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Abstract

Recent advances in next-generation sequencing technology allow high-throughput cDNA sequencing (RNA-Seq) to be
widely applied in transcriptomic studies, in particular for detecting differentially expressed genes between groups. Many
software packages have been developed for the identification of differentially expressed genes (DEGs) between treatment
groups based on RNA-Seq data. However, there is a lack of consensus on how to approach an optimal study design and
choice of suitable software for the analysis. In this comparative study we evaluate the performance of three of the most
frequently used software tools: Cufflinks-Cuffdiff2, DESeq and edgeR. A number of important parameters of RNA-Seq
technology were taken into consideration, including the number of replicates, sequencing depth, and balanced vs.

unbalanced sequencing depth within and between groups. We benchmarked results relative to sets of DEGs identified
through either quantitative RT-PCR or microarray. We observed that edgeR performs slightly better than DESeq and
Cuffdiff2 in terms of the ability to uncover true positives. Overall, DESeq or taking the intersection of DEGs from two or more
tools is recommended if the number of false positives is a major concern in the study. In other circumstances, edgeR is
slightly preferable for differential expression analysis at the expense of potentially introducing more false positives.
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Introduction

High-throughput cDNA sequencing (RNA-Seq) has emerged as

an attractive and cost-effective approach for transcriptome

profiling due to ongoing increases in throughput and decreases

in costs of next-generation sequencing (NGS). Compared to

microarray techniques, RNA-Seq can be performed without prior

knowledge of reference sequences and enables a wide range of

applications including transcriptome de novo assembly [1–4],

abundance estimation [5–9], and detection of alternative splicing

events [10–12], all of which have revolutionized our understand-

ing of the extent and complexity of eukaryotic transcriptomes [13].

In RNA-Seq experiments, the primary interest of biologists in

many studies is differential expression analysis between groups. To

quantify gene expression, RNA-Seq reads need to be aligned to

the reference genome for model organisms (e.g. human, mouse) or

to the transcriptome sequences reconstructed using de novo

assembly strategies for organisms without reference sequences.

The number of mapped reads is calculated based on the outcome

of the alignment to estimate the relative expression level of genes

and subsequently statistical methods are applied to test the

significance of differences between groups. The general workflow

for the analysis of differential expression is illustrated in Figure 1.

Although initially it was claimed that RNA-Seq applications

could produce unbiased, ready-to-analyze gene expression data

[14,15], in reality it is nontrivial to accurately quantify gene

expression and detect differentially expressed genes (DEGs).

Difficulties faced by researchers in RNA-Seq study design and

analysis are 1) general biases and errors inherent in the NGS

technology (e.g. biases introduced during library preparation,

nucleotide-specific and read-position specific biases in sequence

quality and error rate) [16,17]; 2) biases of abundance measures

due to the effects of nucleotide composition and the varying length

of genes or transcripts [5]; 3) undetermined effects of both

sequencing depth and the number of replicates; 4) the combina-

tion of technical and biological variation as well as biases within

and between treatment groups that make it difficult to accurately

discriminate real biological differences between groups; 5) the

existence of alternative gene isoforms and overlapping sense-

antisense transcripts may also compound difficulties in differential

expression analysis [18].

Several attempts have been made to address the aforemen-

tioned difficulties (e.g. ref.16–18). In early RNA-Seq studies

lacking biological replicates, the distribution of feature counts

across technical replicates was reported to fit well to a Poisson

distribution where the variance is equal to the mean [15,19].
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However, when biological replicates are included, it has been

noted that the Poisson distribution underestimates the variation

seen in the data [20,21], a problem known as overdispersion.

Therefore, the resulting statistical test based on Poisson assump-

tions does not control type-I error as advertised. As economical

considerations typically do not allow large numbers of biological

replicates, the Negative Binomial (NB) distribution has been

proposed because of its ability to deal with the overdispersion

problem [6,22]. With the introduction of a scaling factor for the

variance, NB outperforms Poisson and currently it has achieved a

dominant position in the methodologies to model feature counts

for RNA-Seq data [5,6,22].

A number of tools have been developed that use the NB

distribution for differential expression analysis based on RNA-Seq

data (e.g. Cufflinks [8,18,23], DESeq [6], edgeR [22], etc.). Taking

advantage of these tools, the power of the RNA-Seq approach to

detect DEGs has been recently demonstrated [24–27]. However,

there is no consensus on which analysis method is optimal, nor on

how to approach a proper analysis to ensure validity of outcomes

in terms of reproducibility, accuracy and robustness. Moreover,

there is no agreement on how to design an efficient RNA-Seq

study to maximize reward by balancing the amount of sequencing

reads for each sample and the number of replicates for each group

given a fixed budget.

Recently, several published studies have evaluated the perfor-

mance of RNA-Seq software tools for differential expression

analysis, although they all confined their analyses to methods that

are applicable to count matrices (also known as count tables that

contain raw counts for each feature) [28–30]. One of the most

popular RNA-Seq tools, Cufflinks, does not use count matrices

and has not been included in these comparisons. The dearth of

comparisons may reflect that Cufflinks takes BAM files (the binary

version of sequence alignment data) as input, which may make

comparisons involving Cufflinks-Cuffdiff2 more cumbersome due

to their large file sizes and binary format. In contrast, other

methods such as DESeq and edgeR use count matrices as input,

which are easier to handle and simulate for comparative

evaluations.

Here, we evaluate the performance of Cufflinks-Cuffdiff2 as well

as two widely used count matrices based tools - DESeq and edgeR,

for DEG analysis of RNA-Seq data using both real RNA-Seq

datasets and simulated datasets. In addition, we consider some

important parameters of RNA-Seq technology that impact

experimental design, including the number of biological replicates,

sequencing depth, and balanced vs. unbalanced sequencing depth

within and between groups. The results of this study will not only

guide the choice of analysis tools, but more importantly will help

researchers design optimal and efficient RNA-Seq experiments for

their future studies.

Materials and Methods

Ethics Statement
All animal treatments and experimental procedures were

carried out in accordance with the Australian Code of Practice

for the Care and Use of Animals for Scientific Purposes. The

experimental procedures were approved by The University of

Queensland Animal Ethics Committee (QBI/293/13/NHMRC).

Tools for the differential expression analysis
The performance of Cufflinks-Cuffdiff2 [8,18], DESeq [6] and

edgeR [22] are evaluated in this study. Cuffdiff2 is a program in

the Cufflinks package (v2.1.1). It adopts an algorithm that controls

cross-replicate variability and read-mapping ambiguity by using a

model for fragment counts based on a beta negative binomial

distribution. It can identify differentially expressed transcripts and

genes, differential splicing and promoter-preference changes [18].

In this study we only focus on its function to identify differentially

expressed genes (DEGs) so that we can compare its performance

with that of the other two software packages. Both DESeq (version

1.10.1) and edgeR (version 3.0.8) are well-documented R/

Bioconductor packages (release version 2.12 with R 2.15.1).

DESeq implements a method based on the negative binomial

distribution with variance and mean linked by local regression to

detect DEGs [6]. EdgeR also models the variability of raw count

data of RNA-Seq based on the negative binomial distribution.

Empirical Bayes methods are used to moderate the degree of

overdispersion across transcripts [22].

RNA-Seq datasets
1. The MAQC dataset:. MicroArray Quality Control Project

(MAQC) data [31] includes biological samples for human brain

reference RNA (hbr) and universal human reference RNA (uhr).

Two different laboratories, Dr. Dudoit from University of

California at Berkeley and Dr. Wu from Genentech, indepen-

dently sequenced the samples using the Illumina GAII platform

[32]. Dataset I from Dr Dudoit’s group contains 137.77 million

(M) RNA-Seq reads with the read length of 35 bp whereas dataset

II from Dr Wu’s group contains 112.70 M reads with the read

length of 50 bp. Both datasets are single-end RNA-Seq reads

without any biological replicates. In dataset I, hbr and uhr samples

were sequenced using seven lanes across two flow cells, and

detailed information of this dataset is given in Bullard et al.’s study

[19]. This dataset was downloaded from NCBI sequence read

archive (SRA) with ID SRX016359 and SRX016367. In dataset

II, each sample was sequenced in seven lanes of one flow cell [32],

Figure 1. The workflow of differential expression analysis for
RNA-Seq data.
doi:10.1371/journal.pone.0103207.g001
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the details regarding the dataset II are given in Nacu et al.’s study

[33]. This dataset was downloaded from NCBI Gene Expression

Omnibus (GEO) with ID GSE24284 (GSM597210 for hbr and

GSM597211 for uhr). In both datasets, all reads were merged

from different lanes for the same sample and the number of reads

for each sample is shown in Table S1 in Supporting Information

S1. The treatment groups compared for identification of DEGs are

hbr vs. uhr.

2. The K_N dataset:. The K_N RNA-Seq dataset was

generated in-house at Queensland Brain Institute from mouse

neurosphere cells treated by potassium chloride (KCl) and

norepinephrine. Briefly, adult (8–12 week old) male C57BL/6J

mice were used for all in vitro experiments conducted in this study.

All mice were housed in groups and maintained on a 12-hour

light/dark cycle with ad libitum access to food and water. After

mice were sacrificed by cervical dislocation, the neural precursor

activity was examined as described in detail in a previous study

[34]. The isolated hippocampal tissue was minced to obtain a

single cell suspension. The cell suspension was cultured in

complete neurosphere medium containing EGF and bFGF, in

the presence of norepinephrine (10 mM) or potassium chloride

(15 mM). The primary neurospheres were collected on day 14 for

each treatment. Total RNA was extracted from neurospheres

using TRIzol Reagent (Life Technologies) and chloroform (Sigma-

Aldrich) followed by precipitation and washing with isopropanol

and ethanol respectively. RNA samples were treated with the

Ambion DNA-free kit (Life Technologies) according to the

manufacturer’s instructions to remove any contamination from

genomic DNA. DNase-treated samples were assessed for their

RNA integrity number (RIN) using an Agilent RNA 6000 Pico Kit

(Agilent Technologies) on the Agilent 2100 Bioanalyser according

to the manufacturer’s instructions. RNA samples with a RIN

greater than 8 were selected and a total of 100 ng was used for

each sample for sequencing. Total RNA was quantitated using the

QuBit RNA assay kit (Life technologies, cat#Q32852). Sequence

libraries were generated using the Illumina TruSeq RNA Sample

Preparation Kit v2 (cat#RS-122-2001), with sample indexing/

multiplexing. A total of four libraries (four biological replicates)

were prepared for each of the treatment groups and sequenced

using the Illumina Hiseq2000 platform. Data generated from

potassium treatment group is referred to as ‘‘K’’, and data from

norepinephrine treatment is referred to as ‘‘N’’, hence the ‘‘K_N’’

dataset. In total, 476.38 M paired-end reads with a read length of

101 bp62 were generated (231.55 M for K and 244.83 M for N),

and we refer the full dataset of ‘‘K_N’’ as ‘‘K_N_full’’. The data

sizes of the four biological replicates in each group are shown in

Table S2.

In order to investigate the impact of sequencing depth on the

performance of three software tools, we randomly subsampled four

subsets of data with different sequencing depths from the

‘‘K_N_full’’ dataset. Each subset contains the balanced dataset

around 30 M, 20 M, 10 M, 5M for each individual sample, and

these subsets are named as ‘‘K_N_30M’’, ‘‘K_N_20M’’,

‘‘K_N_10M’’ and ‘‘K_N_5M’’, respectively. In order to study

the effects of unbalanced sequencing depth between treatment

groups, another two subsets were generated. One subset includes

30 M of data in the ‘‘K’’ group but 5 M in the ‘‘N’’ group, and

this subset is denoted as ‘‘unbalanced between groups 1’’. The

other unbalanced subset includes all data in the ‘‘K’’ group but

20 M in the ‘‘N’’ group and it is denoted as ‘‘unbalanced between

groups 2’’.

3. The lymphoblastoid cell lines dataset:. The lympho-

blastoid cell lines (LCL) RNA-Seq datasets were generated by

Pickrell et al. [35]. It is a large population based RNA-Seq

experiment, which sequenced 69 cell lines derived from Yoruban

individuals from Nigeria by the International HapMap Project.

Each sample was separately prepared and sequenced at two

independent sequencing centers (the Yale sequencing center and the

Argonne sequencing center) using the Illumina GAII platform.

In this study, we used samples with more than 8 M reads per

individual from those sequenced at Yale to gain enough sequencing

depth for each sample, which resulted in 40 samples in total (NCBI

SRA accessions: SRR031811 - SRR031820, SRR031839, SRR031840,

SRR031843 - SRR031846, SRR031848, SRR031857 - SRR031861,

SRR031867 - SRR031875, SRR031877, SRR031893 - SRR031896,

SRR031898, SRR031899, SRR031955, SRR031956). From these

40 individuals, we randomly selected and assigned N (N=20, 14, 8,

6, 5, 4, 3, 2, 1) samples to each of the two hypothetical treatment

groups. N is the number of biological replicates in each hypothetical

treatment group. We expect no differentially expressed genes

between the two hypothetical groups because samples were

randomly selected from a same population. This dataset (hereafter

referred to as the LCL1 dataset) is used to estimate false positive

rates for the three software tools.

Comparisons of methods based on real RNA-Seq data are

limited because a complete list of true DEGs and non-DEGs is not

known. Therefore, we also used simulated data with known DEGs

to estimate the true positive rate and false positive rate.

Specifically, we simulated DEGs in two hypothetical groups using

a strategy similar to that described in [29]. Briefly, DEGs were

simulated to a random sample of 10% of the total genes. The

count values of these DEGs were generated by scaling their

original raw counts by exp{(21)idj} where two different groups are

indexed by i = 1, 2 and dj follows a two component normal

distribution with parameter m= (20.5, 0.5) and s= (0.7, 0.7). We

employed this simulation design based on the LCL1 dataset.

According to the simulated count values, bam files were generated

by randomly adding or removing aligned reads using custom

PERL scripts and SAMtools [36] for the application of Cuffdiff2.

This dataset is named as the LCL2 dataset.

In addition, five randomly subsampled subsets (hereafter we

referred as the LCL3 dataset) were generated based on the LCL2

dataset to test performance of each of three software tools using RNA-

Seq datasets with different sequencing depths or with unbalanced

sized data between/within groups, named as ‘‘S1_8M_balanced’’,

‘‘S2_5M_balanced’’, ‘‘S3_1M_balanced’’, ‘‘S4_5M_1M_btw’’ and

‘‘S5_5M_1M_within’’. Of them, ‘‘S1_8M_balanced’’, ‘‘S2_5M_ba-

lanced’’ and ‘‘S3_1M_balanced’’ are subsets with around 8 M, 5 M

and 1 M number of reads, respectively, for each sample in both

conditions. ‘‘S4_5M_1M_btw’’ is the subset with numbers of reads

being much higher in one condition (5 M) than that in the other

condition (1 M). ‘‘S5_5M_1M_within’’ is the subset that the data size

is unbalanced within each condition (i.e. numbers of reads for some of

the samples in condition 1 and condition 2 are around 5 M while

numbers of reads of other samples are around 1 M). See details in

Table S3 in Supporting Information S1 for the information of each

subset of LCL3 dataset. All studies for LCL1, LCL2 and LCL3

datasets were performed based on 10 independent simulations and

the average values (i.e. number of DEGs, false positive rate and true

positive rate) of the10 simulations were used.

Benchmark datasets
1. Quantitative RT-PCR data:. The results of quantitative

RT-PCR (qRT-PCR) data from NCBI GEO (series ID GSE5350)

was used as gold standard to evaluate the performance of three

tools based on MAQC RNA-Seq datasets. We downloaded the

four technical replicates of the uhr sample from GSM129638 to

GSM129641, and the four technical replicates of the brain sample

Differential Expression Analysis on RNA-Seq Data
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from GSM129642 to GSM129645, with a total of 1044 genes in

the list. Among these genes, only those genes with the unique

matched Refseq (hg19) gene ID were kept and genes with zero

read counts in all samples of qRT-PCR were filtered out. The log2

ratio of fold change (log2FC) of the gene expression value between

hbr and uhr was calculated according to Bullard et al.’s study [19].

Genes with |log2FC|.2 (more than 4 fold differentially expressed

between hbr and uhr) are considered as differentially expressed

(the positive set). In contrast, genes with |log2FC|,0.2 are

considered as the negative set. Among the 1044 genes, 410 genes

are in the positive set and 86 genes are in the negative set.
2. Microarray data:. Microarray data for the neurosphere

samples was generated at Queensland Brain Institute. Briefly,

RNA was isolated from neurospheres generated in presence of

either N or K (n= 3 each, two biological replicates in common

with the RNA-Seq data) and converted to cDNA using Applause

WT-Amp ST kit (NuGEN). Fragmentation and biotin labelling of

the cDNA was carried out using Encore Biotin module (NuGEN)

for Affymetrix GeneChip Mouse Gene 1.0 ST arrays. Labelled

cDNA was hybridised to arrays in an oven at 45uC. Hybridised

arrays were scanned using the Affymetrix GeneChip Scanner and

the scanned data (.CEL files) was transferred to the Partek

Genomics Suite and data analysis was carried out as described in

Narayanan et al.’s study [37]. The results of cDNA microarrays

have been employed to verify the performance of three software

programs based on K_N RNA-Seq datasets. Among total 35557

genes of K_N microarray data, only genes with the unique

matched Refseq (mm10) gene ID were retained. Genes with

|log2FC|.1 and the corresponding P-value less than 0.05 were

chosen as the positive set whereas genes with the |log2FC|,0.1

and the P-value larger than 0.1 were chosen as the negative set. In

total, we obtained 77 genes in the positive set and 9072 genes in

the negative set from this microarray benchmark data.

Differential expression analysis for RNA-Seq datasets
Our basic analyses followed the general workflow depicted in

Figure 1. Briefly, Tophat (version 2.0.8) [38] was used to align the

short reads to the reference human genome (hg19) for MAQC and

LCL datasets and mouse genome (mm10) for K_N dataset.

Cuffdiff2 was then used to generate the list of DEGs. For input

into the DESeq and edgeR packages, the raw count table was

produced by HTseq-count (version 0.5.4p2) and then the lists of

DEGs were generated as recommended in the manuals of these

two packages. An example of detailed commands for the

differential expression analysis is listed in File S1 in Supporting

Information S1.

Evaluation of the performance of three techniques for
detecting DEGs
The area under the receiver operating characteristic (ROC)

curve (AUC) is used to evaluate the performance of different

techniques for the detection of DEGs as suggested in [32]. For the

MAQC RNA-Seq data, we compared the results of each software

program with the positive and negative sets from qRT-PCR. For

the K_N dataset, we compared the results from the full dataset and

its subsets with the positive and negative sets from the microarray

data. For the LCL dataset, since we introduced DE genes by

simulation, a full set of known DEGs and non-DEGs could be used

to evaluate the performance of three methods. Thus, true positives

(TP), false positives (FP), true negatives (TN) and false negatives

(FN) are calculated based on the comparison results between

RNA-Seq datasets and the positive and negative sets of the

corresponding benchmark dataset. The false positive rate (FPR)

and the true positive rate (TPR) are defined as follows: FPR=FP/

(FP+TN), TPR=TP/(TP+FN), (see also Table S4 in Supporting

Information S1).

The relationship between TPR and FPR is depicted by the

ROC. As pointed out by [32], two kinds of AUC can be calculated

in our experiments: (1) AUC1 is the area under the ROC curve in

the full range of FPR, i.e. 0#FPR#1 and the maximum AUC1 is

1; (2) AUC2 is the area under the ROC curve in the range of 0#

FPR#0.05 and the maximum AUC2 is 0.05. AUC1 reflects

overall performance of identification of DEGs for each tool. In

contrast, AUC2 reflects the relative performance when we limit

the range of the false positive rate to that often applied in discovery

analyses.

Data and source codes availability
The K_N RNA-Seq dataset has been deposited in the NCBI

SRA with accession ID SRX516577. The microarray data for the

neurosphere samples has been deposited in the NCBI Gene

Expression Omnibus with accession ID GSE57440.

Analysis pipelines with detailed descriptions for subsampling

datasets and generating BAM files based on simulated count

values are listed in File S1 in Supporting Information S1. All

custom PERL scripts mentioned in our analysis pipelines can be

downloaded from GitHub https://github.com/Qiongyi/RNA-

Seq-comparison/.

Results and Discussion

Biological and technical replicates
We first investigated the impact of biological and technical

replicates on the performance of differential expression analysis for

each of three tools. The MAQC RNA-Seq datasets include two

technical replicates that were independently generated in two

different laboratories. The K_N RNA-Seq dataset as well as its

subsets include 4 biological replicates. The LCL RNA-Seq dataset

as well as its subsets include 20 biological replicates in each group.

All datasets have been processed through the analysis pipeline

shown in Figure 1 (reference genome available).

As expected, analyses from all three software tools with

biological replicates or technical replicates outperform those

without replicates as judged by both AUC1 and AUC2 (Figure 2

A–I). Interestingly, the performance of edgeR seems to be

independent of the number of replicates for the MAQC dataset

(Figure 2 C) but not for the other two datasets (Figure 2 F and I),

which can be explained as follows. A parameter, the biological

coefficient of variation (BCV), has to be set manually when there

are no replicates. As documented [8], the BCV for datasets arising

from well-controlled experiments is about 0.4 for humans. We thus

set the BCV value to 0.4 when we employed edgeR to analyze the

MAQC dataset and it seems that 0.4 is ideal for the BCV value for

this MAQC dataset. On the other hand, when edgeR was

employed in the context of no biological replicates for the K_N

dataset, we set BCV to be 0.4, but for this mouse dataset the

performance of edgeR is poor (Figure 2 F, blue solid line). After

optimizing the BCV to 0.2, the performance was dramatically

improved (Figure 2 F light blue dotted line), though not perfectly

matching the performance of conditions with replicates. It

demonstrates that achieving the optimum BCV value is critical

for the performance of edgeR when there are no replicates

available.

For the K_N dataset, the incremental improvement became

smaller as judged by the AUC as the number of biological

replicates increased (Figure 2 D–F). However, for the LCL

dataset, we always see an obvious improvement with increasing

number of replicates until N=14 replicates (Figure 2 G–I). With
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an increasing number of biological replicates, we expect more

statistical power for the identification of DEGs, and a positive

correlation between DEGs and the number of biological replicates

is found for all three tools (Figure 3 A–B). Indeed, the correlation

is almost linear between the number of detected DEGs and the

number of biological replicates for DESeq and edgeR using the

K_N dataset, whereas a different pattern is observed when using

the LCL2 dataset, which indicates that the power for the detection

of DEGs reflects both the amount of biological variation in the

samples and the number of biological replicates. Based on the

LCL2 dataset, the number of DEGs detected by Cuffdiff2

increases steadily with the number of replicates but with an

obvious drop in the number of detected DEGs with 5 biological

replicates (Figure 3 B). In contrast, a previous study reported that,

with Cuffdiff2, the number of detected DEGs decreased when the

number of samples increased [39]. These differences may be due

to the fact that different versions of Cuffdiff2 were used between

the studies and this could affect the performance of Cuffdiff2,

which is also mentioned in Seyednasrollah et al.’s study [39].

Generally, although each tool adopts different underlying

statistical models to identify DEGs from RNA-Seq data, they all

need replicates to separate the real differences between treatment

groups from the random variation within groups. In the LCL

dataset, when the amount of biological variation in the samples is

large, all three tools take advantage of biological replicates to gain

better performance. Recent studies [39,40] also demonstrated the

importance of biological replicates for current RNA-Seq analysis

tools to detect real biological differences in the presence of random

biological variation, with Seyednasrollah et al. reporting that the

SAMseq method exhibited most sensitivity to the number of

replicates [39].

The effects of the sequencing depth
To determine how sequencing depth affects the performance of

differential expression analysis for the three software tools, we

randomly subsampled seven subsets of data with different

sequencing depths from the K_N and LCL datasets. The results

of experiments from both the K_N and LCL datasets show that

Figure 2. The effects of replicates for detecting DEGs based on ROC curves. ROC curves for evaluating the performance of Cuffdiff2, DESeq
and edgeR on 1 to 2 technical replicates based on the MAQC dataset (A–C), 1 to 4 biological replicates based on the K_N dataset (D–F), and 1 to 20
biological replicates based on the LCL2 dataset (H–I).
doi:10.1371/journal.pone.0103207.g002
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Cuffdiff2 is the most sensitive to sequencing depth while the

performance of DESeq and edgeR are stable under different

sequencing depths (Figure 4 A–F). It suggests that DESeq and

edgeR are a better choice than Cuffdiff2 for differential expression

analysis when sequencing depth is low (i.e. number of reads ,

10 M). The results here also indicate that 20 M reads are sufficient

for DEGs analysis using Cuffdiff2, which is a relatively cost-

effective sequencing depth. However, as expected, the number of

DEGs discovered by each tool decreased with a reduction in

sequencing depth (Figure 5 A–B), which is in line with a previous

study [41]. EdgeR identifies more DEGs (Figure 5) but also has a

higher FPR in simulated data (see below).

The effects of unbalanced sequencing depth
In order to understand the impact of unbalanced sequencing

depth on the performance of each tool for differential expression

analysis, we made comparisons based on subsets of data from the

K_N and LCL datasets with balanced sequencing depth among all

samples, unbalanced sequencing depth within groups and

unbalanced sequencing depth between groups. The sequencing

depth of the K_N_full dataset is unbalanced within groups, as

shown in Table S2 in Supporting Information S1, with the data

sizes ranged from 30 M to 116 M.

We observed from both K_N and LCL datasets that DESeq is

(marginally) most sensitive to unbalanced sequencing depth

between groups (Figure 6). AUC1 of DESeq decreases and

AUC2 slightly decreases when using unbalanced subsets (Figure 6

B and E). Cuffdiff2 is more sensitive to overall sequencing depth

Figure 3. The effects of biological replicates on the differential expression analysis. The numbers of differentially expressed genes
identified by each of three tools under different numbers of biological replicates based on the K_N dataset (A) and the LCL2 dataset (B).
doi:10.1371/journal.pone.0103207.g003

Figure 4. The effects of sequencing depth for detecting DEGs. ROC curves for evaluating the performance of Cuffdiff2, DESeq and edgeR with
different sequencing depths based on the K_N subsets (A–C) and the LCL3 simulated dataset (D–F).
doi:10.1371/journal.pone.0103207.g004
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rather than unbalanced sequencing depth between groups

(Figure 6 A and D). EdgeR has the maximum AUC1 and

AUC2 under these scenarios without obvious negative effects from

unbalanced sequencing depth (Figure 6 C and F).

Trade-off between sequencing depth and number of
replicates
Since budgetary constraints are common with sequencing,

optimal experimental designs need to balance the sequencing

depth for each sample with the number of replicates for each

group. As our results show (Figures 2 and 4) and as others have

reported [40,42], the overall impact of the sequencing depth is not

as critical as the number of biological replicates. Including

sufficient biological replicates should be a prime consideration

for RNA-Seq study designs, and determining a suitable number of

biological replicates is a key question. Based on overall perfor-

mance as judged by AUC1, in the controlled groups of our mouse

neurosphere project our results suggest that N= 3 or 4 replicates is

sufficient (Figure 2 D–F), but the number of detected DEGs

continues to increase linearly as the number of replicates increases

(Figure 3 A), although our expectation is that the linear increase

will not continue. For example, Seyednasrollah et al. showed that

Figure 5. The effects of sequencing depth on the differential expression analysis. The numbers of differentially expressed genes identified
by Cuffdiff2, DESeq and edgeR are shown based on the K_N subsets (A) and the LCL3 simulated dataset (B).
doi:10.1371/journal.pone.0103207.g005

Figure 6. The effects of balanced and unbalanced depths of reads for detecting DEGs based on ROC curve. ROC curves for evaluating
the performance of Cuffdiff2, DESeq and edgeR on balanced and on unbalanced depths of reads based on the K_N dataset (A–C) and the LCL3
simulated dataset (D–F).
doi:10.1371/journal.pone.0103207.g006
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the number of DEGs plateaus at 4–6 replicates (samples from

inbred mice) using tools such as DESeq, edgeR, baySeq, limma,

etc. [39]; their study may be similar to our K_N dataset. In

contrast, we find in the LCL data derived from unrelated Yoruban

individuals that although the number of detected DEGs changes

little after N=4 replicates (Figure 3 B), the overall performance

continues to increase (as judged by AUC1 in all three tools,

Figure 2 G–I) as the number of biological replicates increases,

presumably reflecting increasing accuracy of the detection of

DEGs. This indicates the importance of biological replicates to

uncover real biological differences when random biological

variation within groups is relatively large. Under a fixed budget,

the cost of generating biological replicates must be factored into

the experimental design, and on balance, we advise maximizing of

the number of biological replicates within these constraints.

Our results suggest that more biological replicates are required

to identify DEGs using RNA-Seq when studying human cell lines

from unrelated individuals in the same ethnic group than

equivalent studies based on neurosphere cells from inbred mice.

This suggests that the amount of biological variation in the

samples to be sequenced should be a major consideration when

determining the optimal number of biological replicates required

for a given RNA-Seq study. It is likely that more biological

replicates will be required in animal/human tissue samples

compared to human cell lines or cells from inbred lab strain

models. However, more gold standard datasets for benchmarking

and more comprehensive evaluations based on these datasets are

required to guide future RNA-Seq study designs in terms of the

optimal number of biological replicates relative to the amount of

biological variation in the samples.

The performance of three tools
For all three datasets, we find that edgeR performs slightly

better than the other two tools as judged by the two AUC statistics

(Figure 7 A–C). A recent update of the Cufflinks software package

(version 2.1) introduced a new testing method into the Cuffdiff2

program that aimed to substantially improve performance over

previous releases. For comparison we also evaluated the pre-

update version of the Cuffdiff2 program (v2.0.2). We find that the

versions do perform differently under our test scenarios both in

terms of the AUC statistics (Figure 7 A–C) and the number of

identified DEGs (Figure S1 in Supporting Information S1).

Surprisingly, we noticed that the performance of Cuffdiff2

(v2.0.2) was inversely correlated with the number of biological

replicates in our LCL dataset when the number increased from 3

to 14, and the best performance as judged by AUC1 and AUC2

was achieved when there are 3 to 5 biological replicates (Figure S2

in Supporting Information S1). The overall performance of

Cuffdiff2 for differential expression analysis at gene level resolution

is not as good as that of the two count based tools evaluated in this

study, as judged by both AUC1 and AUC2 (Figure 4 and Figure 7

A–C). One qualification is that Cuffdiff2 achieves similar

performance compared with DESeq when there is sufficient

sequencing depth (i.e. $20 million reads) for each individual

sample (Figure 4 A and B). A possible explanation is that Cuffdiff2

transforms the alignment results to FPKM (Fragments Per

Kilobase of gene model per Million fragments mapped) values

rather than to raw count values. It then performs statistical tests

based on the beta negative binomial model, under the assumption

that this reflects the underlying distribution of the FPKM.

However, FPKM, or its counterpart RPKM (Reads Per Kilobase

Figure 7. The performance of the three tools. ROC curves of the three tools are shown based on the MAQC (A), K_N (B) and LCL2 (C) datasets.
Venn diagrams are used to show the intersection of the numbers of the differentially expressed genes identified by three tools compared with the
benchmarks based on MAQC (D), K_N (E) and LCL2 (F).
doi:10.1371/journal.pone.0103207.g007
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of gene model per Million reads mapped) when a single-end

sequencing strategy is applied, may not be an appropriate way to

normalize RNA-Seq data, as discussed in many studies [43,44].

For example, FPKM normalization has been shown to reduce

sample variability when compared with raw counts, with the

resulting bell-shaped curve slightly skewed towards negative values

rather than centered over a zero value [44]. A more recent study

also indicated that transcript length normalization may not be a

good strategy and may cause conservative bias in Cuffdiff2 [45].

In this study, although most of the DEGs identified by each of

three tools overlapped, edgeR always detected more DEGs than

the other tools, with a number of DEGs identified exclusively by

edgeR (Figure 7 D–E). However, identification of more DEGs is

not always a good thing, since it may introduce more false positives

that make the experimental validation difficult. As an example

shown in the comparison between DEGs identified by edgeR and

true DEGs generated by simulation, edgeR introduced the most

(108) false positives compared with Cuffdiff2 (77) and DESeq (8)

(Figure 7 F). Using the LCL1 dataset, where we expect no

differentially expressed genes between groups, we found all three

tools performed well with reasonably small false positive rates.

DESeq achieved the best performance in this scenario with the

least number of false positives when there were biological

replicates available (Table S5 in Supporting Information S1).

It is interesting to note that, although both DESeq and edgeR

are negative binomial distribution model-based algorithms using

the same count matrices as input, many genes with high fold

change were picked up by edgeR but not by DESeq (Figure S3 in

Supporting Information S1). When we looked into these particular

DEGs, we observed that these DEGs were either lowly expressed

(small raw read count values) or highly variable amongst biological

replicates (i.e. high variance within groups) (File S2 in Supporting

Information S1), indicating that DESeq is more conservative than

edgeR in identifying DEGs under these conditions. This is in line

with findings from previous studies [28,29] which found that

DESeq is more conservative than other evaluated count based

tools. We also observed that DEGs exclusively identified by either

DESeq or edgeR showed a broader range of fold change than that

of Cuffdiff2-exclusive DEGs (Figure S3 in Supporting Information

S1). Since Cuffdiff2 is optimally designed to detect differential

expression at the transcript level based on different underlying

models and assumptions compared to DESeq and edgeR, it is not

surprising that there are differences in the statistical significance

testing for the identification of DEGs.

Limitations
Our study has several limitations that may constrain general-

ization of results. Firstly, we considered only three experimental

designs, one with two technical replicates, one with four biological

replicates, and one from simulation based on real RNA-Seq data

with 20 biological replicates. Comparisons may need to be made

over a broader range of scenarios to draw general conclusions.

Secondly, to determine true and false positive rates of the tools we

had to benchmark against a ‘‘gold standard’’ for real RNA-Seq

data. Here the DEGs from the benchmarked data sets were

obtained from qRT-PCR or microarray analyses. However, false

positives may exist in these lists. For the mouse neurosphere

project only 77 genes were selected as a positive set from the

microarray results, which may mislead the interpretation when

compared with RNA-Seq results. Considering this, we attempted

to overcome these limitations by also using simulated data sets in

which DEGs were known. Thirdly, in the mouse neurosphere

project two of the three biological replicates in the microarray

experiment were in common with the RNA-Seq analysis. A

cleaner interpretation would be achieved by the benchmarked set

being either fully the same or fully different. Fourthly, there are

several other count matrices based tools available for the

differential expression analysis, such as NBPSeq [46], baySeq

[47], SAMSeq [48] and ShrinkSeq [49], among others, but a

thorough comparison of all these tools is beyond the scope of the

present study. Despite these limitations, data sets that allow

benchmarking in this way are relatively rare and so we draw the

best conclusions within these constraints.

Conclusions

In this study, we conducted a comprehensive investigation to

evaluate the performance of three of the most widely used software

tools (Cuffdiff2, DESeq and edgeR) for differential expression

analysis of RNA-Seq data while considering a number of

important parameters of RNA-Seq experiments, including num-

ber of replicates, sequencing depth, and the unbalanced data

within or between groups. By using the results from qRT-PCR

and microarrays as benchmarks, we observed that edgeR performs

better than DESeq and Cuffdiff2 in terms of the ability to uncover

true positives with the default FDR setting (FDR,0.05). However,

this reflects that edgeR could always detect more DEGs than the

other two tools (e.g. For the K_N dataset, 8% and 38% more than

Cuffdiff2 and DESeq respectively), which may also introduce more

false positives. All three tools perform much better when there are

biological or technical replicates available. Consistent with

previous studies it suggests that biological replicates are a key

factor for differential expression analysis in RNA-Seq datasets

[50]. The optimal number of biological replicates is strongly

dependent on variability between biological replicates. In exper-

iments designed with no replicates, edgeR is recommended but the

value of BCV should be carefully set based on pilot data.

Our results show that Cuffdiff2 is most sensitive and DESeq is

least sensitive to sequencing depth, but the overall impact of

sequencing depth is not as critical as the number of biological

replicates, which is in agreement with previous studies [40,42]. As

our results indicate, the recommended sequencing depth for

mouse RNA-Seq is around 20 M for each sample if Cuffdiff2 is to

be used. When resources are limited, for the same number of total

reads, an increased number of biological replicates each with

reduced read depth is recommended over fewer replicates more

deeply sequenced. In addition, DESeq is more sensitive to

unbalanced sequencing depth between groups than the other

methods. EdgeR has the best performance as judged by two AUC

statistics without obvious negative effects under unbalanced

sequencing depth.

No single method is clearly superior for differential expression

analysis, since each has particular strengths that may be suitable

for specific RNA-Seq datasets. Considering the overall perfor-

mance based on three independent datasets in this study, Cuffdiff2

is not recommended for differential expression analysis at gene-

level resolution, particularly if sequencing depth is low (i.e. ,10

million reads per individual sample). DESeq or the intersection of

DEGs from two or more tools is recommended if the number of

false positives is a major concern in the study. DESeq is not

recommended if sequencing depth is unbalanced between groups,

although down-sampling of the libraries to a common size before

processing with DESeq may ameliorate this problem - an

approach used by NBPSeq [46]. Since titration of Illumina

RNA-Seq libraries is difficult and multiplexing of samples is

common (e.g. typically 3–12 libraries per HiSeq2000 lane), it is

largely expected to have unbalanced library sizes or low

sequencing depth for some samples. EdgeR can tolerate both of
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these factors and thus is slightly preferable for differential

expression analysis at the expense of potentially introducing more

false positives.

Supporting Information

Supporting Information S1 Figure S1, Venn diagram showing

the number of differentially expressed genes identified by two

versions of Cuffdiff2. Figure S2, The effects of biological replicates

on the differential expression analysis for Cuffdiff v2.0.2. Figure

S3, The detected fold changes of all the differentially expressed

genes identified by three tools were compared and shown,

including DESeq vs. edgeR (top panel), DESeq vs. Cuffdiff2

(middle panel) and edgeR vs. Cuffdiff2 (bottom panel). File S1,

Analysis pipelines, methods and examples of commands for

differential expression analysis, subsampling fastq files and

generating SAM/BAM files based on simulated count values. File

S2, The raw count values for genes with high fold changes were

picked up by edgeR but not by DESeq. Genes with high fold

changes (the absolute value of log2 fold changes larger than 2)

identified as DEGs by edgeR but not by DESeq are listed in the

file. The gene ID, the log2 fold changes (logFC) and FDR from

DESeq, the logFC and FDR from edgeR, the raw count values for

the four replicates of sample K (K1–K4) and sample N (N1–N4)

are shown in each of the columns. Table S1, Numbers of reads for

the human hbr and uhr samples from the MAQC dataset. Table

S2, Numbers of reads for the mouse neurosphere samples for

treatment groups of K and N (the K_N dataset). Table S3, The

number of reads for each individual sample of the LCL3 dataset.

Table S4, The definition for TP, FP, TN, FN, TPR and FPR.

Table S5, The false positive rate for Cuffdiff2, DESeq and edgeR

based on the LCL1 dataset.
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