered and the accuracy of
staff finding on manually labeled music images and the run times
of the three staff removal methods were compared, but not their
quality.

From a more general point of view, staff removal is a seg-
mentation problem: background segments (the stafflines) need
to be separated from foreground objects (the music symbols).
For an evaluation of different segmentation algorithms we must
find a way to tell when one segmentation is better than another.
This boils down to two questions that are crucial in every
segmentation evaluation: how do we measure the distance of a
given segmentation from a perfect “ground-truth” segmentation,
and how do we obtain the ground-truthing data?

To answer the first question, we must define an appropriate
error metric. Although from an OMR point of view the final
music recognition rate might seem to be a natural performance
measure, this is not a good error metric because it depends ontoo

C. Dalitz and B. Pranzas (formerly Czerwinski) are with Hochschule
Niederrhein, Fachbereich Elektrotechnik und Informatik, Reinarzstr. 49, 47805
Krefeld, Germany

M. Droettboom is with the Space Telescope Science Institute, 3700 San
Martin Drive, Baltimore, MD 21218 USA.

I. Fujinaga is with the Schulich School of Music, McGill University, 555
Sherbrooke W. Montreal QC, Canada H3A 1E3

many other aspects than staff removal quality. This is analogous
to the problem of page segmentation evaluation, where goal-
directed evaluations like the final Optical Character Recognition
(OCR) error rate have recently been abandoned in favor of direct
measurements of page segmentation quality [4] [5]. Inspired by
these works, we develop three error metrics for our problem.Two
of these metrics are in no way specific to staff removal, but can
be applied to any segmentation problem.

Having established an error metric, we can define the segmen-
tation quality as the distance between an output image of an
algorithm and a ground truth image, where in both images all
black pixels are labeled as either background or foreground(i.e.,
staff or non staff). Even though the labeling of the ground truth
data could be done manually, this is very time consuming and
has the disadvantage of an ad hoc classification of dubious pixels
belonging both to a staffline and a crossing symbol. Therefore
we generate our music images from postscript images created
with music typesetting software, which allows for “perfect” staff
removal. To measure the robustness of the algorithms with respect
to particular common degradations occurring in real-worlddata,
we deform the “ideal” images, an approach that also has been used
in the evaluation of OCR systems [6]. This approach raises yet
another problem: the “perfect” staff removal is only possible on
the “ideal” postscript images. Hence we have developed a general
scheme for simultaneous deformations of both the unsegmented
and the already segmented image. This novel approach can also
be applied to the evaluation of other segmentation problems.

We have implemented a framework for the evaluation of staff
removal algorithms as a toolkit within the Gamera document
image analysis framework [7]. We make our code freely available
under the terms of the GNU General Public License [8]. As
pointed out in [5], this can be utilized not only for the evaluation
of other algorithms, but also for the optimization of parameters
in a staff removal algorithm.

All of the algorithms studied in this paper make no assumptions
about the appearance of the symbols that are superimposed on
the staff. Some OMR systems use probabilities from later stages,
such as symbol or structure recognition, to disambiguate between
staffline and non-staffline sections [9] [10], and it is possible such
approaches improve the accuracy of staff removal. However,these
approaches, by their very nature, have tightly coupled subsystems
and would be difficult to compare with one another. Therefore,
the present paper limits itself to staff removal independent of any
of the other parts of a complete optical music recognition system.
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Fig. 1. The characteristic page dimensionsstafflineheight and staffs-
paceheight.

This paper is organized as follows: section II gives some
basic definitions and covers the related problem of staffline
finding without removal. Section III categorizes and describes
the investigated algorithms. Section IV describes our method for
generating and deforming our test data and describes our test
set. The final sections contain our experimental results andthe
conclusions drawn therefrom.

II. STAFFLINE DETECTION

The problem of staffline detection is occasionally considered
in the literature without the goal of their removal [11] [12].
These methods can be used as a first step in the staff removal
algorithms described in section III-A. Moreover they are even
useful in segmentation-free OMR approaches like hidden Markov
modeling [13], which do not require staff removal.

Stafflines are usually grouped instaffs, i.e., groups of par-
allel lines. Common music notation uses five lines per staff,
but other forms of notation can also use a different number
(chant uses four lines and tablature typically six lines). Most
algorithms for staff detection or removal rely on an estimation
of the staffline thickness (stafflineheight) and the vertical line
distance within the same staff (staffspaceheight), see Fig. 1). As
shown by Fujinaga [14], these values can be estimated with good
accuracy as the most frequent black (stafflineheight) and white
(staffspaceheight) vertical runlength, respectively. Based on these
values, we can define a generic scheme for finding stafflines that
is a generalization of the method described in [11]. It operates
on a set of “staffsegments” and requires methods for linkingtwo
“staffsegments” horizontally and vertically and for merging two
segments with overlapping positions into one:

1) Add vertical links between staffsegments with a vertical
distance aroundstafflineheight + staffspaceheight.

2) Add horizontal links between adjacent staffsegments possi-
bly belonging to the same staffline.

3) Partition the resulting graph into connected subgraphs;each
subgraph that is wide and high enough corresponds to a
staff.

4) All staffsegments within a system are labeled as belonging
to a certain staffline. Segments of the same line at the same
horizontal position are merged into one segment.

5) Due to ledger lines, ties and beams, some subgraphs will
contain too many stafflines. To reduce them to a predefined
number of lines per staff (typically five for modern notation,
four for chant and six for tablature), the outer stafflines of
each staff are subsequently removed until the predefined
number of stafflines remains.

Depending on the data representation of a “staffsegment” and
on the method for identifying staffsegment candidates we obtain
different staff detectors:

• Miyao’s “staffsegments” are points on equidistant vertical
scan-lines. These are horizontally linked with dynamic pro-
gramming matching [11].

• Szwoch’s “staffsegments” are peaks in the horizontal projec-
tion profile of vertical slices. They are horizontally linked
when their vertical distance is small enough [12].

Both methods only yield a polygonal approximation of the
staffline skeleton, which is not sufficient for the staff removal
techniques described in section III-A. Bainbridge and Bell’s
method [3] could be used to follow the skeleton more closely,
but it turned out to be rather unstable in our experiments in the
presence of staffline interruptions. Hence we have developed a
new algorithm that directly yields the staffline skeleton:

1) We extract horizontal runs with more than 60 percent black
pixels within a window of widthstaffspaceheight.

2) The resulting filaments are vertically thinned by replacing
each vertical black run with its middle pixel. For black
runs higher than 2 *stafflineheight, more than one skeleton
point is extracted.

3) The resulting skeleton segments wider than 2 *staffs-
paceheight are the “staffsegments” to which the generic
staff-finding algorithm is applied. As step 1) fills out most
staffline interruptions, we omit the horizontal linking step.

III. STAFFLINE REMOVAL

The different approaches to staff removal in the literaturecan
be divided into the following categories:

• Line Tracking.Stafflines are first localized by some method.
Each line is then tracked to see whether some of the pixels
need to be removed based on some criterion. All methods
discussed in [3] fall into this category.

• Vector Field.Pixels of the one-bit image are converted into
vectors. Vector directions and lengths are used as criteriato
keep or remove pixels. An early work on OMR already used
this approach [15]. The vector field has also been used in
combination with line tracking [16].

• Runlength.Black runlengths are removed based on their
length or line adjacency. The algorithms by Carter and Bacon
[17] and Fujinaga [14] fall in this category.

• Skeletonization.The bitmap image is skeletonized and this
skeleton is further analyzed to obtain staff segments and
symbols. This approach has been used by Ng to detect
staff lines in music manuscripts [18], although he does not
describe what criteria for staff segments he actually used.

Table I lists all staff removal algorithms that we have evaluated
and their category. The following sections describe them indetail.

TABLE I

EVALUATED ALGORITHMS .

Algorithm Reference Category
LineTrack Height [19] Line Tracking
LineTrack Chord [3] [16] Line Tracking
Roach/Tatem [15] Vector Field
Carter [17] Runlength
Fujinaga [14] Runlength
Skeleton new algorithm Skeletonization

A. Line Tracking

One obvious approach to staff removal is to first detect the
staff skeleton and then remove the vertical black run around
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Fig. 2. Length of a chord through a skeleton point at some angleϕ.

each skeleton point satisfying a criterion that indicates whether it
belongs to a crossing symbol or not. To obtain the staff skeleton
we use the staff detector described in section II.

For symbol detection we have implemented two methods. The
first one checks whether the black run through the skeleton point
is longer than 2 *stafflineheight [19]. This results in algorithm
“LineTrack Height” in Table I.

The other method computes, for a fixed angle resolution of
three degrees, the chord lengths through the skeleton point(see
Fig. 2). This results in a functionchordlength(ϕ) (with ϕ being
the chord angle) for each skeleton point. For staffline pixels
this function has a sharp peak at the staffline orientation angle
(typically zero degrees). When the staffline pixel also belongs to a
crossing music symbol, the function should have a second distinct
peak [16]. In contrast to Martin and Bellissant, who traineda
neural network for the “second distinct peak” criterion, weuse the
following hard-coded thresholds for detecting a “second distinct
peak” in the functionchordlength(ϕ):

• there must be a local maximum with a chord-length greater
than stafflineheight * 5 at an angle below 30 degrees
(representing the staffline) and another local maximum with
a chordlength greater than 1.75 *stafflineheight* sin(ϕ) at
an angleϕ > 30 degrees (representing the second chord)

• the valley between two maxima must have a depth greater
than 1.5 *stafflineheight

This leads to algorithm “LineTrack Chord” in Table I.

B. Vector Fields

When the chord length versus angle function described in the
previous section is computed for every black pixel, the original
image can be transformed into a two-dimensional vector fieldby
picking the angle and length of the longest chord for each black
pixel. This will assign pixels on stafflines a high “length” value
and an “angle” value around zero.

Roach and Tatem used a labeling scheme based on the angle
information and pixel adjacency to identify these stafflinepixels
[15]. This extracts a number of “horizontal line pixels”, some of
which belong to music symbols. To avoid the removal of symbol
pixels on the stafflines, some horizontal line pixels are iteratively
relabeled as non-horizontal pixels, depending on the labels of their
neighboring pixels. Eventually all remaining horizontal pixels are
removed.

As the application of Roach and Tatem was handwritten music,
their method simply removes all perfectly straight horizontal
shapes. This includes not only staff lines, but also beams orparts
of lyrics (see Fig. 3). To overcome this shortcoming, we have
added the following modification:

• on all horizontal line pixels we apply our staff-finding
algorithm described in section II

• only line segments on the detected stafflines are removed

(a) original (b) improved

Fig. 3. Roach & Tatem’s original algorithm removes all horizontal shapes
(marked grey), even when they do not lie on staff lines. This isresolved in
our “improved” version.

• to avoid beam removal, vertical black runs longer than 2 *
stafflineheightare not removed

C. Runlength Analysis

Rather than considering chords in arbitrary directions, itis
computationally more efficient to only consider chords in the
horizontal or vertical direction, i.e., black horizontal or ver-
tical runlengths. The analysis of vertical black runlengths is
particularly useful, because staffline sections can be identified
as adjacent vertical runlengths with a vertical runlength around
stafflineheight.

Carter and Bacon [17] segment the image using a concept
known as the line-adjacency graph. Each segment resulting from
this analysis is either part of a staffline or not, so once the sections
have been found, no further analysis at the pixel level is necessary.
Staffline fragments are found by finding obvious straight and
horizontal candidates for staffline sections (“filaments”), and then
vertically linking filaments that overlap horizontally andhave
a vertical distance aroundstaffspaceheight. Eventually these
fragments are horizontally linked to other fragments by horizontal
extrapolation. Due to Carter and Bacon’s transformation ofthe
line-adjacency graph, the resulting sets of staff filamentsdo not
contain the symbols and can be directly removed.

Fujinaga [14] uses a different method to segment the im-
age. He first removes black vertical runs larger than twice the
stafflineheightand considers in the resulting image all connected
components with a width greater thanstaffspaceheight. As his
primary criterion for staff components is their height, it is essential
that the stafflines are not rotated nor curved. Hence he first
detects staffs by horizontal projections and then deskews each
staff by correlating the horizontal projection profiles of adjacent
vertical strips; each strip is sheared to the position with maximal
correlation. As this deskewing makes it difficult to comparethe
results with ground truthing data, we have added an undoing of
this deskewing as a final step to Fujinaga’s original staff removal
algorithm.

D. Skeletonization

Skeletonization is a common technique in OMR, but is usually
appliedafter staff removal [16] [19], because the stafflines distort
the symbol skeletons considerably at intersection points.We have
developed a new staff removal algorithm that uses the skeleton
information, but performs the staff removal on the originalimage
instead of the skeleton.

The method relies on the fact that symbols on the stafflines lead
to junction points or corner points in the skeleton. It consists of
the following steps:
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Fig. 5. A falsely detected staff segment that can be identifiedas belonging
to a music symbol because it is approximately tangential to an extrapolated
parabola from a non-staff segment.

1) The skeleton is split at branching points and corner points
with an angle below 135 degrees. Around each splitting
point a number of pixels (taken from the distance transform
at the splitting point) is removed (see Fig. 4). The latter
avoids that staffline skeleton segments extend too far into
crossing objects.

2) Staff line segment candidates are picked as skeleton seg-
ments with the following properties:

• the orientation angle (least square fitted line) is below
25 degrees

• the segment is wider than tall
• the ”straightness” (mean square deviation from least

square fitted line) is belowstafflineheight2/2

3) On these staff segment candidates the generic staff-finding
scheme described in section II is applied. Two staff seg-
ments are horizontally linked when their extrapolations
from the end points with the least square fitted angle come
closer thanstafflineheight/2.

4) A staff may still contain some false positives. When staff
segments assigned to the same line overlap, this is a clear
indication of a false positive. Thus from each overlapping
staff segment group on the same line the one that is closest
to its least-square-fitted neighborhood is picked and the
others are discarded.
To check for further false positives, non-staff segments
that have the same branching point as a staff segment are

extrapolated by a parametric parabola. If this parabola is
approximately tangential to the staff segment, the latter is
considered a false positive (see Fig. 5).

5) In order to remove staff lines, all vertical black runs
around the detected staff skeleton are removed. As skeleton
branches occasionally extend into solid regions (music
symbols), vertical runs are only removed when they are
not longer than twice thestafflineheight.

IV. GROUND TRUTHING DATA

For a qualitative comparison of the different staff removal
algorithms we need ground truthing data, i.e., music imageswhere
all black pixels are labeled as eitherstaff or non-staffpixels. A
manual labeling is time consuming and has the disadvantage of
an ad hoc classification of dubious pixels that belong both toa
staff line and a crossing symbol.

Hence we chose a different strategy and generated Postscript
images with music notation software. In the Postscript codewe
removed the staff drawing macros and converted the resulting
images to one-bit raster images. Thus we obtain ideal staff-less
images. If this is meant to emulate scanned images of music
prints, an appropriate model for image defects introduced through
printing and scanning is necessary. Rather than introducing these
defects in the rasterization stage, we can alternatively add them
later as “image deformations”[6]. The process for generating test
images is shown in Fig. 6.

A. Our Test Set

The test set of ideal images consists of 32 sample pages with a
total of about 300 staffs generated with a variety of music notation
programs. It covers a wide range of music types (common music
notation, lute tablature, chant, mensural notation) and music fonts.
Table II shows how the samples are distributed over the different
notation programs and notation types. We have made the test set
freely available together with our source code [8].

B. Image Deformations

In order to test the robustness of the different staff removal
algorithms we created distorted images from the ground-truth
data. There are two categories of image distortions:

• deterministicdeformations (e.g., rotation) which depend on
certain parameters

• random defects (e.g., noise) which usually also have pa-
rameters like mean and variance, but additionally rely on
a pseudo-random number generator

In both cases it is necessary to apply the deformation in parallel
both to the original and the ground-truth staff image.

Full Score
Postscript

Rasteri−

zation

Full Score
Bitmap

Staffless
Bitmap XOR

Staff−only
Ground Truth

Test Image

Staff−only
Bitmap

Staffless
Postscript

Macro

Rasteri−

zation

Removal

Staff

Deformation

Fig. 6. Control flow for generating test images and ground-truth data. The deformation is performed in parallel on both images.
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TABLE II

DISTRIBUTION OF NOTATION PROGRAMS AND TYPES IN OUR TEST SET.

Staffs Percentage Program
78 26.1 abctab2ps
56 18.7 Philip’s Music Writer
49 16.4 LilyPond
29 9.7 Django
25 8.4 MusixTex
24 8.0 Finale
24 8.0 Music Publisher (mup)
14 4.7 lute tab

299 100.0 total sum

Staffs Percentage Type
197 65.9 modern
58 19.4 tablature
44 14.7 historic (chant,

mensural)
299 100.0 total sum

TABLE III

INVESTIGATED IMAGE DEFECTS.

Deformation Type Parameter description

Resolution deterministic dots per inch
Rotation deterministic rotation angle
Curvature deterministic height:width ratio of sine curve
Typeset
emulation

both gap width, maximal height and
variance of vertical shift

Line
interruptions

random interruption frequency, maximal
width and variance of gap width

Staffline
thickness
variation

random Markov chain stationary distribu-
tion and inertia factor

y-variation of
staffline

random Markov chain stationary distribu-
tion and inertia factor

degradation after
Kanungo et al.

random (η, α0, α, β0, β, k), see [21]

white speckles random speckle frequency, random walk
length and smoothing factor

While the defectsresolution, rotation and line interruption in
Table III are self explanatory, the others need some explanations.
The curvature is done as a half sine wave over the entire staff-
width. The strength of the resulting curvature can be measured as
the ratio of amplitude (height) and width of the wave (see Fig.
7b).

The particular defecttypeset emulationtries to imitate 16th-
century prints that are set with lead types and thus have staffline
interruptions between symbols and a random vertical shift of each
vertical staff slice containing a symbol (see Fig. 7c).

Some defects like stafflinethickness variationor y-variation
are best depicted by a Markov chain describing the evolution
of the staffline thickness from left to right, because usually the
thickness at a particularx-position depends on the thickness at the
previousx-position. In these cases the parameter is the transition
probability matrixP of the Markov chain with:

pij := probability of transition from thickness or
y-deviationi to thickness ory-deviationj

The thickness ory-deviation can be one ofn different values
(“states”). Letπ = (π1, π2, . . . , πn) be the stationary distribution
of the individual statesi, that is

πP = P and
n

∑

i=1

πi = 1

(a) Ideal image (b) Curvature (c) Typeset emulation

(d) Line thickness varia-
tion
(n, c) = (6, .5)

(e) Line thickness varia-
tion
(n, c) = (6, .93)

(f) Degradation
after Kanungo
(η, α0, α, β0, β, k) =
(0, 1, 1, 1, 1, 2)

(g) Line y-variation
(n, c) = (5, .6)

(h) Line y-variation
(n, c) = (5, .93)

(i) White speckles
(p, n, k) =
(.025, 10, 2)

Fig. 7. An “ideal” image and its deformations.

For this distribution we assume a symmetric binomial distribution,
that is

πi =

(

n − 1

i − 1

)

· 1

2n−1

We associate the mean value(n−1)/2 of this distribution with the
original value in the undeformed image (stafflineheight for the
thickness or zero for the deviation from the originaly-position).
We generate the Markov chain with the Metropolis-Hastings
algorithm [20] where our choice for the transition probability
matrix Q for picking candidate transition points is

qij =







c for j = i

1 − c/2 for j = i ± 1

0 otherwise

The probabilityc for not changing the state can be considered as
an inertia factor that allows for smooth transitions: the closerc
is to one, the slower is the state variation (see figs. 7g and 7h)).

Kanungo et al. have suggested a degradation model for emu-
lating local distortions introduced during printing and scanning
[21]. The model has six parameters(η, α0, α, β0, β, k) with the
following meaning:

• each foreground pixel is flipped with probabilityα0e−αd2

+

η, whered is the distance to the closest background pixel
• each background pixel is flipped with probabilityβ0e−βd2

+

η, whered is the distance to the closest foreground pixel
• eventually a morphological closing operation is performed

with a disk of diameterk

This degradation model is designed such that it primarily
effects the contour of a one-bit image and has little effect on bulk
pixels. Hence we add a second degradation model for generating
white speckles within the music symbols and stafflines. Our model
has three parameters(p, n, k) with the following meaning:

• each black pixel in the original image is taken with prob-
ability p as a starting point for a random walk of length
n
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TABLE IV

RANGES OF DEFORMATION PARAMETERS IN OUR TESTS GIVEN AS

min:step:max

Deformation Parameter range

Resolution dpi = 50:25:500
Rotation angle= -18:1:18
Curvature amplitude/staffwidth= 0.02:0.02:0.3
Typeset
emulation

n gap = 1:1:12,n shift = 1:1:10

Line
interruptions

frequencyα = 0.01:0.01:0.1,
binomial parameter for width:n = 1:1:10,p = 0.5

Staffline
thickness
variation

inertia c = 0.5:0.05:0.95, maximum thicknessn =
2:1:10

y-variation of
staffline

inertia c = 0.5:0.05:0.95, maximum deviationn =
2:1:10

degradation after
Kanungo et al.

η = 0, k = 2, α0 = [0.5,1], α = 0.25:0.25:1.5,β0 =
[0.5,1], β = 0.25:0.25:1.5

white speckles smoothing factork = 2, random walk lengthn = 10,
speckle frequencyp = 0.01:0.01:0.5

• an image containing the random walk is smoothed by a
closing operation with a rectangle of sizek

• eventually the image with the random walks is subtracted
from the original image, which results in white speckles at
the random walk positions

Consequentlyp can be interpreted as the speckle frequency,n as
a measure for the speckle size andk as a smoothing factor.

Table IV gives the values for all parameters that we have
applied to our test images. It should be noted that in real scan
data the deformations usually do not occur in their pure form.
When working with facsimile copies of 16th-century prints,we
typically found a combination of curvature, typeset emulation,
line interruptions, staffline thickness variation and white speckles.
For the purpose of an evaluation of segmentation algorithms
however, it is more instructive to investigate each defect in
isolation so that conclusions can be drawn about the actual reason
for the breakdown of a particular algorithm.

V. ERRORMETRICS

Although we can create ground truth data as described above,
it is not obvious how to match these data to the corresponding
output of the different staff removal algorithms in order to
establish a quality measure for staff removal. We, therefore, used
different error metrics that seem reasonable. In the following we
give error metrics based onindividual pixels, staff-segment regions
andstaff interruption location.

A. Pixel Level

When we consider staff removal as a two-class classification
problem at the pixel level (“staff line pixel” or not), a natural
performance measure is the error rate for this classification, i.e.,
(# means “number of”)

#misclassified staff pixels+ #misclassified non staff pixels
#all black pixels

Although this error rate indicates how badly the symbols are
distorted when compared to the ideal staff-less image, it gives
little information how well the staff removal algorithm separates
symbols that are otherwise connected by staff lines. To measure
the latter, we have developed two other error metrics.

B. Segmentation Region Level

Staff removal can be considered as a segmentation problem:
staff segments are to be separated from symbol segments. While
in an OMR application staff segments are considered “back-
ground” and the symbols are the “segments of interest”, for the
purpose of staff removal evaluation the situation is reversed: staff
segments are “of interest” and the rest constitutes “background”.
This segmentation problem shows some analogy to the page
segmentation problem in text documents, for which performance
metrics based on missed, split and merged segments have been
suggested [22] [4] [5].

Following the notation in [4], we have two segmentations
for the set of black pixels in the test image: the ground truth
segmentationG = Gobj∪{gnoise} with Gobj = {g1, . . . , gM} and
the segmentation guessed by the algorithmS = Sobj ∪ {snoise}
with Sobj = {s1, . . . , sN} where eachgi and sj contains the
black pixels of a contiguous staff segment respectively and
gnoise andsnoise contain the remaining background black pixels,
respectively.

In the set of all staff segments from both segmentationsGobj ∪
Sobj we build equivalence classes of overlapping segments, i.e.,
two segments are considered equivalenta ≃ b when a sequence
c1, c2, . . . , cn exists with c1 = a, cn = b and ci ∩ ci+1 6= ∅.
For each resulting equivalence classr we count the contained
numbers of segments fromGobj and Sobj and can thus detect
recognition errors. All possible cases are listed in Table V.

Note that Thulke et al. [4] additionally take into account
whether a classr overlaps with snoise and gnoise and thus
obtain many more error cases. This is however not appropriate
in our situation because overlaps of detected staff segments with
ground-truth background and vice versa always occur and would
consequently spoil our error rate.

While the numbers for the individual errors in Table V are of
interest for a detailed error analysis of an individual algorithm,
we can also consider the error rate among the equivalence classes
as a single error measure, i.e.:

#all classesr − #classes representing a correct recognition
#all classesr

C. Staffline Interruptions

As it is possible to extract the ideal location of the staff line
skeleton from our ground-truth data, we can reduce the matching
problem to a matching problem of one dimensional intervals.
To do so we follow each staff line from left to right in the
images containing only the removed staff fragments and look
for interruptions in the staff line. Each interruption represents
a detected music symbol that crosses the staff line. This yields

TABLE V

STAFF SEGMENT EXTRACTION ERRORS BASED ON THE NUMBER OF

SEGMENTS IN AN EQUIVALENCE CLASSr

Segments Segments Error description
from Gobj from Sobj

1 1 correct
1 0 missed segment
0 1 falsely detected segment
1 > 1 segment split
> 1 1 segments merged
> 1 > 1 both splitting and merging occurred
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ground truth
staff fragments

not removed
staff fragments

not removed

Fig. 8. Matching remaining staff fragments from ground-truthdata to staff
removal result. Errors are marked with dashed ellipses.

for each staff line two sets of intervals: the interrupting intervals
G = {g1, . . . , gM} in the ground-truth data and those in the
algorithm outputS = {s1, . . . , sN}.

For establishing an error metric we create a bipartite graph
by adding links between intervalsgi and sj that overlap (see
Fig. 8). This reveals two types of errors: intervals fromG andS

without a link and intervals with more than one link. To countthe
number of errors of the second type we compute the maximum
cardinality matching [23] in this graph, which will remove the
minimal number of links leading to the second type error. As a
resulting error rate we use

min{ #ground-truth interruptions,
#interruptions without link + #removed links}

#ground-truth interruptions

Note that this error metric can not be computed from the images
alone that are to be compared, but requires additional information
about the location of the staff skeleton. Moreover it only measures
the segmentation on the staffline and ignores all other errors like
erroneously removed segments that do not touch the stafflines.

D. Methods of Statistical Analysis

For a comparative performance evaluation an appropriate statis-
tical analysis is necessary. The simplest approach would beto use
theaverage error rateover all test images as an estimator for the
performance of an algorithm. In this estimator all images have the
same weight, regardless whether they have many staffs and thus
more symbols or fewer staffs. A more representative estimator
for the performance on the test set is thetotal or overall error
rate, i.e., the error rate that is obtained when all test images are
considered as if they were a single large image.

The aforementioned averages can be used to visualize the
qualitative behavior of an algorithm over a range of deformation
parameters, but are not sufficient to determine whether one
algorithm performs better than another because they lack the
information whether a difference in the error rate average is
significant or not. To answer this question, Mao and Kanungo
[5] proposed the followingpaired model approach.

Let Xij be the observed error rate of algorithmi on imagej.
For the paired model approach to be applicable, we assume that
observations for the same algorithm on different images arestatis-
tically independent, so that the observationsXij , j = 1, . . . , n for
a fixed algorithmi are iid random variables, whose mean value
µi is the “true” performance of the algorithm. Observations of
different algorithms on the same image however are not assumed
to be independent, because we would expect that a difficult to
segment image leads to worse error rates for several algorithms.
Now we consider a new observable

Wii′j = Xij − Xi′j for i 6= i′

that is the error rate difference between algorithmsi and i′ on
image j. Under the above independence assumption,Wii′j and
Wii′j′ are independent forj 6= j′ (i.e., on different images)
and thus independent observations of the same random variable
Wii′ . Consequently the sample meanW ii′ over all images is an
estimator for the true mean error rate difference∆ii′ between
the two algorithmsi and i′. As shown by Mao and Kanungo
[5], a confidence interval for the true difference∆ii′ at a given
confidence levelα is given by

∆ii′ ∈ W ii′ ±
tα/2,n−1Vii′√

n

wheren is the number of test images,V 2
ii′ is the sample variance

of then observedWii′ andtα/2,n−1 is thepercentile(the inverse
CDF) of thet distribution withn − 1 degrees of freedom.

To test whether the true error rate means of algorithmsi andi′

are statistically different, we consider the null hypothesis ∆ii′ =

0. Under this hypothesis, the test statisticT = W ii′
√

n/Vii′ is
distributed approximately as at distribution withn−1 degrees of
freedom, which have the probability densityf(t). Thus we reject
the null hypothesis when

Pval =

∫ −|T |

−∞

f(t) dt +

∫ ∞

|T |

f(t) dt < α

In other words, this is the condition for a statistically significant
difference at a given confidence levelα.

VI. RESULTS

A. Choice of Resolution

Concerning the bitmap image resolution it is always necessary
in OMR to find a compromise between two different effects:
although the recognition accuracy increases with a higher res-
olution, memory requirement and runtime also increase withthe
square of the resolution.

Figures 9 and 10 show that the same holds for staff removal
on our test set. For resolutions beyond 350 dpi the error rate
does not improve. For all algorithms except Roach & Tatem’s,
the error rate saturates already at a lower resolution. In our test
set the resolution between 300 and 450 dpi corresponds to an
average stafflineheight around 3 pixels. Thus our results provide
experimental evidence for Fujinaga’s rule of thumb, that the

average

staffline_height≈ 3
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Total Pixel Error
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Fig. 9. Overall pixel error rate for all algorithms at different resolutions
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Fig. 10. Runtime for all algorithms at different resolutions

thinnest relevant objects (in our case the stafflines) should have
a thickness of about three pixels [14].

The runtime differences of the individual algorithms in Fig.
10 are not necessarily inherent to the algorithms, but can also
be due to different levels of optimization in our implementation.
Carter and Bacon’s algorithm e.g. is written in pure python while
Fujinaga’s is written purely in C++. Nevertheless some qualitative
effects can be seen. Unlike for the other algorithms, the runtime of
Carter and Bacon’s algorithm does not increase with the square of
the resolution, because it does not operate on pixels, but onthe
line adjacency graph. The most expensive individual operation
is the computation of the vector field for each pixel, resulting
in Roach & Tatem’s algorithm being the slowest. The skeleton-
based algorithm is the next slowest because the computationof
the skeleton is another quite expensive operation.

We have made all subsequent tests with a resolution of 300 dpi,
because for higher resolutions the runtime increases considerably
without much improvement of the error rate. Moreover 300 dpi
is a commonly used scanning resolution nowadays.

B. Performance on Undeformed Images

Table VI shows the results with respect to the paired model
analysis described in section V-D with significant differences
marked with bold face. Some conclusions can be drawn from
this table:

• Both for segmentation and pixel error, Roach & Tatem’s
original algorithm is significantly the poorest. This is due
to false positives (see Fig. 3), because with respect to the
interruption error there is no significant difference between
this algorithm and others.

• The ”secondchord” approach for the ”linetracking” method
is not worth the additional runtime. With respect to the
pixel error, it even worsens the removal quality (because
the symbols extend further into the staff region); otherwise
the difference is insignificant.

• With respect to the interruption error, Carter and Bacon’s
algorithm is the best. Otherwise there are no significant
differences.

• With respect to the segmentation error, Fujinaga’s algorithm
performs poorer than most other methods. The new skele-
tonization based method does not perform better than any
other method (except Roach & Tatem’s of course).

• From all algorithms except Roach & Tatem’s, there is none
significantly better than another both with respect to pixel
and segmentation error.

As Roach & Tatem’s original algorithm performs significantly
poorer than all other algorithms, we have only included its
improved version in subsequent figures and tables.

More detailed information about the weaknesses of the indi-
vidual algorithms can be drawn from the samples shown in Fig.
11. Most problematic are symbols that touch or cross stafflines
at angles below 45 degrees, like slurs, white notes, the tablature
letter “d” or bass clefs. The runlength based line-tracking, Fu-
jinaga’s and Roach & Tatem’s algorithm incorrectly remove the
line crossing parts of these symbols. The secondchord basedline-
tracking algorithm fills some of these holes, but also adds parts
of the stafflines as artefacts to the images, which even result in a
worse pixel error rate (see Table VI). Both Carter and Bacon’s and
the skeleton based approach keep more of these symbols intact,
with Carter’s algorithm being the only one that correctly leaves
whole notes intact. A particular problem of Carter’s algorithm
however is that it occasionally misses entire staffs that contain
a line without a crossing symbol, which can easily happen in
bar-less music (quite common in historic notation).

C. Effects of deformations

The effects of the different deformations over the respective
parameter ranges are shown in figures 12 and 13. It turned out
in our experiments that the qualitative effects of the deformations
on the error rates are similar for all three error metrics. Hence we
have used those error metrics in the plots for which the qualitative
effect is best visible. Whenever we say in the following that
one algorithm performs “better” than another, this is meantwith
respect to a 5% significance level in the paired model.

With respect to rotation and curvature, our new skeleton based
approach is the most robust and performs better than all other
algorithms for rotation angles between 5 and 17 degrees and
curvatures greater or equal than an amplitude of 0.04 per staff-
width (this corresponds to a curvature angle oftan α ≥ 0.04 or
α ≥ 2.3). It is interesting to note that robustness with respect
to rotation does not necessarily imply robustness with respect
to curvature: Carter and Bacon’s method is the second best for
rotations greater than 5 degrees, but not for any curvature value.

For typeset emulation it is shown in Fig. 12, that vertical shifts
(see the plot with fixedn gap) have a more severe effect on staff
removal performance than staffline gaps (see the plot with fixed
n shift). This is due to the fact that discontinuous vertical jumps
make an extrapolation of staffline segments more difficult than
a gap in an otherwise perfectly horizontal staffline. The skeleton
based approach is the poorest for maximal shift widths greater
than one, i.e., even for rather small deformations.

With respect to thickness variation all algorithms perform
poorer for higher variations, but no algorithm is clearly more
robust than the others. The oscillating performance of “linetrack-
ing runlength” between odd and even values for the maximum
thickness in Fig. 13 is due to our threshold of 2*stafflineheight
for keeping or removing pixels, which leads to more falsely kept
staffline slices for certain combinations of the maximum thickness
and the most frequent black vertical runlength.

When the vertical position of each staffline varies randomly
(“y-variation”), the skeleton based approach and Fujinaga’s algo-
rithm are the most robust, with the skeleton method as the best for
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(a) Linetracking Runlength

(b) Linetracking Secondchord

(c) Carter

(d) Fujinaga

(e) Roach & Tatem (improved)

(f) Skeleton

Fig. 11. Details of the results of different staff removal algorithms on our undeformed test set. Removed pixels are marked grey. The details show (from
left to right): bass clef followed by sharp and half note, cuttime symbol followed by a chord of two whole notes, beamed eighthnotes tied to a chord of
half notes, 16th-century music typeface, modern guitar tablature, 17th-century French lute tablature.
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TABLE VI

PAIRED MODEL RESULTS∆ii′ IN PERCENT FOR THE DIFFERENT ERROR METRICS ON THE UNDEFORMEDTEST SET. NEGATIVE VALUES MEAN “ ROW IS

BETTER THAN COLUMN”. B OLD ENTRIES ARE SIGNIFICANT ATα = 0.05.

Pixel Error
Fujinaga Linetrack Linetrack RoachTatem RoachTatem Skeleton

Runlength Secondchord improved original
Carter −0.63 ± 1.12 0.24 ± 0.41 −0.82 ± 0.56 0.20 ± 0.41 −9.58 ± 4.70 0.03 ± 0.43

Pval = 0.268 Pval = 0.2472 Pval = 0.0056 Pval = 0.3233 Pval = 0.0002 Pval = 0.8808
Fujinaga 0.87 ± 1.04 −0.18 ± 1.01 0.84 ± 1.04 −8.94 ± 4.78 0.67 ± 1.00

Pval = 0.0984 Pval = 0.7115 Pval = 0.1105 Pval = 0.0006 Pval = 0.1841
Linetrack −1.06 ± 0.44 −0.03 ± 0.05 −9.81 ± 4.76 −0.21 ± 0.16

Runlength Pval = 0.0000 Pval = 0.1574 Pval = 0.0002 Pval = 0.0132
Linetrack 1.02 ± 0.44 −8.76 ± 4.54 0.85 ± 0.38

Secondchord Pval = 0.0000 Pval = 0.0004 Pval = 0.0001
RoachTatem −9.78 ± 4.75 −0.17 ± 0.16

improved Pval = 0.0002 Pval = 0.0319
RoachTatem 9.61 ± 4.72

original Pval = 0.0002

Segmentation Error

Fujinaga Linetrack Linetrack RoachTatem RoachTatem Skeleton
Runlength Secondchord improved original

Carter −6.05 ± 4.22 −0.66 ± 2.68 −0.63 ± 2.22 −1.81 ± 2.45 −41.02 ± 15.33 −3.54 ± 3.46

Pval = 0.0064 Pval = 0.6214 Pval = 0.5660 Pval = 0.1429 Pval = 0.0000 Pval = 0.0451
Fujinaga 5.39 ± 3.19 5.42 ± 4.19 4.24 ± 2.99 −34.98 ± 13.53 2.51 ± 3.10

Pval = 0.0017 Pval = 0.0129 Pval = 0.0069 Pval = 0.0000 Pval = 0.1089
Linetrack 0.02 ± 3.19 −1.15 ± 1.22 −40.37 ± 15.34 −2.88 ± 2.90
Runlength Pval = 0.9875 Pval = 0.0640 Pval = 0.0000 Pval = 0.0513
Linetrack −1.17 ± 3.02 −40.39 ± 15.25 −2.91 ± 3.35
Secondchord Pval = 0.4346 Pval = 0.0000 Pval = 0.0864
RoachTatem −39.22 ± 14.92 −1.74 ± 2.58
improved Pval = 0.0000 Pval = 0.1795
RoachTatem 37.48 ± 14.48

original Pval = 0.0000

Interruption Error

Fujinaga Linetrack Linetrack RoachTatem RoachTatem Skeleton
Runlength Secondchord improved original

Carter −3.34 ± 3.02 −2.01 ± 2.46 −2.52 ± 2.98 −4.89 ± 4.61 −3.42 ± 3.25 −4.92 ± 4.46

Pval = 0.0313 Pval = 0.1058 Pval = 0.0945 Pval = 0.0384 Pval = 0.0399 Pval = 0.0319
Fujinaga 1.32 ± 2.00 0.82 ± 3.03 −1.55 ± 3.69 −0.08 ± 3.23 −1.58 ± 3.95

Pval = 0.1855 Pval = 0.5869 Pval = 0.3988 Pval = 0.9587 Pval = 0.4205
Linetrack −0.51 ± 2.98 −2.87 ± 3.26 −1.41 ± 2.50 −2.91 ± 3.99
Runlength Pval = 0.7302 Pval = 0.0817 Pval = 0.2604 Pval = 0.1475
Linetrack −2.37 ± 3.50 −0.90 ± 3.05 −2.40 ± 2.97
Secondchord Pval = 0.1778 Pval = 0.5520 Pval = 0.1098
RoachTatem 1.47 ± 3.21 −0.03 ± 3.10
improved Pval = 0.3582 Pval = 0.9837
RoachTatem −1.50 ± 3.84
original Pval = 0.4320

maximum deviationsn between 2 and 8, and Fujinaga’s method
the second best forn between 3 and 5.

For staffline interruptions we have found that the gap width
has little effect on the error rates (no figure included), which is
consistent with the results for typeset emulation. The interruption
frequencyα however has an effect on the error rates. As can
be seen from Fig. 13, Carter and Bacon’s algorithm is most
susceptible to interruptions and performs poorer than all other
algorithms for an interruption probabilityα greater or equal than
0.02 per staffline skeleton pixel.

To visualize the effect of white speckles, we have plotted
the error rates over the rate of whitened pixels, because this
is a more intuitive parameter than the parameters(n, p, k) of
the deformation algorithm. As can be seen from Fig. 13, each
algorithm breaks down at a certain whitening rate, with Carter and
Bacon’s algorithm breaking down first and the skeleton approach
last.

For the outline deformation after Kanungo et al., two different
parameter projections are shown in Fig. 13: the case of fixed

foreground flipping probabilities(α, α0) or fixed background flip-
ping probabilities(β, β0). With respect to increasing background
flipping (left figure), no algorithm is significantly more robust
than another. With respect to increasing foreground flipping (right
figure), Carter and Bacon’s algorithm performs poorest for values
α0 e−α > 0.4. This is consistent with the results for speckles and
interruptions, in which Carter and Bacon’s algorithm is also the
most sensitive with respect to whitened foreground pixels.

VII. C ONCLUSIONS

Our results show that there is no clearly best algorithm with
respect to all three error metrics. Although our new skeleton-
based algorithm is most robust with respect to some defects,it
is most susceptible to the typeset emulation of historic prints and
does not perform significantly better on the undeformed testset.

When using the discussed algorithms for staff removal outside
the realm of music notation, e.g. for banking cheques, it should be
kept in mind that all algorithms rely on an accurate estimation of
stafflineheightandstaffspaceheight. While the former is always
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Fig. 12. Effect of different deformations on the overall error rates (from left to right and top to bottom): rotation, curvature, typeset emulation for fixed
n gap and fixedn shift

well defined, the latter only makes sense when there are groups
of parallel stafflines. For single stafflines, which can alsooccur
in music notation, e.g. for percussion, none of the discussed
algorithms works without changes. It seems to us that Carter
and Bacon’s algorithm might be the best starting point in such
a situation because it directly yields filaments as staff segment
candidates without a prior determination of staff positions.

Concerning the different performance metrics, it is interesting
to observe that the qualitative behavior of the performanceunder
deformations was very similar under all three metrics. This
leads us to the conclusion that the exact definition of the used
performance metric is of less importance than we had thought
initially. We would expect the same to hold for the evaluation
of algorithms for different segmentation problems under image
degradations.

Our method for the creation of ground truthing data from a
vector image in the Postscript format by first using information
only present in this representation for a “perfect” segmentation
and then rasterizing and deforming the segmented images has
proven to be very useful. It enabled us to fully automate the
background/foreground labeling step that can be time consuming
in segmentation algorithm comparison studies. It certainly has the
potential to be used in other segmentation contexts as well,e.g.,
text/graphics separation or page segmentation.

As we make the full source code of our evaluation framework
freely available, it can be utilized to test new staff removal algo-
rithms or to improve existing algorithms. As many algorithms also
contain adjustable parameters (e.g., thresholds), the framework
can also be used to optimize these parameters with respect to
different error metrics. Our work can thus help to improve the
quality of existing optical music recognition systems. Moreover
it can be used as a starting point for building other segmentation
evaluation frameworks.
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