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Digital power spectral analysis and coherency analysis are powerful techniques for studying 
ultra-low-frequency (ULF) waves in the earth's magnetosphere. Wave polarization parameters 
provided by these techniques are important in the development of theoretical models for wave 
generation. Because of this, it is important to understand the capabilities of the digital analysis 
techniques. Three different techniques of using the spectral matrix to do wave analysis have been 
presented in the literature. Because data for wave studies involve measurement in arbitrary coordinate 
systems, it is necessary to transform the spectral matrix to the principal plane of the wave before 
coherency analysis can be performed. The fundamental differences in the three techniques lie 
in how they determine the transformation to the principal plane. A comparative study of these 
three techniques was done using simulated data involving known wave and noise properties and 
real ULF wave event data from the geosynchronous satellites ATS 1 and ATS 6. In general, 
the quality of performance of the three different techniques on both simulated and real wave 
events was approximately the same. 

INTRODUCTION 

Naturally-occurring ultra-low-frequency (ULF) 
waves (or magnetic pulsations) in the earth's 
magnetosphere have been studied extensively for 
many years. However, because of the low frequen- 
cies involved (1 to 1000 mHz), traditional analog 
techniques have had only limited usefulness. The 
increasing availability of digital data, on the other 
hand, allows the use of digital power spectral 
analysis and coherency analysis, powerful tech- 
niques for the analysis of ULF waves. The knowl- 
edge of the wave polarization parameters provided 
by these techniques is important in the development 
of theoretical models of wave generation. Thus, 
because of the importance of these parameters, it 
is necessary to have an understanding of the capa- 
bilities and limitations of the digital analysis tech- 
niques which are being used. 

Using techniques presented by Born and Wolf 
[ 1964] based on the principles of statistical optics 
as applied to quasi-monochromatic wave theory, 
Fowler et al. [1967] developed a technique for 
determining the polarization parameters (percent 
polarization, ellipticity, and azimuth) from the 
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spectral matrix for a plane wave in two dimensions. 
However, data for ULF wave studies usually in- 
volve measurements in a three-dimensional coordi- 

nate system oriented arbitrarily with respect to the 
waves. Three different techniques have been pre- 
sented in the literature [McPherron, et al., 1972; 
Means, 1972; Samson, 1973] dealing with the three- 
dimensional situation. These three techniques. while 
mathematically dissimilar, are all based on the 
assumption that, at any single frequency, a single 
plane wave, propagating along the normal to the 
plane, is present. Thus, these techniques should 
not be used for analysis of nonplanar waves unless 
planarity is reasonably approximated. In the case 
of multiple waves with the same frequency, the 
parameters determined by the analysis represent 
the average of the parameter• for the individual 
waves. For waves with strongly dissimilar charac- 
teristics but the same frequency (a fairly rare event 
in nature), these results will be anomalous. Indica- 
tions that this situation has occurred can be obtained 

from the percent polarization and the relative size 
of the eigenvalues. For multiple waves with only 
slightly dissimilar characteristics, there will be no 
way to identify the presence of the multiple waves, 
but the character of the waves determined by .the 
analysis will be essentially correct. 

In this paper, we briefly present the details of 
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these three techniques and report the results of 
a comparative study of the techniques made using 
both simulated data and real ULF wave data from 
the geosynchronous satellites ATS 1 and ATS 6. 
The purpose of this paper is twofold: first, to pre- 
sent as succinctly as possible the pertinent mathe- 
matics of these three techniques in order to facilitate 
their use by other researchers, and second, to 
delineate the capabilities and limitations of the 
different techniques and discuss which is best for 
certain types of application. Particular importance 
is given to the criteria appropriate for application 
to studies involving large numbers of events and 
requiring the calculation of hundreds of power 
spectra and their associated polarization parame- 
ters. No effort is made to determine whether any 
of these techniques represents an absolute best in 
terms of signal detection theory. Rather, the 
conclusions of the study bear on which of the three 
techniques presently in the literature is the best 
for certain applications. 

DESCRIPTION OF THE TECHNIQUES 

Power spectral analysis. The determination of 
the 3 x 3 spectral matrix in the measurement 
coordinate system is the first step in the wave 
analysis procedure. This matrix has elements which 
consist of all possible cross spectra between pairs 
of components. One such matrix is determined for 
each frequency estimate. The analysis described 
below is done for each frequency estimate. Several 
techniques are available for determination of the 
spectral matrix (such as those requiring use of the 
Fast Fourier Transform or the maximum entropy 
method), but they are not discussed here. 

Coherency analysis. Once the spectral matrix 
has been rotated into the principal axis system by 
one of the techniques described below, the polari- 
zation parameters described by Born and Wolf 
[ 1964] and Fowler et al. [ 1967] can be determined. 
If only two components of the field are measured, 
this coherency analysis can be done in that plane, 
but the results may be misleading if the measurement 
plane is not close to the principal plane of the wave. 

The spectral matrix in the principal plane of a 
wave has the form 

,• - (•) 
Jx*y Jyy 

where Jxx and Jyy are real and Jxy is imaginary if 

the major axis of the wave is oriented along the 
X or Y axis, complex if it is not. The percent 
polarization (% Pol) is determined from the ratio 
of coherent power to total power in the plane and 
can be calculated from 

% Pol = 100 [1 - 4 det3/(Tr3)2] •/2 (2) 

Ellipticity (El) is defined as the ratio of the minor 
to major axis of the polarization ellipse of the wave 
and is given by 

E1 = tan 13 

where 13 is determined from 

(3) 

2 ImJxy 

sin 2[3 = [(Tr 3) 2 - 4 det j]•/2 (4) 
Azimuth (•), the angle the major axis makes with 
the X axis, is defined by 

tan 2q• = 2 (Re Jxy)/(Jxx - Jyy) (5) 

For a plane wave in the principal axis system 

x(t) = a exp[i(cot)] 

y(t) = b exp[i(cot - x/2)] (6) 

z(t) =0 

the spectral matrix at the frequency o• is given by 

a 2 iab 0 

3=i•bb200 (7) 0 

and the upper left 2 x 2 submatrix corresponds 
to the matrix in (1). 

Wave analysis. The coherency analysis de- 
scribed above is most valid when performed in the 
principal plane of a wave. However, most wave 
measurements are usually made in a coordinate 
system oriented arbitrarily with respect to the 
principal axis system. Therefore it is necessary to 
determine a rotation matrix with which to transform 
the spectral matrix into this principal axis system. 
The three techniques of wave analysis compared 
in this paper are, in effect, three different ways 
to determine this rotation matrix. There are also 

some subtle differences between the techniques 
which are beyond the scope of this paper. 

Technique 1 [McPherron, et al., 1972] is based 
on diagonalization of the real part of the spectral 



matrix. Let G be the spectral matrix in the measure- 
ment system. The real part of G (Re G) is then 
diagonalized using standard eigenanalysis proce- 
dures. If we assume that the direction of minimum 

variance corresponds to the direction of wave 
propagation (as indicated by (6) and (7)), then the 
matrix of eigenvectors (T) can be used to transform 
the entire spectral matrix into the principal axis 
system 

G' =TrGT (8) 

The diagonal elements of G' are the eigenvalues 
of G and correspond to the autospectra of the three 
principal axis coordinates. The upper left 2 x 2 
submatrix of G', i.e., 

Gll 12 
G • • 1• G22 

can now be subjected to the coherency analysis 
described above to determine the percent polariza- 
tion and ellipticity. Since the X axis is required 
by the eigenanalysis to lie along the direction of 
maximum variance, the azimuth determined from 
(5) will always be zero for this technique. The 
orientation of the major axis (X) and the direction 
of propagation (Z) relative to the input coordinate 
system can be determined from the matrix T by 
means of 

tan 0,, = (T:•, + T22,)l/2/T3, 

tan q) • = T21 / Tl• 

tan 0• = (T•3 + T223 )•/2/T3 3 

tan 4• = T23 / Ti3 

(9) 

(10) 

(11) 

(12) 

Technique 2 [Means, 1972] obtains the compo- 
nents of the unit wave normal vector (•c) directly 
from the imaginary part of the spectral (or co- 
variance) matrix: 

0 Im Gxy Im 
ImG= Im G•y 0 Im0GY j (13) ImG• -ImGy• 

If we define a variable p such that 

p = [(Im Gxy) 2 + (Im Gxz) 2 + (Im Gyz) 2] !/2 

then the components of k are given by 

(14) 

k x = Im Gy z/p (15) 
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ky = Im Gxz/p (16) 

kz = Im Gxy/p (17) 

The above is true for a right-hand polarized wave; 
for a left-handed wave, k' = -k must be used. 

The spectral matrix is then rotated into a new 
coordinate system in which /t is along the Z axis. 
Although the particular choice of the X-Y axis is 
arbitrary, it is convenient to have the Xaxis coplanar 
with /c and 1• (where 1• represents the magnetic 
field direction) and Y perpendicular to this plane. 
If this rotation is accomplished by the matrix T1, 
then 

O' = T•'G T 1 (18) 

In this system, the major axis of the polarization 
ellipse is not necessarily aligned with the X coordi- 
nate axis. Coherency analysis is performed on the 
upper left 2 x 2 submatrix of G'. Using the azimuth 
angle 4> determined by this coherency analysis, 
another rotation is defined that completes the trans- 
formation of G into the principal axis system, so 
that the X axis is aligned with the major polarization 
axis 

where 

G" = T 2 G' T2 r (19) 

cosq) sinq) 0 
= COS(• 

,2 o 7 
(20) 

But substituting from (18) for G' in (19), we have 

G "= T 2 T•rG T 1T•', G" = (T, T/)rG (T• T•') (21) 

So by comparison with (8), we see that T 1 T•' gives 
a transformation equivalent to T, and the orientation 
angles of the X and Z axes relative to the input 
system can be determined from T1 T[ in the same 
way as from T, (9)-(12). 

The above analysis procedure is invalid for a 
linearly polarized plane wave, which has a purely 
real spectral matrix. However, the direction of the 
linear axis can be determined as follows 

L x = [ Gx• / (Tr 0) 2 ]'/2 (22) 

Ly = G,,y/(Tr G)L• (23) 

L z - G•z / (Tr G)L x (24) 

Once L has been determined, it can be used in 
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the same way as /c to define the appropriate rota- 
tions. However, œ should be used to define the 
X, rather than the Z axis. 

Technique 3 [Samson, 1973] uses the fact that 
several different expansions of the spectral matrix 
are possible. The most useful analytically is expan- 
sion as a series of nondisjoint idempotent matrices. 
Although Samson [1973] develops the expressions 
in the general n-dimensional case with two- and 
three-dimensional examples, only the three-dimen- 
sional expressions (Samson's equations 32, 33) are 
appropriate to our study and are presented here. 

The first step in the technique is the determination 
of the eigenvalues and eigenvectors of the entire 
Hermitian spectral matrix G. The diagonalization 
of a complex matrix is a difficult computational 
problem. It was accomplished in our study through 
the use of a package of algorithms developed at 
the Argonne National Laboratory and given the 
acronym ElSPACK [Smith et al., 1974]. (The 
FORTRAN coding necessary for this computation 
is presented in this reference.) 

For the spectral matrix G, if U is the unitary 
matrix of eigenvectors and h• -• h2 -• h3 are the 
eigenvalues, it can be shown that the following 
expansion holds: 

U*GU = X 3 

I 0 0 I 0 0 

0 I + (X 2 - X 3) 1 0 

0 0 0 0 

1 o o 

+(x•-k,) o 0 o o 

(25) 

Equation (25) represents an expansion in terms of 
three uncorrelated stochastic processes which, in 
order from left to right, are unpolarized, partially 
polarized, and purely polarized. Samson [1973] 
then defined some parameters which are not avail- 
able from the other techniques. Noting that the 
total power is, as usual, given by (h I -{- h 2 -{- h 3), 
the relative power present in each of these processes 
(or polarization states) is 

R• = purely polarized (26) 

2(X 2 - X 3) 
R 2 -- partially polarized (27) 

3•. 3 
R 3 = unpolarized (28) 

•k i -3- •k2 -3- •k 3 

The three-dimensional degree of polarization, P, 
is given by (Samson's equation 32)- 

p2__ (1/2)[(• ! - •.2)2 _{_ (•kl __ •k3)2 _3_ 0k 2 __ •k3)2] 

q- (•k ! -3- •k 2 -3- •k 3 )2 (29) 

Note that P is significantly different from the 
percent polarization (2). 

The idempotent matrix D •, which corresponds 
to the purely polarized state is given by 

I 0 0 

D• =U 0 0 U* (30) 
0 0 

Similar definitions hold for 02 and 0 3 , corre- 
sponding to the other two states, but they are not 
used in this study. Because U is complex, D• is 
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Fig. 1. Distributions of percent polarization deter- 
mined by the three techniques for signals composed 

of gaussian random noise. 
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Fig. 2. Distributions of the polarization parameters of the Sam- 
son method (technique 3) for signals composed of gaussian 

random noise. 

difficult to interpret directly. As stated by Samson, 
diagonalization of the real part of D l, which can 
be accomplished by using either technique 1 or 2, 
simplifies its interpretation and allows us to calcu- 
late the parameters we are using for comparison. 
We chose to use technique 2 to find 1', such that 

T•D, T•, = J (31) 

where Re J is diagonal. The ellipticity of the wave 
can then be determined from coherency analysis 
of the upper left 2 x 2 submatrix of J (31). At 
this point, we must extend the technique proposed 
by Samson so that we can calculate the other 
physical parameters we are using in our study. The 
matrix T, corresponds to T in (8) and the orientation 
angles can be determined as before, (9)-(12). The 
azimuth should be zero. The percent polarization 
calculated from this J (31) is not meaningful since 
only polarized power is included in Dl. Instead, 
T, is used to transform O' 

S = T T G T. (32) 

The upper left 2 x 2 submatrix of $ can now be 
used to determine the percent polarization. The 
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diagonal elements of $ are equivalent in meaning 
to those of O' in (8) and 0" in (19). 

COMPARISON OF THE TECHNIQUES 

Noise response. In order to study the noise 
response of the three techniques, several events 
composed of three independent components of 
gaussian random noise were generated and ana- 
lyzed. It is particularly important to know what 
levels of percent polarization are calculated when 
only noise is present. This knowledge allows us 
to establish a cutoff level for use in deciding whether 
a polarized wave is present in the signal, or whether 
the wave signal is sufficiently unaffected by noise 
for the other calculations of its properties to be 
meaningful. Distributions of the percent polariza- 
tion values determined for the gaussian random 
noise are shown in Figure 1. The arrows mark the 
value below which 90% of the distribution falls. 

For technique 1, this value is 30%; for technique 

Signal to Noise Ratio 

Fig. 3. Quality of computer-determined polarization parameters: 
percent polarization and AEL. Circles and solid lines indicate 
results for technique 1; diamonds and dashed lines for technique 
2; squares and dotted lines for technique 3. Error bars are 

discussed in the text. 
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2, 42%; and for technique 3, 39%. Thus, when us- 
ing these techniques for wave analysis, calculated 
wave properties should be suspect if the percent 
polarization is lower than the values stated above. 
It should be mentioned, however, that the value 
for technique 3 is not entirely independent of that 
for technique 2. If technique 1 had been used to 
diagonalize D l in technique 3, its 90% value might 
have been lower. 

For technique 3, the behavior of the other param- 
eters defined by Samson [1973] is also important. 
The distributions of these parameters (see equations 
26 through'29) for gaussian random noise are shown 
in Figure 2. Values of R l > 0.3 and P > 0.35 
would seem to be adequate to imply the presence 
of a polarized wave. These values, however, depend 
strongly on the number of degrees of freedom used 
in the spectral analysis. In our analysis, 26 degrees 
of freedom were used. Samson [1973], however, 
uses only 7 degrees of freedom and finds that R, 

> 0.6 and P > 0.7 should be used as criteria. Thus, 
it is important to determine which threshold values 
of R l and P are appropriate for the number of 
degrees of freedom used in a particular study. 

Simulated wave events. Four types of simulated 
wave events were studied. The events were gen- 
erated with known values of the polarization pa- 
rameters (ellipticity, orientation angles). Indepen- 
dent gaussian random noise was added to each axis. 
Nine different values of amplitude signal-to-noise 
ratio (snr) were used for each event. These values 
were •, 10.0, 1.0, 0.8, 0.6, 0.4, 0.2, 0.1, and 0.01. 

The first type of event studied was simply a single 
elliptical plane wave with known period and ellipti- 
city, and known but arbitrary orientation. Five such 
events, each done for the nine snr values, were 
generated and analyzed. In each case, the peak 
of the spectrum was exactly on the known input 
frequency. The values of all the polarization param- 
eters at the peak of each spectrum were determined. 
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Fig. 4. Quality of computer-determined polarization parameters: A0x, Aq)x, A0 z, and A4) z. Symbols are the same as in Figure 3. 
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Fig. 5. Variation of polarization parameters of the Samson 
[ 1973] method (technique 3) with snr. 

The differences between the calculated input values 
of ellipticity, 0x, {bx, 0z, {bfz were calculated for 
each event and are referred to as AEL, A0•, Atb• , 
A0 z, and Atbz. The mean differences for the five 
events were then calculated. Figure 3 shows the 
mean values of the calculated percent polarization 
and AEL plotted as a function of snr for each 
technique. Figure 4 shows the results for A0•, Atb• , 
A0z, and Atb•. In both figures the error bars plotted 
just to the right of the points show a representative 
standard error in the mean. If the standard error 

for one technique was significantly different from 
that for the others, it was plotted attached to its 
appropriate point. It is clear from both figures that 
all three techniques give excellent results for snr's 
>_ 0.2. A similar result is clear in the extra parame- 
ters of technique 3. The mean and standard error 
in the mean for these four parameters are shown 
in Figure 5. For snr's < 0.2, R l < 0.3, R3 is high, 
and P < 0.4, all of which indicate that the dominant 
signal is the noise. 

Two events in which one noise component was 
of larger amplitude than the other two were generat- 

0 15 30 45 

TIME (MIN) 

Fig. 6. Waveform of a portion of a simulated wave event 
composed of two plane waves with different periods, ellipticities, 

and orientations. The snr is 2.0. 

ed and analyzed. The axis nearest the direction 
of wave propagation had the largest noise; the noise 
in the other two axes was only 70% as large. This 
approximates the ATS 1 situation for transverse 
waves. The results for all three techniques were 
still quite acceptable for snr's > 0.2. 

Eight events having various ellipticities less than 
0.1, all with snr's of 1.0, were analyzed to compare 
the performances of the three techniques on linear 
waves. In this test, the linear expressions given 
in (22)-(24) for technique 2 (and thus also technique 
3) were used only when the ellipticity was less than 
0.01. For these very simple simulated wave events, 
all three techniques performed equally well at de- 
termining ellipticity and orientation of the major 
(or linear) axis. 

The second type of wave studied had a time-vary- 
ing direction of propagation. As before, an elliptical 
plane wave of known period, ellipticity, and orien- 
tation was used. The orientation angles were incre- 
mented every four wave periods. Two such events 
were studied: one in which the increment was small, 

TABLE 1. Input parameters for the simulated wave event 
shown in Figure 6. 

Digitization 
interval 5 sec 

Period 25 sec 23 sec 

Ellipticity 0.5 -0.5 
0 x 80 ø 75 ø 
q• x 80ø* 85ø* 
0 z 15 ø 20 ø 
• z 31.2 ø* 42.4 ø* 

*A +_ 180 ø ambiguity exists in the determination of these 
angles, i.e., tb +- 180 ø is the same as tb. 
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COHERENCY ANALYSIS 
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Fig. 7. Analysis results for the event illustrated in Figure 6. On the left-hand side of the figure, results for technique I are 
plotted with a heavy line; technique 2, light line-technique 3, dotted line. The upper panel on the left contains plots of the 
trace and x, y, and z autospectra in the principal axis system. In the top panel on the right, the trace and the power in 

each polarization state are plotted. The vertical dashed lines indicate the input wave periods. 

and one in which it was large. In both cases, the 
orientation calculated by the analysis corresponded 
to an average of the orientations which occurred 
during the event. Good results were again obtained 
for snr's greater than 0.2. 

The third type of wave event studied had two 
plane waves with different characteristics occurring 
simultaneously. The periods of the two waves were 
chosen so that they were separated by only one 
spectral estimate. The waveform of this simulated 
event is shown in Figure 6. The input parameters 
of the two waves are given in Table 1. The results 

TABLE 2. Input parameters for the simulated wave event 
shown in Figure 8. 

Digitization 
interval 5 sec 
Period 25 sec 23 sec 

E!lipticity 0.5 0.4 
0 x 75ø 80ø 
4> x 70ø* 80ø* 
0 • 20 ø 15 ø 
(b z 27.4 ø, 31.2 ø* 

*See note in Table 1. 
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Fig. 8. Waveform of a portion of a simulated wave event 
composed of two wave bursts with gaussian amplitude envelopes 
and different periods, ellipticities, and orientations. The snr 

is 1.0. 
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of the analysis of this event using all three tech- 
niques are shown in Figure 7. The results obtained 
by the different techniques not only agree among 
themselves, but also agree quite well with the input 
parameters. In fact, all three techniques did an 
excellent job even for quite low snr's. The parame- 
ters of the Samson [1973] method (technique 3) 
also behaved as expected. Note the indication of 
a significant amount of partially polarized power 
in the spectral estimate separating the two input 
waves. 

The final type of simulated wave event was 
composed of two nonsimultaneous wave bursts with 
gaussian amplitude envelopes and different charac- 
teristics. The input parameters for this event are 
given in Table 2, and a portion of the waveform 
for an snr of 1.0 is shown in Figure 8. This event 
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Fig. 9. Analysis results for the event shown in Figure 8. The format is the same as Figure 7. 
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Fig. 10. Waveform of a Pc 3 event observed at ATS 1 on August 
17, 1967, 1600-1643 UT. The data are first-differenced and in 

the dipole VDH system. 

more nearly approximates a real wave event. The 
results of the analysis for this event are shown 
in Figure 9. Once again there is excellent agreement 
between techniques and with the input parameters. 
The amount of power in the peak is much lower 
because of {he shorter duration of the waves and 
the smaller snr. Because of the broadening of the 
spectral peaks introduced by the gaussian amplitude 
envelope, the two periods are not clearly distin- 
guishable. Also, there is no indication of the pres- 
ence of significant partially polarized power in R 2. 
In fact, R 3 is consistently higher than R 2. Although 
P is not large even at the peak of the power, it 
clearly indicates the presence of a polarized wave. 
Even though this simulated event approximates a 
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Fig. 11. Analysis results for the ATS 1 Pc 3 event shown in Figure 10. The format is the same as Figure 7, except .that 
the vertical dashed lines indicate the boundaries of the band of wave activity. 
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real wave event, it is still much less complex than 
most real wave signals, so the performance of the 
three techniques on examples of real events must 
also be examined. 

Real wave events. Two examples of Pc 3 
micropulsations (quasisinusoidal magnetic varia- 
tions in the 10-45 sec period range) were selected 
to test the performance of the three techniques 
on real wave events. One event was observed by 
the geosynchronous satellite ATS 1, which typically 
produces very noisy data. The VDH coordinate 
system in which both of these events are presented 
is the dipole VDH system: the H axis is parallel 
to the earth's dipole axis; D is azimuthally eastward 
and perpendicular to a plane defined by lq and a 
radius vector through the spacecraft; and •/com- 
pletes the right-hand system such that •/x • = 

The waveform of the ATS 1 event is shown in 

Figure 10. The data are 2.56 sec averages which 
have been first-differenced, and most of the spikes 
have been removed. The spectrum is recolored to 
compensate for the prewhitening introduced by the 
first-differencing. The results obtained with the 
three techniques are shown in Figure 11. There 
is good agreement between the results of the three 
techniques for the band of interest, indicated by 
the dashed vertical lines. All three techniques indi- 
cate a highly polarized and very linear wave. Al- 
though the three techniques give somewhat different 
results for the orientation angles, the conclusions 
about the character of the waves are still basically 
the same' the wave is transverse with radial orienta- 

tion, and its direction of propagation makes an angle 
of---30 ø with 1•. The results for the parameters 
of the Samson [1973] method are similar to those 
for the previous simulated event. Even though the 
spectral peak is not strong, the values of R• and 
P clearly indicate the presence of a polarized wave. 

Because the data are so much quieter, nonderiva- 
tive data are used in the analysis of the ATS 6 
Pc 3 event illustrated in Figure 12. There are clearly 
frequencies besides that of Pc 3 present in this 
event. The long period oscillations in the V compo- 
nent are due to interference from another experi- 
ment on the spacecraft. The harmonics of this 
interference are clear in the spectrum shown in 
Figure 13. However, they do not obscure in any 
way the strong broad Pc 3 band indicated by the 
dashed lines. There is excellent agreement between 
the three techniques on all the characteristics of 
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Fig. 12. Waveform of a portion of a Pc 3 event observed at 
ATS 6 on July 9, 1974, 1430-1500 UT. The data are given 

in the dipole VDH system. 

this event. This wave is linear, highly polarized, 
azimuthal and transverse. The 0 z angle is ---30 ø. 
The complexity of the spectrum is evident in the 
Samson [1973] method parameters as well. 
However, the wave band is as clear here as before. 
Both R, and P are high across the band, and R 3 
is low. It is clear that P and R 1 have the same 
pattern. It is also interesting to note that in general 
R2 decreases when R1 increases, and vice versa. 

CONCLUSIONS 

Performance. All three techniques performed 
equally well on the simulated wave events, giving 
excellent results down to quite low values of snr. 
All three analyzed simple simulated linear events 
equally well, and all three gave essentially the same 
results on the real wave events. The major perfor- 
mance difference was in the percent polarization 
determined for random noise. Because the 90% line 

fell at 30% polarization for technique 1 and at 40% 
for the other two techniques (see Figure 1), tech- 
nique 1 should be slightly more useful in detecting 
weak wave signals in fairly noisy data. 

Ease of coding. We mention ease of coding only 
as a minor point of comparison. It should not be 
considered a deciding factor between the tech- 
niques. Technique 1 is quite straightforward to code, 
particularly if eigenanalysis routines for real matri- 
ces are available. Technique 2 is slightly more 
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Fig. 13. Analysis results for the event illustrated in Figure 12. The format is the same as in Figure 11. 

complicated to code and requires a slightly longer 
program. Technique 3 is organizationally quite 
complex to program. Without some programmed 
procedure such as EISPACK (or the algorithms 
from Smith et al. [1974]) for eigenanalysis of a 
complex matrix, coding of technique 3 is quite 
complex and difficult. 

Cost e•ectiveness. To determine the relative 
cost effectiveness of the three techniques, compari- 
sons were made of the cost of each to analyze 
the same data. Because technique 2 requires no 
eigenanalysis, it might be expected to be signifi- 
cantly cheaper than the other techniques. However, 
because of the larger number of computations 
required, it is only slightly less expensive than 

technique 1. Technique 3 is half again as expensive 
as either of the other two techniques. This is due 
partly to the complex eigenanalysis required and 
partly to the extra computations necessary to deter- 
mine both sets of parameters. However, if a simpler 
method of extracting the physically meaningful 
parameters from the unitary matrix of eigenvectors 
can be found, this technique could be the most 
useful since it provides more parameters with which 
to characterize the waves. The differences in cost 

are not considerable enough to be an important 
factor in studies involving only a few events. 
However, in statistical studies involving large 
numbers of events and requiring wave analysis of 
hundreds of power spectra, the relative cost effec- 



SPECTRAL MATRIX IN WAVE ANALYSIS 845 

riveness of the various techniques may be of signifi- 
cant importance. 

Recommendations. None of the techniques is 
obviously superior to the others in terms of per- 
formance. However, in its present state of develop- 
ment, technique 3 is much less cost-effective than 
the other two, and thus is not as highly recommend- 
ed for studies of large numbers of events. In 
choosing between techniques 1 and 2, the nature 
of the events may provide the best basis for selec- 
tion. If the waves being studied are seldom linear, 
technique 2 is probably the best choice, although 
problems may arise if the data are very noisy 
because of the percent polarization found for ran- 
dom noise. For waves which are usually linear (such 
as Pc 3), technique 1 is probably the best. Although 
technique 2 did well on the simple test with linear. 
waves, a much more thorough study of its perfor- 
mance for ellipticities < 0.1 in complicated events 
is necessary before it can be strongly recommended 
for use in the study of predominantly linear waves. 
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