

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 2, Issue 3, September 2012

149

Abstract— The problem to extract knowledge from large raw

data has emerged as a new data structure. Data stream is a new

era in data mining. Numerous algorithms are used for processing

& classifying data streams. Traditional algorithms are not

appropriate to process data stream which in cause generate

problems regarding classification. A model which is developed

from stream data for classification must update incrementally

after the fresh arrival of new data. Data stream classification

performance can be measured by various factors such as

accuracy, computational speed, memory and time taken for

processing. Data stream classification algorithm must have to

meet certain requirements and measures to handle continuous

flow of stream data. These algorithms get less time span to inspect

data and build model, may be only once with less amount of

resource, time and prediction. So to study the concepts of

classification algorithms will lead towards development of better

approaches for stream data mining. In this paper, we make a

comparative study between Hoeffding tree, VFDT (Very Fast

Decision Tree) and CVFDT (Concept Adaptinf Very Fast

Decision Tree) from various algorithms which are used for stream

data classification.

Index Terms— Concept Drift, CVFDTGrow, Decision trees,

Hoeffding Bounds, Incremental Learning.

I. INTRODUCTION

Recently, the increasing applications of data streams has

led to the study of stream data, which is an important

technique that is essential to a wide range of emerging

applications, such as website log, e-business and stock

market analysis and sensor networks. Various algorithms for

mining a stream data do not fit in primary memory due to lack

of resources. Traditional algorithms were only tested on few

million examples but in today‟s scenario everyday millions

of data are generated like transactions, millions of ATM,

credit card operations and popular Web sites logs. This

creates a massive amount of data. So for this type of large

data current data mining systems are not sufficient and

equipped to deal with them. In most cases, massive amount of

data can be mined for frequent and relevant pattern, which are

used in various applications. When the amount of data is very

large, it leads to a numerous computational and mining

challenges due to shortage of hardware limitations. First,

because of large volume of the data, it is not easy to process

the data efficiently by applying multiple passes of one

algorithm. Sometimes, the algorithm gets only one chance to

process the data. This leads to number of problematic

situations for traditional algorithms. Therefore, algorithms

which are specifically design for stream data mining must

follow certain instructions so that they work with one pass of

data. Second, in stream data mining, data may evolve over

time so temporal factor of data must be taken into

consideration in the design of algorithm. This nature and

behaviour of data streams is referred to as temporal locality.

So one-pass mining algorithms may not be an effective

solution for this type of data and task to generate knowledge.

There are number of application characteristics for stream

data such as large amount of data (in terabytes) and where

data arrive at a rapid rate. For such type of data, there is a

need for near-real time analysis of data feeds. So Stream

mining algorithms need to be carefully designed with a vision

on the evolution of the underlying data. “A data stream is a

real-time, continuous, ordered (implicitly by arrival time or

explicitly by timestamp) sequence of items. It is not possible

to control the order in which data item arrive, nor is it feasible

to locally store a stream in its entirety.”

A. THEORETICAL ISSUES IN STREAM DATA MINING

Stream data mining faces an issue which is lack or limited

amount of computation resources to generate frequent data

sets or patterns. Number of times, the computation power and

primary memory can‟t handle massive amount of data in the

input stream. For example, everyday, more than 130 million

people use Google, Amazon serviced 20 million book

searches and transactions, and Vodafone generated 5 million

call records. Traditional data mining algorithms work on the

assumption that they will have sufficient resources to process

particular data. This assumption does not have any chance in

data stream mining due to continuous evolvement of new

data. Every Stream data mining algorithms shall take less

time to learn underlying data with few amount of memory.

Data is no longer static, but rather a continuous temporal

stream. For effective generation of knowledge, stream

mining must be adaptive to change for new data. For

example, when user surf various products on online shopping

site, according to user‟s different purchasing patterns, the

data is generated and future marketing strategies are decided

in order to satisfy customer needs.

B. Data Streams Mining Problems

To store continuous data stream is a great challenge for

storage devices. To generate pattern or knowledge from

stream data, algorithms with different techniques are needed.

We don‟t have enough amount of space to store stream data

and problem occurs between accuracy of data pattern and

storage. So we can classify into five categories as shown in

table 2. [4]

A Comparative study of Stream Data mining

Algorithms
Tusharkumar Trambadiya, Praveen Bhanodia

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 2, Issue 3, September 2012

150

Table I .Problems in Data Stream Mining

Traditional data mining Stream data mining

 Whole data set require to
generate frequent pattern

 Due to static data multiple
passes are allowed

 More time to access
particular data

 Impossible to store whole
data

 Due to continuous arrival of
new data multiple passes
are not possible

 Less time to access data
sometime only once

Table II. Classification of Challenges via Category

No. Issues Challenges Solution approach
for these issues

1
Memory

management

Data arrival rate
and variant data
arrival rate over

time are irregular
and fluctuated

Summarization
techniques

2
Data

Pre-processing

Quality of mining
result and

automation of
pre-processing

techniques

Light-weight
pre-processing

techniques

3 Data Structure

Limited memory
size and large
volume of data

stream

Incremental
maintaining of
data structure,

novel indexing,
storage and

querying
techniques

4 Resource

Limited resource
like storage and

computation
capabilities

AOG

5
Visualization of

results

Problem in data
analysis and quick
decision making

by user

Still is a research
issue(one of the

proposed approach
is: intelligent
monitoring)

II. CLASSIFICATION ALGORITHMS

Various algorithms are available for data stream

classification. Based on data mining tasks some algorithms

and approaches for classification of data stream are defined

below.

 Hoeffding tree algorithm that is based on decision

tree.

 GEMM and FOCUS algorithm and that mining task is

decision tree and frequent item set.

 OLIN algorithm uses info-fuzzy techniques for

building a tree-like classification model.

 VFDT (Very Fast Decision Tree) and CVFDT

(Concept-Adapting Very Fast Decision Tree)

algorithm works on decision tree.

 On-demand stream classification, using cluster ideas

that each cluster ids associated with specific class

label which defines the class label of the points in it.

So in this paper we discuss the Hoeffding algorithm in next

section IV. Very fast decision tree algorithm (VFDT) in

section V and Concept adapting very fast decision tree

algorithm (CVFDT) in VI with their advantages and

disadvantages.

III. HOEFFDING TREE

In Hoeffding algorithm, classification problem must be

defined. Classification problem is a set of training examples

of the form (a, b), where a is a vector of d attributes and b is a

discrete class label. Our goal is to produce a model

b=f(a)such that it provides and predicts the classes y for

future examples x with high accuracy. Decision tree learning

is considered one of the most effective classification

methods. By recursively replacing leaf node with test nodes,

starting at the root we can learn a Decision trees. In decision

tree each node has a test on the attributes and each branch

gives possible outcome of the test and each leaf contain a

class prediction. Before processing starts, data is first stored

into main memory. After starting learning process for

complex trees it is expensive to repeatedly read data from

secondary memory so our aim is to design decision tree

learners than read each example at most once, and use a small

amount time to process it. First key role is to find the best

attribute at a node and for that consider only some training

examples that pass through that nodes. Second choose the

root and then expensive examples are checked down to the

corresponding leaves and used to choose the attribute there,

and so on how many examples are required at each node is

decided by Hoeffding bound after continuous use. Take a

random variable a and its range is R. We have n observation

of a. Now find mean of a (), so Hoeffding tree bound states

that with probability 1-δ, the true mean of a is at least - ε.

where Hoeffding bound ε

A. Hoeffding Tree Algorithm

Algorithm:

1. HT is a tree with a root node (the root)

2. for all training data do

3. Sort example into leaf l using HT

4. Update sufficient statistics in l

5. Increment nl, the number of examples seen at l

6. if nl mod Nmin = 0 and examples seen at l not all of same

 Class then

7. Calculate l (Cl) for each attribute factor

8. Let Ca be attribute with highest l

9. Let Cb be attribute with second-highest l

10. Compute Hoeffding bound

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 2, Issue 3, September 2012

151

11. if Ca ≠ CØ; and (l (Ca) - l (Cb) > ε or ε < τ) then

12. Replace l with an internal node that splits on Ca

13. for all branches do

14. Add a new leaf with initialized sufficient statistics

15. End for

16. End if

17. End if

18. End for

In first line we have to initializes the tree data structure

with a single root node. When Lines 2 to 18 performed on

every training data example will create a loop. Each training

data is filtered down inclemently tree to an appropriate leaf;

this will depend on the different tests present in the decision

tree which is used to build that point at line. This leaf is then

updated in line 4. In tree each leaf node holds sufficient

statistics needed to make decisions about further scope. To

estimate the information gain when any attribute is split is

done by sufficient statistics that are updated. Line 5 shows

that that nl is the example count at the leaf, and it is updated.

Logically nl can be calculated from the sufficient statistics. In

the previous section we describe a test, it is performed in

Lines 7-11, and whether a particular attribute has produce

better result than other attributes is decided using the

Hoeffding bound. To split statistics attribute G is the splitting

criterion function and is its estimated value. To test CØ

pre-pruning technique is required with using null attribute in

Line 11. To check that there is any tie occurs is find out by

test involving τ. After applied various tests, if an attribute has

been provide better result than all other nodes than split the

node, for growth of tree. [1]

B. Pros of Hoeffding tree algorithm

 Hoeffding tree algorithm scales different attributes better

than other traditional algorithms. It consumes less primary

memory and provides better utilization with sampling of

statistics. Second it provides incremental approach in the

sense new examples are added as they come and also they

work in parallel.

C. Cons of Hoeffding tree algorithm

 Hoeffding tree algorithm waste computational speed due

to spend lot of time in checking that ties are occurs or not.

More Memory required with the growth of tree expansion.

IV. VERY FAST DECISION TREE (VFDT)

ALGORITHM

VFDT algorithm use basic fundamental of a decision-tree

learning which is based on the Hoeffding tree algorithm. In

VFDT algorithm, threshold value is specified by user. Best

statistics attribute split, if the value of split attribute is less

than a user-specified threshold. Because it‟s decided identical

attribute is useful or not. So simply compute G and use split

to find best attribute periodically. After comparing statistical

analysis there may be chance to drop less useful leaves when

needed as well as it rescan old data when time available. To

keep counts for all leave nodes memory is required, this have

a higher priority than VFDT's memory use. If j is the number

of attributes, n is the maximum number of values per

attribute, and c is the number of classes, VFDT requires

O(jnc) memory to store the counts at each stage of leaf nodes.

If l is the number of leaves in the tree, the total memory

required is O (ljnc). This is neither dependent on how many

number of examples we have seen nor training data set

size.[2] Pruning play key role in Hoeffding as well as in

VFDT algorithm. Pruning is classified into three categories:

1.no-pruning: - In this option VFDT refines tree indefinitely

2.pre-pruning:- In this option VFDT consider one more

parameter „τ‟, whenever all others 3.post pruning, VFDT

supports all three kind of pruning option. τ‟, and stops

growing any leaf where the difference between the best split

candidate all others is less than G (.) and G (.) < τ‟. At certain

point if all of the leaves in the decision tree are pre-pruned,

than VFDT algorithm terminates. VFDT is work on

incremental approach, whenever a new example come it

merged with old data. So after applying this algorithm on few

examples a usable model is available after the first few

examples and then progressively defined.

A. Very Fast Decision Tree (VFDT) Algorithm

Algorithm:

Input: δ desired probability level.

Output: τ a Decision Tree.

In it: τ ← Empty Leaf (Root)

1. While (TRUE)

2. Read next example

3. Propagate Example through the tree from the root till a

 leaf

4. Update sufficient statistics at leaf

5. If leaf (number of examples) > Nmin

6. Evaluate the merit of each attribute

7. Let A1 the best attribute and A2 the second best

8. Let

9. If G (A1)-G (A2) > ε

10. Install a splitting test based on A1

11. Expand the tree with two descendant leaves

Some changes are done in this algorithm that is defined
below:

Sometimes more than one attributes have similar attribute

values in the sense of G‟s than choose best attribute is quite

critical. We have to decide between them with high

confidence so VFDT can decide solve this problem that there

is effectively a tie and split on the current best attribute if

difference between the best split candidate all others is less

than G(.) and G(.) < τ. where τ is a user-defined threshold.[3]

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 2, Issue 3, September 2012

152

G computation: inefficient to calculate G for every new data

set, because at specific point it is hard to split best attributes.

Users specify minimum amount of new data examples Nmin

that must be calculated at a leaf before G is computed. This

mechanism incrementally takes less amount of global time

which was spent on G computations. VFDT making learning

work as fast as classify data sets. [3] VFDT is better than

Hoeffding tree in terms of time, memory and accuracy. In this

example memory limit is same for VFDT and C4.5 is 40MB.

VFDT setting=10-7, Nmin=200 and τ=5%, Domain:2 classes

and 100 binary attributes, fifteen synthetic trees 2.2k-500k

leaves. So running time for c4.5 is takes 35 seconds to read

and process 100k examples and VFDT takes 47 seconds. In

second experiment VFDT takes 6377 seconds for 20 million

examples. So in VFDT take advantage after 100k to greatly

improve accuracy. Concept of drift is not handles in VFDT.

Means as time goes by, Novice literature becomes experts

and students become engineer so after some minimum

permanence time span data is shift time to time.

V. CONCEPT ADAPTINF VERY FAST DECISION

TREE (CVFDT) ALGORITHM

VFDT is included in knowledge data discovery assume

training data is a sample drawn from stationary distribution.

Data stream not considered this assumption because of

concept drift. So to continuously change data stream is our

only goal. CVFDT is an extended version of VFDT which

provides same speed and accuracy advantages but if any

changes occur in example generating process provide the

ability to detect and respond. Various systems with this

capability (Widmer and Kubat, 1996, Ganti et al., 2000),

CVFDT uses sliding window of various dataset to keep its

model consistent. In Most of systems, it needs to learn a new

model from scratch after arrival of new data. Instead, CVFDT

continuous monitors the quality of new data and adjusts those

that are no longer correct. Whenever new data arrives,

CVFDT incrementing counts for new data and decrements

counts for oldest data in the window. The concept is

stationary than there is no statically effect. If the concept is

changing, however, some splits examples that will no longer

appear best because new data provides more gain than

previous one. Whenever this thing occurs, CVFDT create

alternative sub-tree to find best attribute at root. Each time

new best tree replaces old sub tree and it is more accurate on

new data.

A. CVFDT Algorithm

1. Alternate trees for each node in HT staret as empty.

2. Process Examples from the stream indefinitely.

3. For Each Example (x, y),

4. Pass (x, y) down to a set of leaves using HT

 And all alternate trees of the nodes (x, y) pass

 Through.

5. Add(x, y) To the sliding window of examples.

6. Remove and forget the effect of the oldest

 Examples, if the sliding window overflows.

7. CVFDTGrow

8. Check SplitValidity if f examples seen since

 Last checking of alternate trees.

9. Return HT.

It is generally occurs in VFDT algorithm, but CVFDT

continuously monitors the validity of its old decisions, by

maintaining more than sufficient statistics at every node in

Decision tree. As decision tree has grown Forgetting an old

example is slightly complicated by the fact that DT may have

grown or changed since the example was initially

incorporated. To avoid forgetting an example from a node

that has never seen it, nodes are assigned a unique,

monotonically increasing ID as they are created. After

addition of an example to W, the maximum ID of the leaves it

reaches in DT and all alternate trees is recorded with it. An

example‟s effects are forgotten if the example whose ID is

less than or equal to stored ID by decrementing the counts in

the sufficient statistics. CVFDTGrow: In CVFDTGrow, for

each node reached by the example in Hoeffding Tree

Increment the corresponding statistics at the node. If

sufficient examples seen at the leaf in HT which the example

reaches, Choose the attribute that has the highest average

value of the attribute evaluation measure (information gain or

gini index). If the best attribute is not the “null” attribute,

create a node for each possible value of this attribute.[11]

Forget Old Example: Maintain the sufficient statistics at

every node in Hoeffding tree to monitor the validity of its

previous decisions. VFDT only maintain such statistics at

leaves. Than HT might have grown or changed since the

example was initially incorporated. It will assign unique

increasing ID as they are created. After each node reached by

the old example with node ID no larger than the max leave ID

the example reaches, Decrement the corresponding statistics

at the node and For each alternate tree Talt of the node, forget

(Talt, example, maxID).[11]

Fig.1 Process Each Example in CVFDT

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 2, Issue 3, September 2012

153

Check Split Validity: Validity is periodically checks the

internal nodes of HT in split. When a new best attribute is

found split generate new alternate tree. We assumes two

approaches to comparing CVFDT and VFDT, First Set limit

for number of alternate trees generation and second is to

increase criteria to avoid tree generation. CVFDT is perform

outrageous than any other algorithms which are used for data

stream classification, we can prove this by performing

number of experiments. Varying levels of drift and ability to

scale the continuous data stream is evaluated by CVFDT and

VFDT. If rotating plane is continuously change than

synthetic data is generated and this data is used in these

experiments.

Fig.2 Concept Drift

In experiment 5 million training examples, drift inserted by

periodically rotating hyper planes, about 8% of test points

change label each drift, 100,000 examples in window,5%

noise and results sampled every 10k examples throughout the

run and averaged. Figure 3 compares the accuracy of the

algorithms as a function of d, the dimensionality of the space.

The reported values are obtained by testing the accuracy of

the learned models every 10,000 examples throughout the run

and averaging these results. Drift level, reported on the minor

axis, is the average percentage of the test set that changes

label at each point the concept changes. CVFDT is

substantially more accurate than VFDT, by approximately

10% on average, and CVFDT's performance improves

slightly with increasing d (from approximately 13.5% when d

= 10 to approximately 10% when d = 150). [6]

Fig.3 Error Rate vs. number of Attributes

Figure 4 compares the average size of the models induced

during the run shown in Figure 11 (the reported values are

generated by averaging after every 10,000 examples, as

before). CVFDT's trees are substantially smaller than

VFDT's, and the advantage is consistent across all the values

of d we tried. This simultaneous accuracy and size advantage

derives from the fact that CVFDT's tree is built on the

100,000 most relevant examples, while VFDT's is built on

millions of outdated examples.

Fig.4 Tree size vs. number of Attributes

VI. CONCLUSION

In this paper we discuss about theoretical and practical

problems which are often occurs in stream data mining

classification algorithm. In these classification algorithms,

Hoeffding trees spend small amount of time for learning.

Hoeffding tree do not show any similarity with batch trees. In

real world scenario we have a limited amount of hardware

resources, despite of this it analyze and generate results with

high result. In data mining Systems VFDT based on

Hoeffding trees. Time-variant data is used to extend VFDT to

develop the CVFDT system. Flooding is used to keep trees

up-to-date with time variant data streams.

REFERENCES

[1] Albert Bifet, Geoff Holmes, Richard Kirkby and Bernhard
Pfahringer (May 2011) Data Stream Mining a Practical
Approach.

[2] Alexey T Symbal, (2004), The problem of concept drift:
definitions and related work, Department of Computer Science,
Trinity College Dublin, Ireland.

[3] Dariusz Brzezinski (2010), Mining Data Streams With
Concept Drift, Poznan University of Technology.

[4] Aggarwal, C., Han, J., Wang, J., and Yu, P.S., (2004): On
Demand Classification of Data Streams. In Proceedings of
2004 International Conference On Knowledge Discovery and
Data Mining (KDD '04). Seattle, WA.

[5] Agrawal, C.C. (2007). Data Streams: Models and Algorithms.
Springer.

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 2, Issue 3, September 2012

154

[6] Domingo‟s, P. and Hulten, G., (2000): Mining High-Speed
Data Streams. In Proceedings of the Association for
Computing Machinery Sixth International Conference on
Knowledge Discovery and Data Mining.

[7] Babcock, B., Babu, S., Deter, M., Motwani, R., and Widom, J.,
(2002): Models and issues in data stream systems. In
Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (PODS). Madison, Wisconsin, pp. 1-16.

[8] R. Agrawal and G. Psaila. Active data mining. In Proceedings
of the First International Conference on Knowledge Discovery
and Data Mining, pages 3{8, Montr_eal, Canada, 1995. AAAI

Press.

[9] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. CLOUDS: A
decision tree classifier for large datasets. In Knowledge
Discovery and Data Mining, pages 2{8, 1998.

[10] P. L. Bartlett, S. Ben-David, and S. R. Kulkarni. Learning
changing concepts by exploiting the structure of change.
Machine Learning, 41:153{174, 2000.

[11] Kirankumar Patel: Review on Data Stream classification. In

Proceedings of the International conference on Computing and
Information Technology, pages 35{13, tirupati, India, 2012.

[12] A. Arasu, B. Babcock. S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, and J. Widom. STREAM: The Stanford Stream
Data Manager Demonstration description - short overview of
system status and plans; in Proc. of the ACM Intl Conf. on
Management of Data, June 2003.

[13] B. Babcock, M. Datar, and R. Motwani. Load Shedding
Techniques for Data Stream Systems (short paper) In Proc. of

the 2003 Workshop on Management and Processing of Data
Streams, June 2003.

Author’s Profiles
Tusharkumar J. Trambadiya was born in Gujarat, India in August, 1989.

He received his bachelors of Engineering in Information Technology from

North Maharashtra University, Jalgaon, Maharashtra (India) in august 2010

and is currently pursuing his Master of Technology in Computer Science

Engineering from Patel Institute of Technology, Rajiv Gandhi Proudyogiki

Vishwavidyalaya, Madhya Pradesh (India).His research interests include

Stream Data mining and Wireless Networks.

Mr. Praveen Bhanodia is a Head of Computer Science Engineering at Patel

College Of Engineering & Technology at Indore, Madhya Pradesh, India. He

received his Bachelors from Shri Govindram Seksariya Institute of Science

and Technology, Indore and completed His master from Rajiv Gandhi

Technical University, Bhopal, India.

