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Abstract

Background: Immune-mediated inflammatory disease (IMID) represents a substantial health concern. It is widely

recognized that IMID patients are at a higher risk for developing secondary inflammation-related conditions. While

an ambiguous etiology is common to all IMIDs, in recent years, considerable knowledge has emerged regarding

the plausible role of the gut microbiome in IMIDs. This study used 16S rRNA gene amplicon sequencing to

compare the gut microbiota of patients with Crohn’s disease (CD; N = 20), ulcerative colitis (UC; N = 19), multiple

sclerosis (MS; N = 19), and rheumatoid arthritis (RA; N = 21) versus healthy controls (HC; N = 23). Biological replicates

were collected from participants within a 2-month interval. This study aimed to identify common (or unique)

taxonomic biomarkers of IMIDs using both differential abundance testing and a machine learning approach.

Results: Significant microbial community differences between cohorts were observed (pseudo F = 4.56; p = 0.01).

Richness and diversity were significantly different between cohorts (pFDR < 0.001) and were lowest in CD while

highest in HC. Abundances of Actinomyces, Eggerthella, Clostridium III, Faecalicoccus, and Streptococcus (pFDR < 0.

001) were significantly higher in all disease cohorts relative to HC, whereas significantly lower abundances were

observed for Gemmiger, Lachnospira, and Sporobacter (pFDR < 0.001). Several taxa were found to be differentially

abundant in IMIDs versus HC including significantly higher abundances of Intestinibacter in CD, Bifidobacterium in

UC, and unclassified Erysipelotrichaceae in MS and significantly lower abundances of Coprococcus in CD, Dialister in

MS, and Roseburia in RA. A machine learning approach to classify disease versus HC was highest for CD (AUC = 0.93

and AUC = 0.95 for OTU and genus features, respectively) followed by MS, RA, and UC. Gemmiger and Faecalicoccus

were identified as important features for classification of subjects to CD and HC. In general, features identified by

differential abundance testing were consistent with machine learning feature importance.

Conclusions: This study identified several gut microbial taxa with differential abundance patterns common to

IMIDs. We also found differentially abundant taxa between IMIDs. These taxa may serve as biomarkers for the

detection and diagnosis of IMIDs and suggest there may be a common component to IMID etiology.
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Background
Immune-mediated inflammatory diseases (IMIDs) are

clinically heterogeneous diseases that share common

pathogenic mechanisms and suspected etiologies. More

than one hundred different diseases are described as

immune-mediated and inflammatory; notable examples

include inflammatory bowel disease (IBD), multiple

sclerosis (MS), rheumatoid arthritis (RA), psoriasis, an-

kylosing spondylitis, and systemic lupus erythematosus.

Globally, IMIDs affect 2 – 5% of the population; in

Western populations, the prevalence of IMIDs ranges

from approximately 5 – 8% [1]. The global incidence of

many IMIDs is on the rise [2], though the reason for

this increase is unclear.

Despite extensive investigations of the possible mecha-

nisms of IMID pathogenesis, their etiologies are not

clearly defined, though host genetic susceptibilities and

environmental risk factors are thought to be involved.

Relatively low disease concordance rates are observed in

monozygotic twins [3]; hence, it is thought that environ-

mental determinants have a substantial role in IMID

etiopathogenesis. Environmental factors such as hygiene,

socioeconomic status, vitamin D exposure, cigarette

smoking, use of antibiotics (and other medications), and

microbial exposure have been found to correlate with

IMIDs [4–6]; however, no clear causal associations have

been demonstrated to date. Several reports [7–10] sug-

gest that individuals with a specific IMID are more sus-

ceptible to acquiring a secondary IMID, suggesting that

IMIDs may share common etiological components.

Over the past decade, our understanding of IMIDs has

been transformed by a growing appreciation of the piv-

otal role of the human microbiome. The microbiome

composition has been reported to correlate with IMIDs

such as IBD [11, 12], MS [13, 14], and RA [15, 16], both

in human studies and in animal models of these diseases.

Gut microbiota dysbiosis is commonly observed in

IMIDs; however, its role in disease pathogenesis is still

unknown. The influence of particular characteristics of

gut microbiota dysbiosis have been widely reported for

some IMID such as IBD; however, evidence has begun

to unfold for the role of some taxa in IMIDs not consid-

ered to be gastrointestinal diseases, such as MS and RA.

We performed a pilot study to investigate the associ-

ation of the gut microbiota with IMIDs including

Crohn’s disease (CD), ulcerative colitis (UC), MS, and

RA. To characterize the gut microbiota, we used 16S

ribosomal RNA (rRNA) gene amplicon sequencing to

assess the abundance of taxonomic groups in IMID and

healthy controls (HC). Differential abundance testing

and a supervised machine learning approach using a

random forest algorithm were conducted and results

compared to identify taxonomic biomarkers common

among or specific to IMIDs.

Methods
Patients and stool sample collection

The study cohort is described in Table 1. For our disease

cohorts, we chose patients with CD, UC, MS, and RA,

since these diseases are all T cell-mediated yet preferen-

tially target distinct organs. Moreover, previous studies

have reported significantly increased odds of developing

MS or RA in the presence of IBD [10] suggestive of a

common etiological component. Research and ethics ap-

proval was obtained from the University of Manitoba’s

Research Ethics Board. Patients with an IMID were re-

cruited between 2010 and 2012 from the IBD Clinical

and Research Centre and the Rheumatology ambulatory

care clinic, both located at the Health Sciences Centre,

Winnipeg, Canada. IMID patients were included if they

met the standard criteria for case definition, i.e., Mon-

treal Classification for IBD [17], 2010 McDonald criteria

for MS [18], and 2010 American College of Rheumatol-

ogy classification criteria for RA [19]; were over 18 years

of age; and had not taken antibiotics in the previous 8

weeks. HC were recruited at the University of Manitoba

Health Sciences Centre. For our HC cohort, we enrolled

adults who had not taken antibiotics in the previous 8

weeks and had no medical history of gastrointestinal,

neurological, or joint disease. Each participant self-col-

lected two stool specimens approximately 2 months

apart. The stool samples were kept refrigerated at 4 °C

until transport. The stool was transported to the la-

boratory on ice and stored at − 80 °C until processing.

DNA extraction, library preparation, and 16S rRNA gene

amplicon sequencing

Stool specimens were thawed at 4 °C and were diluted

1:3 with milliQ water to create a stool slurry. DNA was

isolated using the ZR-96 Fecal DNA Kit (Zymo Re-

search, Irvine, CA) following a validated protocol [20].

The Illumina MiSeq sequencing library preparation

protocol for 16S rRNA gene amplicons was followed

with modifications [20]. Briefly, the 16S rRNA V4 region

was amplified using primers 515fXT (GTGBCAGCM

GCCGCGGTAA) and 806rXT (GGACTACHVGGGTW

TCTAAT). Quality control, quantification, normalization,

pooling, and sequencing of the library was performed as

Table 1 Patient data at time of sample procurement

Disease Average age, yearsa N (female/male)a

Crohn’s disease 49.9 20 (14/5)

Ulcerative colitis 51.2 19 (11/8)

Multiple sclerosis 47.3 19 (14/4)

Rheumatoid arthritis 62.3 21 (14/7)

Healthy controls 32.4 23 (12/11)

aTabulated metadata does not include information from patients whose

metadata was not available

Forbes et al. Microbiome           (2018) 6:221 Page 2 of 15



previously described [20]. Approximately 11 pM of the

pooled, multiplexed samples were mixed with 37.5% PhiX

spike-in control DNA and sequenced on an Illumina

MiSeq instrument to generate 2 × 300 bp reads. Four

MiSeq runs were performed with 56 multiplexed samples

per run. In total, 224 samples were sequenced including

technical replicates, mock communities of known com-

position (HM-782D; BEI Resources, Manassas, VA) and

no-template controls.

Data analysis

The mothur software suite (v. 1.39.5) was used to analyze

16S rRNA gene amplicon data. The specific analytical

method is available as a Jupyter notebook (https://github.-

com/phac-nml/imid_microbiome). Paired-end reads were

assembled into contigs using Needleman-Wunsch pair-

wise alignments. Only contigs containing both the forward

and reverse V4 amplicon primer sequences with two or

less nucleotide differences were retained. Primer se-

quences were trimmed from the resulting contigs. Contigs

were discarded if they exceeded 275 bp in length, con-

tained homopolymers exceeding 8 nucleotides in length,

or contained ambiguous bases. A custom reference align-

ment specific to the 16S rRNA V4 region was created by

trimming the curated 16S rDNA SILVA reference align-

ment (v. 128) to the region of interest [21]. Contigs were

aligned to the aforementioned reference database. Briefly,

the kmer search method (k = 8) was applied to identify the

best (de-gapped) reference database sequence match

followed by a pairwise alignment using the Needleman-

Wunsch pairwise alignment method. Gaps not inserted in

the pairwise alignment step were re-inserted into the

query sequence using the NAST algorithm to mirror the

aligned (gapped) reference database. Contigs aligning out-

side of the 16S rRNA amplified V4 region were removed.

Aligned contigs that differed by a maximum of 2 bp were

merged together to reduce the number of erroneous oper-

ational taxonomic units (OTUs) generated due to sequen-

cing errors. In addition, chimeric artifacts (identified by

UCHIME) [22] were also removed.

Taxonomic classification of sequences was performed

using the naïve Bayesian classification method [23] and

training set (v. 16) from RDP [24]. A minimum threshold

bootstrap value of 60% was applied. Sequences identified

as likely contaminants such as chloroplast and mitochon-

dria or unwanted lineages such as archaea, eukaryota, or

unknown (at the domain level) were removed. Sequences

were clustered into OTUs based on a sequence similarity

(≥ 97%) using the average neighbor algorithm and consen-

sus taxonomy for each OTU was determined.

Evaluation of Gram-negative abundance

Gram-negative microorganisms (i.e., Bacteroidetes, Pro-

teobacteria, and Verrucomicrobia) were detected in a

lower than expected abundance (discussed below). Ac-

cordingly, for differential abundance testing and ma-

chine learning classifications, the use of

Gram-positive-only data was compared to the full (i.e.,

Gram-positive and Gram-negative) dataset.

Processing and statistical analysis of operational

taxonomic units

Following quality control and filtering, a total of 7943

OTUs, corresponding to 426 genera, was obtained. For

analyses based on all phyla, the OTU count table was fil-

tered to keep only taxa with non-zero OTU counts in at

least 40 samples (the minimum number of samples for

each cohort). This resulted in 426 OTUs corresponding

to 118 genera. For analyses based on Gram-positive

phyla, only OTUs within the phyla Firmicutes, Actino-

bacteria, and Tenericutes were used, and the same fil-

tering criteria resulted in 383 OTUs and 90 genera. The

OTU counts were then normalized at the 75th percent-

ile using the cumulative-sum scaling approach from the

R “metagenomeSeq” [25] package. We refer to the nor-

malized OTU counts as “abundance.” Genus-level taxo-

nomic classifications of OTUs were extracted and

abundances summarized. Genus abundance was calcu-

lated as the sum of OTU abundances belonging to the

same genus. Downstream analyses included the analysis

of both genus and OTU abundances. This approach

was chosen to avoid the compositional nature of “rela-

tive abundance” (sum to one per sample) and the po-

tential bias that can be created by highly abundant taxa

[26]. A Kruskal-Wallis test and post hoc Dunn’s test

with false discovery rate (FDR) correction for multiple

comparisons were performed to compare median simi-

larities of genus data among cohorts. Adjusted p values

were considered significant at p < 0.05. Genus abun-

dances were also analyzed using LEfSe [27] with an

LDA score > 3 and a one-against-all multi-class analysis.

Machine learning classification

Random forest machine learning classification was con-

ducted using the “randomForest” R package [28] with

500 trees and the number of randomly sampled variables

as the square root of the variable counts. Classifiers were

built based on samples from the first time point and ex-

cluded technical replicates to avoid inflation of perform-

ance evaluation. We evaluated both OTU and genus

OTU abundances as training data features to assess the

performance at different levels of taxonomic specificity.

In addition, we also evaluated all detected phyla versus

Gram-positive phyla only to assess the relative ability of

Gram-positive phyla data to classify the cohorts. When

classifying diseased samples versus HC, a stratified sam-

pling approach was used with the minimum number of

samples of the classes (23 from HC). This technique,
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known as under-sampling [29], is employed when build-

ing decision trees with unbalanced sample counts. As

each tree in the classifier is fit from a bootstrap sample

set from the training data, samples that were not used to

fit the corresponding tree were used to calculate the

out-of-bag (OOB) error to assess model performance.

For each pairwise comparison, the average OOB per-

formance from ten models with different seeds was re-

ported as balanced accuracy (BA) and area under the

receiver operating characteristic curve (AUC). Feature

importance averaged from the ten runs was reported as

a measure of the mean decrease in Gini index (the im-

purity function) and visualized using the “ComplexHeat-

map” R package [30]. All OTU post-processing (filtering

and normalization) and machine learning analyses were

conducted using R (v. 3.3.2, 3.3.3; R Development Core

Team) and Bioconductor 3.4 [31].

Diversity

Alpha diversity estimates including richness (ACE,

Chao1) and diversity (Shannon, Simpson) were calcu-

lated using raw count data in mothur and visualized in

phyloseq [32]. Alpha diversity measures were compared

between disease cohorts using non-parametric Kruskal-

Wallis tests and post hoc Dunn’s test with FDR correc-

tion for multiple comparisons. Microbiota community

structures were visualized using principal coordinate

analysis (PCoA) and tested using permutational analysis

of variance (PERMANOVA) [33] implemented using the

adonis function from the R “vegan” [34] package with

the Bray-Curtis method [35] to calculate pairwise dis-

tances and 999 permutations.

Results
The average base-calling error rate assessed by the

co-sequenced mock communities was 0.01%, equivalent

to six errors per 2 × 300 bp paired-end reads. A total of

31,315,771 raw sequences were assembled. Filtering out

low quality, chimeric, and non-bacterial sequences gen-

erated 26,494,139 high-quality contigs. Sequences were

clustered into 7943 OTUs based on their shared se-

quence similarity at a 97% threshold. The average num-

ber of sequences per sample was 120,621 ± 37,472 (range

20,165–296,780). Following the removal of Gram-nega-

tive phyla and normalization, the average number of

sequences per sample was 86,865 ± 61,806 (range

14,671–438,203).

Community structure, richness, and diversity of the gut

microbiota

The microbiota community structure of our cohorts was

examined by principal coordinates analysis (PCoA;

Fig. 1). The CD cohort had the most variability, whereas

the HC cohort showed the least variability. Varying

degrees of overlap (or separation) were observed for the

cohort clusters. PERMANOVA analysis (Additional file 1:

Table S1) showed significant microbial community dif-

ferences for disease (pseudo F = 4.562, R2 = 0.0876, p =

0.001) and sex (pseudo F = 2.9913, R2 = 0.01915, p =

0.004), whereas age and sequencing run did not signifi-

cantly affect the community structure. Biological repli-

cates (from the same individual sampled at different

time points) were highly similar (Additional file 1: Figure

S1) suggesting that the gut microbiota is stably main-

tained within individuals. In addition, we calculated the

Bray-Curtis dissimilarities of technical and biological

replicates, from the same cohort or from different co-

horts (Additional file 1: Figure S1). The dissimilarities

between sample pairs of different relations are, in increas-

ing order, technical replicates (median = 0.14; IQR = 0.08),

biological replicates (median = 0.22; IQR = 0.08), intra-co-

hort samples (median = 0.45; IQR = 0.10), and inter-cohort

samples (median = 0.47; IQR = 0.11). Overall, the dis-

similarities were small; however, dissimilarities in

specimens from different cohorts were significantly

higher compared to those from the same cohort (Wil-

coxon p < 0.001).

Significant differences in community richness were ob-

served across all cohorts, as estimated by Chao1 (pFDR <

0.001) and ACE (pFDR < 0.001) (Fig. 2). Richness was low-

est in CD according to both estimators and was signifi-

cantly different from all other cohorts with the exception

of UC (via ACE). Conversely, HC had the highest richness

though differences were only statistically significant com-

pared to CD (Chao1/ACE pFDR < 0.001) and UC (Chao1

pFDR = 0.006; ACE pFDR = 0.01). Significant differences

in diversity (Shannon, Simpson) were similarly significant

across both disease cohorts and HC (pFDR < 0.001). Con-

sistent with trends observed for richness, diversity was

lowest in CD and highest in HC. Most cohorts demon-

strated significantly different diversity with the exception

of MS–UC (Shannon) and CD–RA (Simpson).

Taxonomic composition of the gut microbiota

Numerous taxonomic differences were observed between

each disease cohort versus HC (Fig. 3 and Table 2). At the

phylum level, the Firmicutes were significantly highest in

CD and lowest in HC (overall pFDR < 0.001). Actinomyces,

Eggerthella, Clostridium III, Faecalicoccus, and Streptococ-

cus were significantly higher in all disease cohorts relative

to HC, whereas the opposite was observed with Gemmiger,

Lachnospira, and Sporobacter. Numerous other taxa also

differed significantly in only one IMID compared to HC.

In particular, taxa higher in disease include Blautia and

Intestinibacter in CD, Bifidobacterium in UC, and unclas-

sified Clostridiales incertae sedis XIII and Erysipelotricha-

ceae in MS. Asaccharobacter, Clostridium IV, Coprococcus,

Ruminococcus (Lachnospiraceae), and Oscillibacter were
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lower in CD, Dialister was lower in MS, and Roseburia

was lower in RA. Significant differences in taxon abun-

dances were also observed in two (e.g., Rothia; CD and

RA) or three (e.g., Gemella; CD, UC, and RA) diseases

relative to HC. Interestingly, certain specific taxa were sig-

nificantly higher in some diseases and lower in others rela-

tive to HC. For example, Anaerofustis was higher in UC

and MS and lower in RA.

Many taxonomic differences were also apparent be-

tween disease cohorts (Additional file 1: Table S2).

Analogous to trends observed via PCoA, many taxa

were significantly higher or lower in CD relative to

other diseases. Fewer taxonomic differences were ob-

served between MS and UC or RA, and even less be-

tween UC and RA. The abundance of Faecalibacterium

spp. for example was statistically different among most

disease comparisons with the exception of MS versus

RA. The abundance of other genera such as Collinsella,

Lactobacillus, and Subdoligranulum were highly similar

across diseases. Taxonomic biomarkers of each cohort

were identified by LEfSe analysis (Additional file 1: Fig-

ure S2). While several taxonomic biomarkers were

identified, those with the largest effect size include

Blautia (CD), Bifidobacterium (UC), Ruminococcus

(Ruminococcaceae and Lachnospiraceae; MS), Strepto-

coccus (RA), and (HC).

Model performance of machine learning classifiers

To evaluate the ability of the microbiota to classify sub-

jects to their cohort, we trained classifiers for each pair

of cohorts using a supervised random forest machine

learning approach. Due to reduced Gram-negative

phyla in the study population, we focused on presenting

data from Gram-positive phyla in the main text. For the

feature classifiers, we chose to evaluate both OTUs and

genera since multiple OTUs may be assigned to the

same genus but have different classification abilities.

Model assessments were reported as BA and AUC

values (Table 3). The OTU and genus classifiers per-

formed comparably, with 7 and 4 classifiers performing

better with genus and OTU features, respectively. To

further evaluate the capacity of Gram-positive phyla to

classify the cohorts, we repeated the same analyses

using data with all detected phyla. The overall classifier

performance of the Gram-positive dataset was highly

similar to that of classifiers that included both Gram-

positive and Gram-negative data (Additional file 1:

Table S3). Given the lower dissimilarity between the

two-month same-subject biological replicates, we also

evaluated the performance of predicting the cohort of

samples from the second time point as a baseline. The

performance was high with AUCs ranging between 0.93

and 0.99 (Additional file 1: Table S4). Similar results in

Fig. 1 Principal coordinate analysis (PCoA) based on the overall structure of the stool microbiota in all samples. Each data point represents an

individual sample. PCoA was calculated using Bray-Curtis distances with a multivariate t-distribution. Ellipses represent an 80% confidence level.

Color/shape is indicative of cohort
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classification were reported using data from all phyla

(Additional file 1: Table S3).

The classification performance for each disease cohort

versus HC in decreasing order was CD, MS, RA, and

UC. The classifiers for CD versus HC had the best per-

formance with an AUC = 0.93 and 0.95 for OTU and

genus features, respectively. For UC versus HC, our clas-

sifiers reported an AUC = 0.87 and 0.90 for OTU and

genus, respectively. Multi-class classification of all co-

horts did not result in a satisfactory performance (BA =

0.69 and 0.67 for OTU and genus, respectively). In con-

trast, classification of each disease cohort versus HC had

good and comparable performances with balanced sam-

pling (AUC = 0.90 and 0.93 for OTU and genus classi-

fiers, respectively).

Feature importance of the classifiers

We also evaluated feature importance of all pairwise

classifiers for Gram-negative phyla and all phyla

(Additional file 1: Figures S3 and S4, respectively). The

OTU and genus-level classifiers for CD versus HC are

shown in Fig. 4. As previously mentioned, classifiers

from different taxonomic levels (i.e., OTU, genus) can

have different amounts of information content. Only

one of the three Roseburia-associated OTUs (Otu0135)

was a top feature for classifying CD versus HC, with

higher abundance in HC. Conversely, the genus Rose-

buria was not found to be a top feature when using the

genus-level information. The genera consistently rank-

ing in the top three for feature importance for both

classifiers included Gemmiger and Faecalicoccus, having

higher abundance in HC and CD, respectively. The

classifier for all disease cohorts combined versus the

HC cohort identified Faecalicoccus as the most import-

ant feature. When examining feature importance across

all binary classifiers, a common subset of features fre-

quently ranked in the top five (Additional file 1: Tables

S5 and S6). The important genera consistently found in

both OTU-based and genus-based classifiers included

Anaerofustis, Faecalicoccus, Gemmiger, Eggerthella, and

Faecalibacterium whereas unclassified Lachnospiraceae

and Roseburia were only of top importance based on

OTU classifiers.

Discussion

To our knowledge, this work represents the first

characterization of the gut microbiota across several

IMID that preferentially affect different body systems

(i.e., the gastrointestinal tract, central nervous system,

and synovium). This study aimed to determine patterns

of gut microbiota dysbiosis relative to health and to

other IMID. The results of this study are twofold. First,

Fig. 2 Alpha-diversity assessed by richness (Chao1, ACE) and diversity (Shannon, Simpson). Median estimates compared across cohorts

using the Kruskal-Wallis test and Dunn’s post hoc tests for multiple comparisons. Boxes represent the interquartile range, lines indicate

medians, and whiskers indicate the range. p values represent the overall FDR-corrected p values. aCD/UC; bCD/MS; cCD/RA; dCD/HC; eUC/

MS; fUC/RA; gUC/HC; hMS/RA; iMS/HC; jRA/HC
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we found important differences in the stool microbial

profile in IMID relative to health using differential

abundance analyses and machine learning using the

random forest algorithm. In doing so, we were able to

identify consistent patterns of dysbiosis between mul-

tiple IMID in addition to dysbiosis characteristics, in-

cluding taxonomic biomarkers that associate with a

particular disease or group of diseases. Second, we

showed how microbial populations vary between differ-

ent IMIDs.

We observed a substantially lower than expected

abundance of Gram-negative taxa across each of our

cohorts. Accordingly, we applied our bioinformatics

analysis methodologies to comparable published se-

quence data to validate the suitability of our samples

for this investigation (Additional file 2). Thus, while the

main focus of our investigation was on Gram-positive

bacteria, we also evaluated the data in its entirety (e.g.,

Gram-positive and Gram-negative; Additional file 2).

We show comparable differences in alpha and beta di-

versity, as well as taxonomic differences and machine

learning classification performance. It is well recog-

nized that many important gut microbial pathogens

such as the Enterobacteriaceae are Gram-negative mi-

croorganisms [36]. However, it is equally well known

that the beneficial effect or lack of anti-inflammatory

Gram-positive microorganisms is imperative to host

health. Out of an abundance of caution, we decided to

restrict our analysis to the Gram-positive microorgan-

isms. While it is regrettable that our dataset precluded

the analysis of Gram-negative microorganisms, our

findings from the Gram-positive microorganisms show

that they are significantly and predictably altered de-

pending on disease state and that specific taxa can act

as biomarkers for these diseases.

Consistent with the findings of other studies investi-

gating the gut microbiota in IMID [16, 37–39], our ana-

lysis of microbial diversity (Fig. 2) found the gut

microbial diversity in IMID to be significantly lower in

all IMID relative to HC according to both Shannon and

Simpson indices. Interestingly, differences in diversity

were also observed between disease cohorts. For ex-

ample, significant differences in microbial diversity were

most often observed when comparing CD and RA

against the other IMIDs. While no other microbiome

study to date has jointly analyzed IMIDs that target dif-

ferent body organs, studies have assumed “similar shifts.”

For example, Ruminococcus gnavus was significantly

higher in the gut microbiota of spondyloarthritis pa-

tients; the authors suggested that their observation is

consistent with the association of R. gnavus and IBD

[40]. As expected based on previous reports [41–43], we

Fig. 3 Abundance of Gram-positive phyla. Median estimates compared across cohorts using the Kruskal-Wallis test and Dunn’s post hoc

tests for multiple comparisons. Boxes represent the interquartile range, lines indicate medians, diamond indicates the mean, and whiskers

indicate the range. p values represent the overall FDR-corrected p values. aCD/UC; bCD/MS; cCD/RA; dCD/HC; eUC/MS; fUC/RA; gUC/HC;
hMS/RA; iMS/HC; jRA/HC
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observed significant differences in species richness and

diversity between HC and IBD (CD and UC). These

studies also indicate that richness and diversity in IBD

are affected by disease activity and phenotype. Prior

studies have reported lower richness in RA compared

to controls [16, 44], whereas others have reported no

difference [45]. Although we observed decreasing

trends, these differences did not reach statistical signifi-

cance. Chen et al. [16] reported that lower richness in

RA correlated with an elevated body mass index, rheuma-

toid factor levels, and disease duration while treatment

regimens including methotrexate and hydrochloroquinone

correlated with higher species richness (and diversity). An

earlier report has shown that relapsing-remitting MS pa-

tients with active disease tended to have lower richness

than those in remission [37]. We also found lower rich-

ness in MS; however, we could not differentiate whether

disease activity impacted upon this finding.

Table 2 Abundant† taxa in IMID microbiota relative to HC. Presence of solid color is indicative of significantly higher abundance

(color) or lower abundance (gray) compared to HC

†Taxa with median abundance > 2. Taxa unable to be classified to the genus level were classified to the nearest higher taxonomic rank. Statistics were performed

using the nonparametric Kruskal-Wallis test and Dunn’s post hoc tests for multiple comparisons, with FDR correction. Differences considered significant at p < 0.05.
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We have identified several genera and OTUs consistently

or individually disproportionate in abundance in IMID

relative to HC or other IMIDs (Table 2, Additional file 1:

Table S2). Taxonomic biomarkers of disease have previ-

ously been identified in IMID including the presence of

Escherichia coli and absence of Faecalibacterium praus-

nitzii in CD [41]. Of importance are the taxa consist-

ently overabundant in IMID relative to HC, which

suggests they play an antagonistic role in inflammatory

disease initiation and/or perpetuation and thus serve as

a taxonomic biomarker for several IMIDs. For example,

Actinomyces and Eggerthella spp., both of the Actino-

bacteria phylum, have been implicated in inflammatory

conditions [46, 47], despite historical classification as

commensal microorganisms [48, 49]. The implication

of E. lenta in inflammatory diseases and other condi-

tions has been reported in numerous studies: this

microorganism was shown to be higher in type II dia-

betes [50], in a Japanese cohort of RRMS patients [51],

and in an RA cohort [16]; E. lenta has also been impli-

cated in CD bacteremia subsequent to ileocecal resection

and other disseminated infections [52]. Actinomyces has

also been reported to be higher in RA [47] and non-in-

flamed UC mucosa [42]. Interestingly, CD patients fol-

lowing therapy with enteral nutrition or anti-TNFα

antibodies had decreased Actinomyces spp. whereas

Lactococcus and Roseburia were increased [53]. In our

random forest classifiers for CD compared to HC, a

Roseburia OTU was identified as an important feature

(higher abundance in HC), suggesting its importance

for health. Accordingly, the genus Roseburia [54] was

reported to be a potential marker of health due to its

butyrate-producing and anti-inflammatory properties.

Taxa within the Firmicutes phylum, including Clostrid-

ium III, Faecalicoccus, and Streptococcus were also

higher in IMID compared to HC. Streptococcus spp. in

particular have been reported to be higher in numerous

IMID [16, 51], and evidence shows that particular spe-

cies can influence disease severity in animal models of

disease [55]. Due to their pathogenic potential, candi-

date species such as S. thermophilus and S. pneumoniae

have been assessed in the context of inflammatory con-

ditions. In contrast, there is limited literature pertaining

to the genus Faecalicoccus, which may be ascribed to

its taxonomic classification, as reports from 2014 and

2015 indicate that it was recently classified as a novel

genus [56, 57]. The consistently higher abundance of

these microorganisms in IMIDs relative to HC warrants

further study to determine the possible role these mi-

croorganisms in the etiology of IMID.

Several taxa were higher or lower abundance in a sub-

set of IMIDs compared to HC. As an example, we ob-

served Rothia [58], an opportunistic pathogen, to be

more abundant in CD and RA. Rothia spp. have been

shown to be higher in IMID including CD [59] and an-

kylosing spondylitis [60]. Gemella, a common inhabitant

of mucosal membranes, was similarly higher in abun-

dance in CD, RA, and UC. Gevers et al. [59] reported G.

moribillum to be present in higher abundance in CD

compared to controls. Interestingly, a recent experimen-

tal colitis study has reported that Gemella, in addition to

Ruminococcus and Blautia, were overrepresented in the

arthritis and colitis group versus arthritis only, at 41 days

post-induction [61]. There are numerous environmental

and genetic risk factors that are known to influence

IMID. Thus, it is not surprising that some taxa demon-

strate varying degrees of differences in abundance com-

pared to HC. Of note, taxa such as Anaerofustis were in

higher abundance in UC and MS, but in lower abun-

dance in RA compared to HC. Though previously

Table 3 Model performance of the binary classifiers shown in balanced accuracy (BA) and area under ROC curve (AUC) indices

using Gram-positive phyla

Rows represent pairs of cohorts in alphabetical order with “diseased” showing the classifier for all disease cohorts (i.e., CD, UC, MS, and RA) versus HCs. Columns

represent BA and AUC indices when using either OTUs or genera as features. Performance levels are indicated relatively by a white (low) and blue (high)

color scale.
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isolated from human stool [62], currently there is no evi-

dence linking Anaerofustis to disease.

Conversely, we have reported some genera to be prefer-

entially underrepresented in IMID, many of which are

consistent with the findings of other studies and suggest-

ive of a potential protective effect against disease. We ob-

served Gemmiger to be significantly lower in all IMIDs.

Gemmiger is consistently enriched in HC, specifically in

the context of comparisons with IBD, non-alcoholic stea-

tohepatitis, Clostridium difficile infection, and colorectal

cancer [63, 64]. In addition, Gemmiger spp. are included

in some probiotic compositions [65]. Attributed to their

reduced abundance, studies indicate that Lachnospira [66]

may have a protective role in inflammatory conditions.

We reported numerous genera (and OTUs) to be uniquely

underrepresented in IMID compared to HC and further

Fig. 4 Feature importance from random forest classifiers for CD versus HCs in addition to feature abundance. Results from OTU and genus

classifiers are shown in figures a and b, respectively. The corresponding genera of OTU features were labeled for the ease of interpretation. Each

heatmap displays the abundance of the top ten features (rows) in samples (columns) according to the machine learning classifiers. The column

bar colors represent the categories of the samples. Feature importance is shown on the right, and features are ordered in decreasing importance

from top to bottom according to the mean decrease in Gini index
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observed significant differences of specific microorgan-

isms between IMIDs. While we did detect some common-

alities indicating the members of these genera may share

similar pathogenic mechanisms, it is highly likely that

some microorganisms exhibit differential effects on dis-

tinct IMID. For example, Bifidobacterium was higher in

UC compared to HC and has similarly been described in

UC patients [67], which is interesting given the probiotic

nature of the microorganism. Thus, we propose that the

depletion of particular anti-inflammatory microorganisms

may be disease-specific (perhaps related to treatment) and

encourage further investigation into their effect on gut

homeostasis.

We also observed many taxa that were significantly

different between IMIDs (Additional file 1: Table S2).

Considering IMIDs included in this study preferentially

target different body organs, it is not surprising that we

detected differences. Moreover, while similar genetic and

environmental factors are involved in IMID etiopatho-

genesis, there are risk factors that are unique to disease,

for example, Epstein-Barr virus [68] or appendectomy in

CD [69]. Even within IBD (i.e., CD and UC), it is well

recognized that differences exist between the two gastro-

intestinal diseases [42].

On a sample-level, the Bray-Curtis dissimilarity that

we observed between technical replicates was compar-

able to previous reports [28]. In particular, our results

revealed higher variability between, rather than within,

individuals. This is consistent with studies that described

the stability of the microbiome within individuals [70],

and microbiome-based identifiability, where individuals

can be robustly identified with their microbiota data

over time [71].

To augment our differential abundance analysis, we

conducted machine learning using a random forest ap-

proach to conduct binary classification of diseases versus

HC using OTU or genus abundance as features. Machine

learning approaches successfully used in recent related

studies have incorporated a variety of features including

taxonomic [72], functional [72], and k-mer-based [64]

classification schemes. In our study, we chose to evaluate

the feature importance of OTU and genus classifiers, since

they can in theory differ in their ability to classify disease

state versus HC. While the overall performances are com-

parable between OTU and genus models, the feature im-

portance of Roseburia, for example, was highlighted in the

OTU model rather than in the genus model comparing

CD to HC. The ability to classify subjects at a higher taxo-

nomic level (e.g., genus) may potentially be compromised

due to differences in abundance levels among OTUs of a

genus. On the other hand, subtle differential abundance

levels at a lower taxonomic level (e.g., OTU) may cumula-

tively contribute to a stronger differential abundance sig-

nal at the genus level.

For the purpose of this study, we have shown that des-

pite the known importance in pathogenicity of Gram-

negative bacteria, machine learning classification between

pairs of cohorts using only data from Gram-positive mi-

croorganisms resulted in similar performances to using

the complete dataset (i.e., Gram-positive and Gram-nega-

tive). Further, our CD versus HC classifiers performed

slightly better than previously reported classifiers for IBD

(CD and UC combined) versus HC [64, 73]. In contrast,

our multi-disease classifier performed poorly, which is ex-

pected considering similar poor performances were ob-

served for our binary classifiers between different diseases,

such as MS versus RA, CD versus RA, and CD versus UC.

These results suggest that the similarities in gut micro-

biota composition between diseases make their classifica-

tion difficult. This notion is reinforced by the reduced

inter-disease variability (versus HC) observed in the PCoA

plot (Fig. 1). Consistently, the high performances in dis-

eased versus HC models highlights the degree of com-

monality in taxonomic abundance among IMIDs

compared to HC. The classification results demonstrate

the capacity of classifying HC versus the four disease

cohorts from our study (as one cohort, as well as indi-

vidual cohorts) using 16S rRNA gene amplicon gut

microbiota sequencing data.

One particular strength of our study is the investiga-

tion of the gut microbiota composition from several

IMIDs that preferentially target different body organs.

This allows us to identify putative taxonomic biomarkers

common to varying IMIDs. The limitation of our study

is certainly the unusually low abundance of Gram-nega-

tive microorganisms relative to datasets analyzed in

similar studies [59, 70]. Upon an extensive investigation

through wet-laboratory work, data exploration, and lit-

erature review, we believe the low abundance of Gram-

negative microorganisms was likely a result of sub-optimal

storage conditions such as multiple freeze-thaw cycles or

long-term storage [74]. We addressed this limitation by

directing our analyses on the Gram-positives and by test-

ing our machine learning classifiers against the full dataset.

Differential abundance testing and diversity analyses were

also completed on the full dataset (see Additional file 2).

The low abundance of some taxa (e.g., Bacteroidetes and

Proteobacteria) did not noticeably reduce the ability of our

machine learning classifiers to assign diseased and healthy

samples. These study findings reveal that microbiota

characterization can be performed using “imperfect” data-

sets, which may be further overcome through the use of

robust machine learning approaches. Other limitations of

this study include the use of stool rather than mucosa

(which houses distinct and more immunologically related

microorganisms) and the targeted evaluation of the bacter-

ial component of the microbiome rather than including

microorganisms such as fungi or viruses.
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Importantly, our study was also limited by the lack of

certain patient-related data. These include factors related

to disease (e.g., phenotype, activity, and duration) and

prior or current treatment and lifestyle factors (e.g., diet

and smoking). Additional disease-specific or lifestyle fac-

tors may also have influenced the microbiome compos-

ition. Even if they were known, due to the small sample

size, our study could not account for the biases of poten-

tial confounding factors. In a case where an unobserved

influential factor is unequally distributed between co-

horts, the statistical power and model performance may

be overestimated as a result of reporting additional taxo-

nomic markers driven by the confounding factor. On

the other hand, when such an unobserved factor is not

unequally distributed between cohorts, the power and

model performance may be lowered. While these should

be taken into consideration when interpreting results,

we note that many taxa identified were corroborated by

those reported in the literature, confirming our study’s

capacity to detect taxonomic biomarkers between dis-

ease cohorts and HCs. Validations with other compar-

able and larger cohorts will need to be performed to

ensure these taxonomic biomarkers are consistently

identified while also adjusting for confounding factors.

In subsequent work comparing the gut microbiome

from different IMIDs, it will be especially important to

have large enough cohorts of participants within disease

groups who have active disease and cohorts with inactive

disease to account for the role of an active systemic im-

mune response on the gut microbiome. Similarly, it will

be important to have sample sizes sufficient to allow for

comparisons across different treatments. There remains

a dearth of data as to the impact of biological therapy

and other immunomodulating therapies on the gut

microbiota.

The interplay between the gut microbiota and the sys-

temic immune responses will be a very important area

for study in contrasting different IMIDs. Aberrant host

immune responses are well recognized in IMID yet in-

completely understood. The role of the microbiota in

the involvement with the development of several im-

mune cells including Th1, Th2, Th17, and Treg cells is

well recognized [75]. There is much interest in linking

gut microbiota changes to the host immune response in

IMID. Organisms such as F. prausnitzii [76] and Clos-

tridium spp. [77] have a role in directing Treg cells and

their response. Since Treg cells are well recognized to be

involved in all IMIDs, the importance of these microor-

ganisms may be in their impact on Treg cell abnormal-

ities. Our results showed differential abundance among

IMID for these microorganisms, though more experi-

ments are required to evaluate the potential links to differ-

ences in pathogenesis among IMID reported previously

[78]. As more studies like ours emerge that describe gut

microbiota changes across various IMID, further research

will be necessary to determine the interactions between

the taxa that are altered in IMID and their specific im-

mune responses.

Conclusions
In summary, this study presents a comprehensive ana-

lysis of the stool microbiota composition in several

IMIDs. We conclude that the composition of the gut

microbiota is altered in CD, UC, MS, and RA, especially

relating to varying degrees of gut dysbiosis that were evi-

dent. Moreover, we also show that within IMIDs, several

microorganisms demonstrated significant compositional

differences. For example, the gut microbial communities

in UC and RA were most similar among IMIDs; whereas

the gut microbiota of CD was most different from other

IMIDs as well as HC. We have uncovered several micro-

organisms that are consistently higher (or lower) in

IMID relative to HC using differential abundance testing

and machine learning, suggesting that there may be

common microbial taxonomic biomarkers for IMID.

Further research into these microorganisms and their as-

sociated functions within the host are needed in order to

establish any causality in disease pathogenesis and future

therapeutic potential.
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