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The proliferation of low-cost colour imaging devices in the consumer market has led to a greater need
to transfer images from one medium or device to another without loss of colour fidelity. A common
solution is to characterise each device in terms of its CIE tristimulus values. In this paper two general
techniques, artificial neural networks and polynomial transforms, are compared for their usefulness in
characterising colour cameras. The neural and polynomial techniques are shown to give
approximately similar performance once the parameters of the models are optimised. Since neural
networks can be difficult and time-consuming to train, it is concluded that polynomial transforms offer
the better alternative for camera characterisation.

Introduction
The proliferation of low-cost colour imaging devices in the
consumer market has led to an increased need to be able
to transfer images from one medium or device to another
without loss of colour fidelity. A common solution is to
characterise each device in terms of CIE tristimulus values.
Supposing, for example, one wished to capture an image
using a digital camera and then display the image on a
computer monitor. It would be possible, with appropriate
characterisation procedures, to convert the camera RGB
values to CIE XYZ values and in turn convert these XYZ
values to computer monitor RGB values. This paper
presents experimental data derived from a camera system,
to compare directly two mathematical techniques which
can be used for characterisation. These are polynomial
transforms and artificial neural networks.

Typical digital colour cameras capture device- and
illuminant-dependent images. In other words, the RGB
values which a camera measures are specific to that camera
and the illuminating conditions under which it is used. The
camera RGB values are illuminant-dependent, because they
describe the colour of the image only when viewed under
the light source that was used during capture. This device
dependency means that in order to display the captured
image on a display monitor, for example, it is necessary to
convert the camera RGB values to monitor RGB values.

Characterisation is the relationship between the device co-
ordinates, usually RGB or CMYK and a device-independent
colour space such as CIE XYZ [1,2]. Characterisation of
devices into a standard colour space that is independent of
the device reduces the number of transformations which
may need to be performed.

Before a device can be characterised it must be calibrated.
This is defined as the setting of the imaging device in an
identified state to ensure that the device can produce
consistent results. Green argues that there are three main
methods for achieving characterisation mappings: physical
models, look-up tables and numerical methods [3]. Most
practical applications of characterisation for camera systems
involve either look-up tables or numerical methods.

Look-up tables
In the use of look-up tables, a large number of examples of
camera RGB values and corresponding CIE XYZ values are
obtained and used to define the mapping. Interpolation is
inevitably required to implement the mapping for samples
not present in the look-up table. In numerical methods a
series of coefficients are determined, usually based upon a
set of measured samples, with only minimal prior assump-
tions about the physical behaviour of the device. Look-up
tables are frequently encountered in the characterisation of
colour printers.

Numerical methods
Polynomial transforms are widely used for camera and
monitor characterisation. A key property of any transform
is whether it can easily be inverted. The advantage of a
linear transform is that it is a simple matter to invert a
transform that computes XYZ values from RGB values to one
that computes RGB values from XYZ values, whereas
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polynomials and many empirical models are not easily
inverted [4]. If inversion is not possible then iteration may
be required to perform the inverse mapping [5].

For many cameras the process of characterisation can be
considered to consist of two stages. The first stage performs
a linearisation, termed gamma correction for certain
devices. The second stage transforms the linearised values
into CIE XYZ tristimulus values. Practical device
characterisation will almost certainly require that the spatial
and temporal properties of the device are accounted for.

It is important to note that effective characterisation is
usually only practicable if the camera does not perform
automatic white-point balancing. This is a process in which
the brightest patch in any captured image scene is denoted
as white and the RGB values of each pixel are transformed
accordingly [6].

Although the physical response of a charge-coupled
device (CCD) material is linearly related to the intensity
of the light falling on it, the RGB outputs of a digital camera
are often not linearly related to the XYZ tristimulus values
of the surfaces in the scene. The raw channel responses are
invariably processed by on-board software in an attempt
to generate RGB responses more closely related to the CIE
tristimulus values. Furthermore, many manufacturers
impose a nonlinearity during this ‘matrix-mixing’ stage to
match approximately the inverse of the nonlinearity of
display systems, or as part of the provision of high signal-
to-noise ratios. It is therefore common to consider a
correction for nonlinearity as the first stage of the camera
characterisation process. It would be possible, for example,
to consider a relation of the form shown in Eqn 1:

C Ri i
p i= ( ) ( ) (1)

where Ri is the raw response of the camera channel i, p(i)
is an exponent for the channel, and Ci is the output camera
response for that channel. A set of grey scale samples is
often used to determine empirically the exponent p. Thus
the output camera responses are determined for a range of
grey samples under an identified constant light source. The
XYZ values can then easily be computed for the grey
samples from their known spectral reflectance values, or
measured directly using a colorimeter. Linearisation may
be achieved by finding a value of the exponent p such that
a linear relationship is shown between Ci and the CIE Y
value for the set of grey samples. The grey samples of the
Munsell ColorChecker provide a convenient grey scale for
this purpose.

The second stage of camera characterisation requires
that a mapping is found between the linearised camera RGB
values and the CIE tristimulus values. An example of such
mapping is shown as Eqn 2:
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Y a R a G a B

Z a R a G a B

= + +

= + +

= + +
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31 32 33

(2)

where the coefficients a11–a33 must be determined. If there
are n examples of camera responses and their
corresponding tristimulus values, then in terms of matrix

algebra it is necessary to find the 3 × 3 standard matrix A
(Eqn 3):

T CA= (3)

where T is the n × 3 matrix of tristimulus values, C is the
n × 3 matrix of camera values and A is a 3 × 3 matrix
containing the coefficients a11–a33. The matrix A may be
found directly (Eqn 4):

A C T= −1 (4)

where C–1 denotes the inverse of the matrix C. When C is a
square matrix the system of equations has a single and
unique solution. For over-determined systems, however, in
which there are more equations than variables, a solution
of Eqn 3 may be obtained by computing the psuedo-inverse
of C, denoted C+ (Eqn 5).

A C T= + (5)

Methods for computing the inverse and pseudo-inverse
are widely discussed in the literature [5,7,8] and can easily
be performed using a programming language such as
MATLAB, which provides the function pinv to allow the
psuedo-inverse to be computed. For trichromatic cameras
the system is almost always overdetermined, since more
than three coloured patches are usually used to define the
mapping. The use of pseudo-inverse methods effects a least-
squares fit solution to Eqn 3.

Once the entries of the system matrix A have been
determined it is easy to compute the tristimulus values for
any set of camera responses using Eqn 3. It is also a simple
matter to invert Eqn 3 to allow the camera responses to be
predicted from the tristimulus values.

The linear transform shown in Eqn 3 is a special case of
the set of polynomial transforms. Practically, higher order
(nonlinear) transforms are often used [9], for example that
shown in Eqn 6.
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(6)

This can also be expressed in matrix form (Eqn 7):

T DA= (7)

where T is the n × 3 matrix of tristimulus values and D is
the n × 6 matrix of augmented monitor values, where each
row contains six terms: [R G B R2 G2 B2]. In order to define
this transform it is necessary to find the 6 × 3 standard
matrix A.  The methods for solving Eqn 7 are exactly the
same as those for solving Eqn 3.

Artificial neural networks
An alternative method to achieve a mapping between
camera responses and tristimulus values is to use artificial
neural networks (ANNs). There are many different types
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of ANN, and extensive literature is available to explain the
principles and algorithms of neural computing [10–13]. It
is sufficient here to describe briefly one class of ANN
known as a multilayer perceptron (MLP).

An MLP consists of layers of processing units known as
neurones. Each unit receives input and performs some
function upon this input to produce an output. The function
between input and output for any unit is known as the
activation or transfer function and is normally nonlinear.
A typical nonlinear transfer function is the sigmoid function
(Eqn 8):

f( ex x) /( )= + −1 1 (8)

where the input to the unit is x and the output is f(x). Linear
transfer functions are sometimes used for the units in the
output layer. The input for each unit is the weighted sum
of the outputs from all of the units in the previous layer.
The units in the first layer, known as the input layer,
receive their input from an input vector. Those in the final
layer, the output layer, generate an output vector. Each unit
in the hidden and output layers also receives weighted
input from a bias unit, whose output is fixed at unity. This
is illustrated in Figure 1, in which the circles show the
processing units, arranged in layers. Each unit in the hidden
and output layers computes a weighted input of the outputs
from those in the previous layer and the bias unit. It then
computes an output value based on the weighted input and
the activation function for that unit. Each line in Figure 1
represents a weighted connection, and the network is
trained by finding the values of the weights for each
connection.

The network as a whole can be regarded as a universal
function approximator that attempts to find a mapping
between input and output vectors. The network is trained
by finding the set of weights that produce the smallest
difference between the actual and target output vectors for
a set of samples known as the training set.

The number of units in the input and output layers are
determined by the nature of the problem being solved. If,
for example, the network is being used to perform a
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Figure 1  Schematic diagram showing how a neural network
can be used to find a mapping between the RGB values (input
vector) and the XYZ values (output vector)

mapping between one three-dimensional vector (RGB) and
another (XYZ), there would be three units in each of the
input and output layers, as shown in Figure 1. However,
the number of hidden layers, and the number of units in
each, must be determined empirically.

For ANNs it is particularly important to distinguish
between the training and the testing modes. However, the
following discussion of memorisation and generalisation,
and hence the need for separate training and test sets,
applies equally to the use of polynomial transforms. During
the training mode, examples of input–output pairs are
presented to the network. The error between the target
output and the actual output is computed using, for the first
iteration, random values for the weights, these being
modified to reduce the error. This process is repeated for
each input–output pair in the training set and the
presentation of the whole set in this way is known as a
training epoch. Effective training may require thousands,
or even hundreds of thousands, of epochs and typically the
training procedure is very computationally intensive.
However, at the end of the training period the values of the
weights are fixed. During the testing mode, input vectors
are presented to the network and output vectors are
computed. The ability of the trained network to map the
input training vector to the output training vector is known
as the training error.

Generalisation is the ability of the network to operate
using data which were not used during the training period,
whereas memorisation is the ability of the network to
predict the training set. A useful transform or mapping
must have good generalisation properties, and a second data
set, known as the testing data set, is therefore used to
determine the testing error. A number of publications have
described attempts to characterise imaging devices using
ANNs [14,15].

Objective of the current study
The main purpose of the present work was to compare
directly and quantitatively the use of nonlinear transforms
and ANNs for the specific problem of colour camera
characterisation. For this comparison to be valid it was
necessary to use the same data and to explore fully the
parameters used in each approach.

Experimental
An Agfa digital StudioCam camera, a three-chip CCD
device with 8-bit resolution for each channel and 4500 ×
3648 pixel spatial resolution, was used in this study. During
the experiment the automatic white-balance setting was
disabled.

Two imaging targets, 166 Macbeth ColorChecker DC
(excluding the repeated grey-scale colours located around
the boundary of the chart) and 50 Natural Color System
(NCS) selected samples, were used for the characterisation.
The spectral reflectance factors of the patches on the two
charts were measured using an X-Rite 938 spectro-
densitometer. The colour distributions of the selected
ColorChecker DC and NCS samples are presented as a
CIELAB a*b* diagram in Figure 2.

A Minolta CS1000 spectroradiometer was used for the
measurement of the spectral power distribution of the
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illuminating source. The lighting system consisted of two
gas-filled tungsten lamps arranged approximately in a 0/45°
illumination and viewing geometry.

Linearisation and spatial correction
The linearisation and spatial correction method was based
on work by Sun and Fairchild [16]. The camera RGB
responses were measured for a series of Munsell grey chips
(N6/ to N9/ at 0.5 value intervals), an NCS uniform white
paper, and the dark condition (with the camera lens cap in
place). This allowed a gamma correction for the camera,
so that the camera responses could be converted to values
linearly related to the camera input. During the experiment
the camera and lighting positions were fixed, and the RGB
values of the Munsell grey chips were measured with each
in the centre of the camera field of view. Each patch
generated an image region of about 40 × 60 pixels, but the
values of the central sub-region (11 × 11 pixels) were
averaged to generate the mean RGB values for that patch.
For each camera channel, the camera responses for each
grey patch were plotted against the mean reflectance of
each, and the relationship was fitted using a second-order
polynomial. In this way a polynomial relationship was
established for each channel, and all subsequent camera
responses were linearised using these relationships before
further processing.

Spatial correction was performed in order to minimise
the effect of any lack of spatial uniformity in the intensity
of the illumination or of the sensitivity of the camera CCD.
For example, for the red channel, Eqn 9 was used to convert
the linearised channel response Ri′ to the spatially
corrected value RSi at each pixel position i. Thus:

R
R R R R

R Ri
i i

i i
S

W B B

W B
=

− × −
−

( ) ( )
( )

′
(9)

where RW and RB are the mean linearised channel values
for the uniform white and black (dark) samples,

–110

110

–110 110
b*

a*

DC
NCS

Figure 2  Colour distributions of 166 Macbeth ColorChecker DC
and 50 NCS samples in CIELAB a*b* diagram

respectively. RWi and RBi are the channel responses for the
uniform white and black (dark) samples at each pixel
location i, respectively. Similar equations were used to
obtain the spatially corrected values for the green and blue
channels.

Training/testing protocol
A selection of 166 patches from the Macbeth ColorChecker
DC chart and 50 NCS chips were used as training and
testing sets, respectively. These two characterisation stimuli
were used for memorisation and generalisation tests.
Smaller training sets were derived by randomly sub-
sampling the 166 patches to generate training sets
containing 120, 80 and 40 samples. The test set always
consisted of the 50 NCS patches.

Linear and polynomial transforms
Polynomial functions were used to perform a mapping
between a vector of camera responses c and a vector of
tristimulus responses t (Eqn 10):

t Ac= (10)

where A is the system matrix. For the linear transform, A
is a 3 × 3 matrix and c is a 3 × 1 matrix. The values of the
matrix A are easily determined using methods of linear
algebra [8]. So, for example, the polynomial represented
by Eqn 11 may be represented by Eqn 10 where A is a 3 ×
8 matrix and c is a 8 × 1 matrix of augmented RGB values
containing the terms [1 R G B R2 G2 B2 RGB].

X a bR cG dB eR fG gB hRGB

Y i jR kG lB mR nG oB pRGB

= + + + + + + +

= + + + + + + +

2 2 2

2 2 2

ZZ q rR sG tB uR vG wB xRGB= + + + + + + +2 2 2
(11)

In this study a variety of linear and nonlinear transforms
were evaluated and the augmented matrices c are listed
for each in Table 1.

Artificial neural networks
Fully connected multilayer perceptron networks were used
in this study to derive mappings between the camera
responses and tristimulus values. The networks always
contained three input units to receive the camera
responses, three output units to output the tristimulus
values, and a single hidden layer. The number of units N
in the hidden layer was varied to be 3, 5, 10, 18, 27 or 40.
The activation function of the units in the hidden and
output layers was the sigmoid function. The sigmoid
activation function can only output in the range [0,1] and
therefore the output data (tristimulus values) were scaled
to the range [0.1,0.9] before they were used for training.
The outputs of the trained network were rescaled back to
the original format before comparing them with the target
XYZ values. The networks were trained using the
Levenberg–Marquardt optimisation method for 100 epochs,
since it was determined empirically that training for
greater than this number of epochs did not improve the
results. Each time the network was trained the weights
were randomised to different starting values, and different
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Table 1  Definition of polynomial transforms used

A Augmented matrix

3 × 3 [R G B]
3 × 4a [R G B 1]
3 × 5 [R G B RGB 1]
3 × 10b [R G B RG RB GB R2 G2 B2 1]
3 × 20c [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R B2G R3 G3 B3 1]
3 × 35d [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R B2G R3 G3 B3

 R3G R3B G3R G3B B3R B3G R2GB RG2B RGB2 R2G2 R2B2 G2B2 R4 G4 B4 1]

a First order
b Second order
c Third order
d Fourth order

results were usually obtained. Each network was therefore
trained five times and the average performance calculated.

Evaluation of characterisation methods
CIE tristimulus values were computed for the patches using
the 1964 CIE observer data and the spectral power of the
light source used to illuminate the stimuli. Colour errors
between measured and estimated tristimulus values were
computed using the CIELAB colour difference formula. All
computations were performed in the MATLAB programming
environment.
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Figure 3  Effect of number of terms (m) in the polynomial model on training and testing performance: (a) median and (b) maximum
colour difference

polynomial model with median and maximum CIELAB
errors, for the matrix of size 3 × 20 (third order). Figure 4a
shows that the memorisation error decreased as the size of
the training set decreased, but as anticipated the reverse
trend was seen for the generalisation performance. However,
generalisation error was quite stable until the training set
size fell to fewer than about 100 samples. In the opposite
limit, as the number of training samples became large, the
performance of the models was statistically indistinguish-
able. Figure 4b shows that the maximum test error for the
polynomial model was generally stable except when the
training sample size was very small.

Neural network approach
Figure 5 shows the performance of the neural network
models for both training and testing sets using the full 166
training set. It is evident that, given a training set size of
166, a neural network with about 18 hidden units is
optimum. Increasing the complexity of the network
thereafter only leads to poorer generalisation performance
as the network over-fits the training data.

The effect of reducing the number of training samples
for neural networks is illustrated in Figure 6 for the neural
network model with 18 hidden units. The results show that
the memorisation error again decreased with the size of
the training set, but the reverse trend was seen for the
generalisation performance. The maximum test error for
the neural network shown in Figure 6b was generally
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Results and Discussion
Polynomial approach
Figure 3 shows the performance of the polynomial models
for both training and testing sets, using the full 166 training
set. In theory, as the complexity of the model increases it
could be expected that the training error would decrease
consistently. On the other hand the testing error should
reach a minimum and subsequently increase as the model
over-fits the training data. It was found that performance
for the training set did in general decrease, whereas there
was some evidence that the performance on the test set was
approaching a minimum for the third-order polynomial
transform.

The effect of reducing the number of training samples
for polynomial models is illustrated in Figure 4 for the
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Figure 4  Effect of number of training samples on training and testing performance for the third-order polynomial model: (a) median
and (b) maximum colour difference
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Figure 5  Effect of number of hidden units (n) in the neural network model on training and testing performance: (a) median and (b)
maximum colour difference
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Figure 6  Effect of number of training samples on training and testing performance for the neural network with 18 hidden units: (a)
median and (b) maximum colour difference

stable. When the number of training samples was very
small the neural network maintained a reliable
performance.

Comparison of the polynomial and neural network
approaches
This study has shown that, when properly assessed, the
abilities of camera characterisation models based on
polynomials and neural networks are approximately the
same. The median CIELAB colour differences are 2.57 and

2.89 for the generalisation performance of the best
polynomial and neural network characterisation models,
respectively. That these two performance figures are so
close should not be surprising, since MLPs have often been
described as being nonlinear curve fitters, or generalised
polynomial models.

There seems to be little advantage in using a neural
network model rather than a polynomial model for this type
of problem. With polynomial models the user needs to
ascertain the exact nature of the best polynomial and this
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can only be achieved by rigorous experimentation, as was
the case in the present study. However, with neural networks
the user faces a similar problem since the number of hidden
units in the network needs to be empirically determined.

The effect of the size of the training set on generalisation
performance was similar for the two types of model, a large
difference only becoming apparent for very small training
sets. There was some evidence that the maximum colour
difference error was greater for the neural network than
for the polynomial. There are however other disadvantages
to the neural approach. The training of the network can be
very slow, sometimes taking more than an hour, whereas
the polynomial model can be solved in fractions of a second.
There is also evidence that the neural network models may
not always converge to a global minimum, whereas for the
polynomials implementation of training and testing is easy
and reliable. It is concluded that polynomial transforms
offer the better alternative for camera characterisation.

It should be noted that this study was concerned only
with the colorimetric accuracy of the characterisation
methods. It is possible that these methods introduce a
spatial artefact, and this will be explored in further
research.

be needed to ascertain whether using more than 200
training examples would yield better results. However, in
this study it was found that there was no large difference
in the results obtained as the number of training examples
was changed above a threshold value of about 100 training
examples.
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Conclusions
The purpose of this study was to investigate whether there
was any advantage to using artifical neural networks for
camera characterisation compared with the more
traditional technique of polynomial transforms. The study
shows that the two techniques are capable of producing
almost identical results when properly used. Given that
neural networks can be difficult and time-consuming to
train, we therefore recommend the use of polynomial
transforms for camera characterisation. The study also
investigated the number of training samples that are
required for accurate characterisation. Further work may
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