
                                                       
   

 

ISSN: 2277-3754   
ISO 9001:2008 Certified 

International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 2, Issue 3,  September 2012 

 

 

149 

 

Abstract— The problem to extract knowledge from large raw 

data has emerged as a new data structure. Data stream is a new 

era in data mining. Numerous algorithms are used for processing 

& classifying data streams. Traditional algorithms are not 

appropriate to process data stream which in cause generate 

problems regarding classification. A model which is developed 

from stream data for classification must update incrementally 

after the fresh arrival of new data. Data stream classification 

performance can be measured by various factors such as 

accuracy, computational speed, memory and time taken for 

processing. Data stream classification algorithm must have to 

meet certain requirements and measures to handle continuous 

flow of stream data. These algorithms get less time span to inspect 

data and build model, may be only once with less amount of 

resource, time and prediction. So to study the concepts of 

classification algorithms will lead towards development of better 

approaches for stream data mining. In this paper, we make a 

comparative study between Hoeffding tree, VFDT (Very Fast 

Decision Tree) and CVFDT (Concept Adaptinf Very Fast 

Decision Tree) from various algorithms which are used for stream 

data classification. 

 
Index Terms— Concept Drift, CVFDTGrow, Decision trees, 

Hoeffding Bounds, Incremental Learning.  

I. INTRODUCTION 

Recently, the increasing applications of data streams has 

led to the study of stream data, which is an important 

technique that is essential to a wide range of emerging 

applications, such as website log, e-business and stock 

market analysis and sensor networks. Various algorithms for 

mining a stream data do not fit in primary memory due to lack 

of resources. Traditional algorithms were only tested on few 

million examples but in today‟s scenario everyday millions 

of data are generated like transactions, millions of ATM, 

credit card operations and popular Web sites logs. This 

creates a massive amount of data. So for this type of large 

data current data mining systems are not sufficient and 

equipped to deal with them. In most cases, massive amount of 

data can be mined for frequent and relevant pattern, which are 

used in various applications. When the amount of data is very 

large, it leads to a numerous computational and mining 

challenges due to shortage of hardware limitations. First, 

because of large volume of the data, it is not easy to process 

the data efficiently by applying multiple passes of one 

algorithm. Sometimes, the algorithm gets only one chance to 

process the data. This leads to number of problematic 

situations for traditional algorithms. Therefore, algorithms 

which are specifically design for stream data mining must 

follow certain instructions so that they work with one pass of 

data. Second, in stream data mining, data may evolve over 

time so temporal factor of data must be taken into 

consideration in the design of algorithm. This nature and 

behaviour of data streams is referred to as temporal locality. 

So one-pass mining algorithms may not be an effective 

solution for this type of data and task to generate knowledge. 

There are number of application characteristics for stream 

data such as large amount of data (in terabytes) and where 

data arrive at a rapid rate. For such type of data, there is a 

need for near-real time analysis of data feeds. So Stream 

mining algorithms need to be carefully designed with a vision 

on the evolution of the underlying data. “A data stream is a 

real-time, continuous, ordered (implicitly by arrival time or 

explicitly by timestamp) sequence of items. It is not possible 

to control the order in which data item arrive, nor is it feasible 

to locally store a stream in its entirety.”  

A. THEORETICAL ISSUES IN STREAM DATA MINING 

Stream data mining faces an issue which is lack or limited 

amount of computation resources to generate frequent data 

sets or patterns. Number of times, the computation power and 

primary memory can‟t handle massive amount of data in the 

input stream. For example, everyday, more than 130 million 

people use Google, Amazon serviced 20 million book 

searches and transactions, and Vodafone generated 5 million 

call records. Traditional data mining algorithms work on the 

assumption that they will have sufficient resources to process 

particular data. This assumption does not have any chance in 

data stream mining due to continuous evolvement of new 

data. Every Stream data mining algorithms shall take less 

time to learn underlying data with few amount of memory. 

Data is no longer static, but rather a continuous temporal 

stream. For effective generation of knowledge, stream 

mining must be adaptive to change for new data. For 

example, when user surf various products on online shopping 

site, according to user‟s different purchasing patterns, the 

data is generated and future marketing strategies are decided 

in order to satisfy customer needs. 

 

B. Data Streams Mining Problems 

To store continuous data stream is a great challenge for 

storage devices. To generate pattern or knowledge from 

stream data, algorithms with different techniques are needed. 

We don‟t have enough amount of space to store stream data 

and problem occurs between accuracy of data pattern and 

storage. So we can classify into five categories as shown in 

table 2. [4] 
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Table I .Problems in Data Stream Mining 

Traditional data mining  Stream data mining 

 Whole data set require to 
generate frequent pattern 

 Due to static data multiple 
passes are allowed  

 More time to access 
particular data 

 Impossible to store whole 
data 

 Due to continuous arrival of 
new data multiple passes 
are not possible 

 Less time to access data 
sometime only once 

Table II. Classification of Challenges via Category 

No. Issues Challenges Solution approach 
for these issues 

1 
Memory 

management 

Data arrival rate 
and variant data 
arrival rate over 

time are irregular 
and fluctuated 

Summarization 
techniques 

2 
Data 

Pre-processing 

Quality of mining 
result and 

automation of 
pre-processing 

techniques 

Light-weight 
pre-processing 

techniques 

3  Data Structure 

Limited memory 
size and large 
volume of data 

stream 

Incremental 
maintaining of 
data structure, 

novel indexing, 
storage and 

querying 
techniques 

4 Resource 

Limited resource 
like storage and 

computation 
capabilities 

AOG 

5 
Visualization of 

results 

Problem in data 
analysis and quick 
decision making 

by user 

Still is a research 
issue(one of the 

proposed approach 
is: intelligent 
monitoring) 

II. CLASSIFICATION ALGORITHMS 

Various algorithms are available for data stream 

classification. Based on data mining tasks some algorithms 

and approaches for classification of data stream are defined 

below. 

 Hoeffding tree algorithm that is based on decision 

tree. 

 GEMM and FOCUS algorithm and that mining task is 

decision tree and frequent item set. 

 OLIN algorithm uses info-fuzzy techniques for 

building a tree-like classification model. 

 VFDT (Very Fast Decision Tree) and CVFDT 

(Concept-Adapting Very Fast Decision Tree) 

algorithm works on decision tree. 

 On-demand stream classification, using cluster ideas 

that each cluster ids associated with specific class 

label which defines the class label of the points in it. 

So in this paper we discuss the Hoeffding algorithm in next 

section IV. Very fast decision tree algorithm (VFDT) in 

section V and Concept adapting very fast decision tree 

algorithm (CVFDT) in VI with their advantages and 

disadvantages.  

III. HOEFFDING TREE 

In Hoeffding algorithm, classification problem must be 

defined. Classification problem is a set of training examples 

of the form (a, b), where a is a vector of d attributes and b is a 

discrete class label. Our goal is to produce a model 

b=f(a)such  that it provides and predicts the classes y for 

future examples x with high accuracy. Decision tree learning 

is considered one of the most effective classification 

methods. By recursively replacing leaf node with test nodes, 

starting at the root we can learn a Decision trees. In decision 

tree each node has a test on the attributes and each branch 

gives possible outcome of the test and each leaf contain a 

class prediction. Before processing starts, data is first stored  

into main memory. After starting learning process for 

complex trees it is expensive to repeatedly read data from 

secondary memory so our aim is to design decision tree 

learners than read each example at most once, and use a small 

amount time to process it. First key role is to find the best 

attribute at a node and for that consider only some training 

examples that pass through that nodes. Second choose the 

root and then expensive examples are checked down to the 

corresponding leaves and used to choose the attribute there, 

and so on how many examples are required at each node is 

decided by Hoeffding bound after continuous use. Take a 

random variable a and its range is R. We have n observation 

of a. Now find mean of a ( ), so Hoeffding tree bound states 

that with probability 1-δ, the true mean of a is at least  - ε. 

where Hoeffding bound ε 

 
 

A. Hoeffding Tree Algorithm 

Algorithm: 

1.   HT is a tree with a root node (the root) 

2.   for all training data do 

3.   Sort example into leaf l using HT 

4.   Update sufficient statistics in l 

5.   Increment nl, the number of examples seen at l 

6.   if nl mod Nmin = 0 and examples  seen at l not all of same     

      Class then 

7.   Calculate l (Cl) for each attribute factor 

8.      Let Ca be attribute with highest l 

9.      Let Cb be attribute with second-highest l 

10.    Compute Hoeffding bound  
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11.     if Ca ≠ CØ; and ( l (Ca) - l (Cb) > ε or ε < τ ) then 

12.        Replace l with an internal node that splits on Ca 

13.        for all branches do 

14.           Add a new leaf with initialized sufficient statistics 

15.        End for 

16.     End if 

17.   End if 

18. End for 

In first line we have to initializes the tree data structure 

with a single root node. When Lines 2 to 18 performed on 

every training data example will create a loop. Each training 

data is filtered down inclemently tree to an appropriate leaf; 

this will depend on the different tests present in the decision 

tree which is used to build that point at line. This leaf is then 

updated in line 4. In tree each leaf node holds sufficient 

statistics needed to make decisions about further scope. To 

estimate the information gain when any attribute is split is 

done by sufficient statistics that are updated. Line 5 shows 

that that nl is the example count at the leaf, and it is updated. 

Logically nl can be calculated from the sufficient statistics. In 

the previous section we describe a test, it is performed in 

Lines 7-11, and whether a particular attribute has produce 

better result than other attributes is decided using the 

Hoeffding bound. To split statistics attribute G is the splitting 

criterion function and  is its estimated value. To test CØ 

pre-pruning technique is required with using null attribute in 

Line 11. To check that there is any tie occurs is find out by 

test involving τ. After applied various tests, if an attribute has 

been provide better result than all other nodes than split the 

node, for growth of tree. [1] 
 

B. Pros of Hoeffding tree algorithm 

     Hoeffding tree algorithm scales different attributes better 

than other traditional algorithms. It consumes less primary 

memory and provides better utilization with sampling of 

statistics. Second it provides incremental approach in the 

sense new examples are added as they come and also they 

work in parallel. 

C. Cons of Hoeffding tree algorithm 

      Hoeffding tree algorithm waste computational speed due 

to spend lot of time in checking that ties are occurs or not. 

More Memory required with the growth of tree expansion. 

IV. VERY FAST DECISION TREE (VFDT) 

ALGORITHM 

VFDT algorithm use basic fundamental of a decision-tree 

learning which is based on the Hoeffding tree algorithm. In 

VFDT algorithm, threshold value is specified by user. Best 

statistics attribute split, if the value of split attribute is less 

than a user-specified threshold. Because it‟s decided identical 

attribute is useful or not. So simply compute G and use split 

to find best attribute periodically. After comparing statistical 

analysis there may be chance to drop less useful leaves when 

needed as well as it rescan old data when time available. To 

keep counts for all leave nodes memory is required, this have 

a higher priority than VFDT's memory use. If j is the number 

of attributes, n is the maximum number of values per 

attribute, and c is the number of classes, VFDT requires 

O(jnc) memory to store the counts at each stage of leaf nodes. 

If l is the number of leaves in the tree, the total memory 

required is O (ljnc). This is neither dependent on how many 

number of examples we have seen nor training data set 

size.[2] Pruning play key role in Hoeffding as well as in 

VFDT algorithm. Pruning is classified into three categories: 

1.no-pruning: - In this option VFDT refines tree indefinitely 

2.pre-pruning:- In this option VFDT consider one more 

parameter „τ‟, whenever all others 3.post pruning, VFDT 

supports all three kind of pruning option.  τ‟, and stops 

growing any leaf where the difference between the best split 

candidate all others is less than G (.) and G (.) < τ‟. At certain 

point if all of the leaves in the decision tree are pre-pruned, 

than VFDT algorithm terminates. VFDT is work on 

incremental approach, whenever a new example come it 

merged with old data. So after applying this algorithm on few 

examples a usable model is available after the first few 

examples and then progressively defined. 

A. Very Fast Decision Tree (VFDT) Algorithm 

Algorithm: 

Input: δ desired probability level. 

Output: τ a Decision Tree. 

In it: τ ← Empty Leaf (Root) 

1. While (TRUE) 

2.    Read next example 

3.    Propagate Example through the tree from the root till a   

       leaf 

4.    Update sufficient statistics at leaf 

5.     If leaf (number of examples) > Nmin 

6.     Evaluate the merit of each attribute 

7.     Let A1 the best attribute and A2 the second best 

8.      Let   

9.      If G (A1)-G (A2) > ε 

10.    Install a splitting test based on A1 

11.    Expand the tree with two descendant leaves 

Some changes are done in this algorithm that is defined 
below: 

Sometimes more than one attributes have similar attribute 

values in the sense of G‟s than choose best attribute is quite 

critical. We have to decide between them with high 

confidence so VFDT can decide solve this problem that there 

is effectively a tie and split on the current best attribute if 

difference between the best split candidate all others is less 

than G(.) and G(.) < τ. where τ is a user-defined threshold.[3] 
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G computation: inefficient to calculate G for every new data 

set, because at specific point it is hard to split best attributes. 

Users specify minimum amount of new data examples Nmin 

that must be calculated at a leaf before G is computed. This 

mechanism incrementally takes less amount of global time 

which was spent on G computations. VFDT making learning 

work as fast as classify data sets. [3] VFDT is better than 

Hoeffding tree in terms of time, memory and accuracy. In this 

example memory limit is same for VFDT and C4.5 is 40MB. 

VFDT setting=10-7, Nmin=200 and τ=5%, Domain:2 classes 

and 100 binary attributes, fifteen synthetic trees 2.2k-500k 

leaves. So running time for c4.5 is takes 35 seconds to read 

and process 100k examples and VFDT takes 47 seconds. In 

second experiment VFDT takes 6377 seconds for 20 million 

examples. So in VFDT take advantage after 100k to greatly 

improve accuracy. Concept of drift is not handles in VFDT. 

Means as time goes by, Novice literature becomes experts 

and students become engineer so after some minimum 

permanence time span data is shift time to time. 

V. CONCEPT ADAPTINF VERY FAST DECISION 

TREE (CVFDT) ALGORITHM 

VFDT is included in knowledge data discovery assume 

training data is a sample drawn from stationary distribution. 

Data stream not considered this assumption because of 

concept drift. So to continuously change data stream is our 

only goal. CVFDT is an extended version of VFDT which 

provides same speed and accuracy advantages but if any 

changes occur in example generating process provide the 

ability to detect and respond. Various systems with this 

capability (Widmer and Kubat, 1996, Ganti et al., 2000), 

CVFDT uses sliding window of various dataset to keep its 

model consistent. In Most of systems, it needs to learn a new 

model from scratch after arrival of new data. Instead, CVFDT 

continuous monitors the quality of new data and adjusts those 

that are no longer correct. Whenever new data arrives, 

CVFDT incrementing counts for new data and decrements 

counts for oldest data in the window. The concept is 

stationary than there is no statically effect. If the concept is 

changing, however, some splits examples that will no longer 

appear best because new data provides more gain than 

previous one. Whenever this thing occurs, CVFDT create 

alternative sub-tree to find best attribute at root. Each time 

new best tree replaces old sub tree and it is more accurate on 

new data. 

A. CVFDT Algorithm 

1. Alternate trees for each node in HT staret as empty. 

2. Process Examples from the stream indefinitely. 

3.    For Each Example (x, y), 

4.        Pass (x, y) down to a set of leaves using HT  

           And all alternate trees of the nodes (x, y) pass  

           Through. 

5.        Add(x, y) To the sliding window of examples. 

6.        Remove and forget the effect of the oldest 

           Examples, if the sliding window overflows. 

7.        CVFDTGrow 

8.        Check SplitValidity if f examples seen since 

           Last checking of alternate trees. 

9. Return HT. 

It is generally occurs in VFDT algorithm, but CVFDT 

continuously monitors the validity of its old decisions, by 

maintaining more than sufficient statistics at every node in 

Decision tree. As decision tree has grown Forgetting an old 

example is slightly complicated by the fact that DT may have 

grown or changed since the example was initially 

incorporated. To avoid forgetting an example from a node 

that has never seen it, nodes are assigned a unique, 

monotonically increasing ID as they are created. After 

addition of an example to W, the maximum ID of the leaves it 

reaches in DT and all alternate trees is recorded with it. An 

example‟s effects are forgotten if the example whose ID is 

less than or equal to stored ID by decrementing the counts in 

the sufficient statistics. CVFDTGrow: In CVFDTGrow, for 

each node reached by the example in Hoeffding Tree 

Increment the corresponding statistics at the node. If 

sufficient examples seen at the leaf in HT which the example 

reaches, Choose the attribute that has the highest average 

value of the attribute evaluation measure (information gain or 

gini index). If the best attribute is not the “null” attribute, 

create a node for each possible value of this attribute.[11] 

Forget Old Example: Maintain the sufficient statistics at 

every node in Hoeffding tree to monitor the validity of its 

previous decisions. VFDT only maintain such statistics at 

leaves. Than HT might have grown or changed since the 

example was initially incorporated. It will assign unique 

increasing ID as they are created. After each node reached by 

the old example with node ID no larger than the max leave ID 

the example reaches, Decrement the corresponding statistics 

at the node and For each alternate tree Talt of the node, forget 

(Talt, example, maxID).[11] 

 
Fig.1 Process Each Example in CVFDT 
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Check Split Validity: Validity is periodically checks the 

internal nodes of HT in split. When a new best attribute is 

found split generate new alternate tree. We assumes two 

approaches to comparing CVFDT and VFDT, First Set limit 

for number of alternate trees generation and second is to 

increase criteria to avoid tree generation. CVFDT is perform 

outrageous than any other algorithms which are used for data 

stream classification, we can prove this by performing 

number of experiments. Varying levels of drift and ability to 

scale the continuous data stream is evaluated by CVFDT and 

VFDT. If rotating plane is continuously change than 

synthetic data is generated and this data is used in these 

experiments. 

 
Fig.2 Concept Drift 

In experiment 5 million training examples, drift inserted by 

periodically rotating hyper planes, about 8% of test points 

change label each drift, 100,000 examples in window,5% 

noise and results sampled every 10k examples throughout the 

run and averaged. Figure 3 compares the accuracy of the 

algorithms as a function of d, the dimensionality of the space. 

The reported values are obtained by testing the accuracy of 

the learned models every 10,000 examples throughout the run 

and averaging these results. Drift level, reported on the minor 

axis, is the average percentage of the test set that changes 

label at each point the concept changes. CVFDT is 

substantially more accurate than VFDT, by approximately 

10% on average, and CVFDT's performance improves 

slightly with increasing d (from approximately 13.5% when d 

= 10 to approximately 10% when d = 150). [6] 

  
Fig.3 Error Rate vs. number of Attributes 

Figure 4 compares the average size of the models induced 

during the run shown in Figure 11 (the reported values are 

generated by averaging after every 10,000 examples, as 

before). CVFDT's trees are substantially smaller than 

VFDT's, and the advantage is consistent across all the values 

of d we tried. This simultaneous accuracy and size advantage 

derives from the fact that CVFDT's tree is built on the 

100,000 most relevant examples, while VFDT's is built on 

millions of outdated examples. 

 
Fig.4 Tree size vs. number of Attributes 

VI. CONCLUSION 

In this paper we discuss about theoretical and practical 

problems which are often occurs in stream data mining 

classification algorithm. In these classification algorithms, 

Hoeffding trees spend small amount of time for learning. 

Hoeffding tree do not show any similarity with batch trees. In 

real world scenario we have a limited amount of hardware 

resources, despite of this it analyze and generate results with 

high result. In data mining Systems VFDT based on 

Hoeffding trees. Time-variant data is used to extend VFDT to 

develop the CVFDT system. Flooding is used to keep trees 

up-to-date with time variant data streams. 
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