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A qualitative and quantitative study is made for choosing time advancement

strategies for solving time dependent equations accurately. A single step, low

order Euler time integration method is compared with Adams–Bashforth,

a second order accurate time integration strategy for the solution of one dimen-

sional wave equation. With the help of the exact solution, it is shown that the

presence of the computational mode in Adams–Bashforth scheme leads to

erroneous results, if the solution contains high frequency components. This is

tested for the solution of incompressible Navier–Stokes equation for uniform

flow past a rapidly rotating circular cylinder. This flow suffers intermittent

temporal instabilities implying presence of high frequencies. Such instabilities

have been noted earlier in experiments and high accuracy computations for

similar flow parameters. This test problem shows that second order Adams–

Bashforth time integration is not suitable for DNS.

KEY WORDS: DNS; time integration methods; dispersion relation preserva-

tion; Navier–Stokes equation; flow instabilities.

0. INTRODUCTION

Availability of very fast computing machines with large memory allows

one to solve the Navier–Stokes equation for high Reynolds number flows,

resolving all spatial and temporal scales by Direct Numerical Simulation

(DNS). For DNS lots of attention has been given in devising high accuracy

spatial discretization schemes. These schemes are essentially based on

higher order explicit or implicit schemes for the discretization of non-linear

convection terms. The explicit higher order upwind schemes have been

variously used to study unsteady and turbulent flows in [1–3]. The implicit



methods, also known as compact schemes, are based on Pade’ approxima-

tion. These are known to possess higher spectral accuracy than the explicit

higher order upwind schemes. Some of the important and recent work in

this area are to be found in [5–7]. However, in the present research the

attention is solely focused on explicit methods. In particular, we will con-

sider the third order upwind scheme [1–3] that discretizes the convection

term as

f
“u
“x
:
i

=
fi
12 Dx

[−u i+2+8ui+1−8i−1+ui−2]

−b
|fi |

12 Dx
[u i+2−4u i+1+6ui−4u i−1+ui−2] (1)

In this expression on the right hand side, the second term is an extra addi-

tive term that numerically stabilizes computation. Here a fourth derivative

term is blended with the discrete first derivative term (the first term on the

right hand side), with the help of a blending parameter, b. The idea that

this method stabilizes the computations, stems from the fact that the

second set of terms in Eq. (1) provides a negative feed back. It is noted that

this used even derivative terms are added in such a way that the corre-

sponding difference expression for the evolution of the node value u i has a
negative sign for the coefficient on right hand side. Thus, when a second

derivative is used it is always added, while the fourth derivative term is

always subtracted. A direct connection of higher order upwind methods

have been shown [8] with Large Eddy simulations (LES). The implicit

dissipation term was shown in [8] to be equivalent to the sub-grid scales

stress models used in LES.

While sufficient attention has been spent on the spatial discretization,

there has been lesser focus on the time discretization schemes. For example,

in [1–3] a first order accurate Euler time integration scheme has been used.

The marker and cell (MAC) method of [4] is an explicit method specifi-

cally designed for Euler time integration scheme. In the original MAC

method, second order central differencing is used for spatial discretization.

The SMAC method [1] used third order upwind scheme for spatial discre-

tization and Euler time integration for integrating Navier–Stokes equation

using primitive variables. It is expected that a choice of higher order

accurate time integration will facilitate taking larger time steps and achiev-

ing higher accuracy of the solution. Some of the classical higher order time

integration schemes continues to enjoy popularity in diverse application as

in reactive flow computations [12] and geophysical fluid dynamics [13].

Adoption of Leap-frog (second order accurate) time integration scheme for

diffusion equation leads to instability [9]. At the same time this scheme for
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the wave equation displays neutral stability. This three time level marching

scheme has two amplification factors Gg

1 and G
g

2 , such that |G
g

1, 2 |=1 for all
length scales if the CFL number (Nc) is chosen such that, Nc sin(k Dx) < 1.
The weather prediction codes that usually solve inviscid equations make

use of this feature of Leap-frog method for accurate simulation. However,

the simulation results tend to decorrelate with observation at large times

due to aliasing errors, phase error and the effects of non-linearity of the

governing equations. In [10] a complete analysis has been performed for

this three level scheme to express general solution in terms of Gg

1 and G
g

2 .

The first part of the solution (called the physical mode) approaches the

exact solution, while the second part of the solution (called the computa-

tional mode) approaches zero as, as Dx and Dt are allowed to approach
zero. This is a spurious mode and a source of error of many simulations. It

has been noted [10] that this mode alternates in sign and travels in the

opposite direction to the physical mode. In the present work the attention

is focused on time advancement schemes and not on spatial discretization

scheme. Here either a second order or a fourth order accurate spatial

discretization scheme is considered and the second order accurate Adams–

Bashforth time integration scheme is compared with first order accurate

Euler time integration scheme. This is done to highlight the role of compu-

tational mode of high order explicit time integration schemes, as compared

to the Euler time integration scheme that does not have this artificial mode.

Lilly [11], while examining time advancement scheme for integration

of simplified form of barotropic vorticity equation, noted that second order

Adams–Bashforth scheme performs best considering efficiency and accuracy.

For a typical ordinary differential equation

dA

dt
=F(A, t) (2)

the Adams–Bashforth scheme for time-advancing the above equation from

tn to tn+1 is given by

A(tn+1)=A(tn)+
Dt

2
[3F(tn)−F(tn−1)] (3)

It has been noted in [10] following the results of [11], that the computa-

tional mode given by Gg

2 is a heavily damped mode. It is to be highlighted

that by itself this is a desirable property. However, without elaboration

it was also stated that the Adams–Bashforth scheme is suitable unless the

period of integration is lengthy [10]. Because of this lack of clarity of this

statement many researchers continue to use Adams–Bashforth scheme for

DNS and acoustics problem that necessarily involves computing for long
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time. The main focus of the present work is to establish the unsuitability of

Adams–Bashforth time integration scheme in producing accurate results

for long time integration of evolutionary equations.

The use of Adams–Bashforth time integration scheme is very widespread,

specially in recent times, because of its dissipative property, as compared to

other lower order explicit time marching schemes like Euler time marching

scheme. For example DNS of channel flow is reported in [14] that used

Adams–Bashforth time integration along with second order central differ-

encing for spatial discretization. Turbulent flow and heat transfer problem

by DNS is reported in [15, 16], that used Adams–Bashforth scheme for

time marching. In [16] turbulent flow over wavy boundary is solved using

DNS and LES that used Adams–Bashforth scheme for time integration.

Even for spectral methods [17] Adams–Bashforth scheme has been used to

obtain high accuracy for temporal discretization. A few other representa-

tive references that used the same temporal discretization are as in [18–24].

In [25], free surface flow in open channel has been studied by DNS using

Adams–Bashforth scheme. Such wide usage of Adams–Bashforth scheme

for DNS and computational aero-acoustics prevails as there are no

recorded proper analysis of Adams–Bashforth time integration scheme in

the literature. With this in mind we thoroughly analyze the second order

accurate Adams–Bashforth time integration scheme to find out limitations

on wave numbers and circular frequencies for this scheme and suggest

alternatives. Similar problems will be present for other explicit higher order

time integration schemes involving computational mode. For example, the

Runge–Kutta schemes are higher order schemes but they do not have

computational mode and hence they will be perfectly usable for time

dependent problems. The present study is undertaken to clearly assess the

Adams–Bashforth time integration scheme vis-a-vis the Euler time integra-

tion scheme for the purpose of displaying the bad effects of computational

mode whenever it is present. In the next section we investigate these two

time integration schemes for different explicit spatial schemes for the one-

dimensional wave equation. We will use the spectral analysis tool that is

developed in [26] for analyzing any general discretization scheme. In

Sec. 2, a specific example of a flow past a rotating cylinder is considered, to

pin-point the effectiveness of these time integration strategies.

1. ANALYSIS OF ONE-DIMENSIONAL WAVE EQUATION

Consider the one dimensional wave equation

“u
“t
+c
“u
“x
=0 (4)
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for which the initial solution u0(x) travels to the right at the phase speed c.
For the numerical solution of Eq. (4), we identify the solution as

U(xm, tn)=U
n
m=F B(k, tn) e ikxm dk (5)

1.1. Euler Time Integration Scheme

If we define CFL number as Nc=c
Dt
Dx
=w Dt
k Dx
, then for the solution of

Eq. (4) by Euler time integration and second order spatial discretization,

the amplification factor, G2(k)=
B(k, tn+1)

B(k, tn)
can be obtained as G2(k)=(1+

N2c sin
2 k Dx)1/2 e−ib2, where tan b2=Nc sin k Dx. Thus if the initial solu-

tion is indicated by

U0m=F A0(k) e ikxm dk (6)

then the general solution at any arbitrary time can be written as

Unm=F A0(k)[G2(k)]n e ikxm dk

=F A0(k)[1+N2c sin2 k Dx]
n
2 e i(kxm−nb2) dk (7)

b2 gives a measure of the phase speed for the numerical scheme. Thus the

numerical phase speed is given by cN=
b2
k Dt
and the ratio

cN
c=

b2
w Dt
is the

appropriate non-dimensional ratio that will be used. In Fig. 1(a) the con-

tours for G2 in the (k Dx−w Dt)-plane are plotted. It is evident that large
range of k Dx have the desired property of G2=1, when w Dt vanishes.
Otherwise, the unstable nature of the scheme is self-evident. In Fig. 2(a)

the region where
cN
c is between 0.95 and 1 is shown as the shaded region.

Ideally, one would like this ratio to be 1 and for the present scheme it is
achievable only for the point at the origin. Here we show a region where a

5% error is tolerated. If one replaces the second order spatial discretization
scheme by the fourth order scheme, i.e., using the following for the spatial

derivative,

1“u
“x
2
m

=
1

12 Dx
[−um+2+8um+1−8m−1+um−2] (8)
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then one can obtain the amplification factor as G4(k)=1−i
Nc
3
(4−cos k Dx)

× sin k Dx. The general solution at any arbitrary time is given by

Unm=F A0(k) 51+N2c
9
(4− cos k Dx)2 sin2 k Dx6 n2 e i(kxm−nb4) dk (9)

where tan b4=
Nc
3
(4− cos(k Dx)) sin(k Dx). In Fig. 1(b), |G4 |-contours are

plotted in the (k Dx−w Dt)-plane. The contours are qualitatively the same
as shown for CD2-case, i.e., the scheme is unstable but the level of instabil-
ity is marginally lesser. In Fig. 2(b) the corresponding phase portrait of

cN
c

is shown where it takes the value between 0.95 and 1. This shaded region is

1
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Fig. 1. The amplification factor in the full (k Dx−w Dt)-plane for Euler time integration

scheme and spatial discretization by (a) CD2, (b) CD4, and (c) UD3 schemes.
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Fig. 2. The normalized numerical phase speed (cN/c) for solving Eq. (4) using Euler time

integration scheme; (a) the shaded region where 0.95 <
cN
c < 1 for CD2 scheme; (b) the shaded

region where 0.95 <
cN
c < 1 for CD4 scheme; and (c) where |

cN
c −1| < 0.05 for UD3 scheme for

spatial discretization.

bigger-but it is qualitatively also same as that is obtained for CD2 scheme.
These known results are plotted to indicate the amplification and phase

portraits of the schemes for all possible wave numbers and circular

frequencies.

Next, if we replace the fourth order central difference scheme by third

order upwind scheme [1–3], then the difference equation for Eq. (4) is

Un+1m −Unm
Dt

=−
c

6Dx
[Unm+2−2U

n
m+1+9U

n
m−10U

n
m−1+2U

n
m−2] (10)
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The corresponding amplification factor is given by

G3(k)=1−i
Nc
6
(L2+iL1) (11)

where L2=(4− cos(k Dx)) sin(k Dx) and L1=−24 sin
2( k Dx

2
). The amplifi-

cation rate can be rewritten as

G3(k)=111+Nc
6
L1 22+N2cL22

36
2 12 e−ib3 (12)

where tan b3=(
NcL2
6+NcL1

). Hence the general solution for the third order

spatial upwind and Euler time discretization scheme is given by,

Unm=F A0(k) 511+Nc
6
L1 22+N2cL22

36
6 n2 e i(kxm−nb3) dk (13)

In Fig. 1(c), |G3 |-contours are plotted in the (k Dx−w Dt)-plane. This
scheme is conditionally stable for the combinations of k Dx and w Dt in the
upper left part of the (k Dx−w Dt)-plane. This figure explains why one
requires a very small time step for stable computations. In Fig. 2(c) the

shaded region depicts the values of k Dx and w Dt for which |
cN
c −1| [ 0.05.

Apart from the amplification and phase portraits, one is interested in

finding out the numerical group velocity of schemes. This is due to the fact

that the energy of a convective system travels at the group velocity. This

aspect of chosen numerical scheme in preserving dispersion relation is dis-

cussed in [26]. For the one-dimensional wave equation the physical group

velocity is given by c. The numerical group velocity VgN can be found out
from the numerical dispersion relation

weq=cNk (14)

by evaluating it from

VgN
c
=
cN
c
+
k2

w

dcN
dk

(15)

The right hand side of the above expression can be calculated for any

spatial and temporal discretization schemes for the one-dimensional wave

equation. The results are displayed in Figs. 3(a)–(c) where
VgN
c contours are

plotted in (k Dx−w Dt)-plane for the above schemes. The shaded region in
Fig. 3(a) is for CD2-spatial discretization and one notices a small region
near the origin where numerical dispersion relation is consistent with
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physical dispersion relation. This region increases for larger range of k Dx
for the CD4-scheme. For the third order upwind scheme the corresponding
region is shown in Fig. 3(c). Because of the complex numerical dispersion

relation here we have an extended region as compared to the central

schemes. In Figs. 2 and 3, the cN and VgN plots indicate similar shaded
region, but due to the dispersion relation the DRP region predicted by

group velocity is smaller than that shown by the region where physical and

numerical phase speeds are identical.
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x
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1
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3

(b)
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∆

x

1 2 3

1

2

3

(c)
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k
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x
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1
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3

(a)

Fig. 3. The normalized numerical group velocity (VgN/c) for solving Eq. (4) using Euler time

integration scheme; (a) the shaded region where 0.95 <
VgN
c < 1 for CD2 scheme; (b) the shaded

region where 0.95 <
VgN
c < 1 for CD4 scheme; and (c) where |

VgN
c −1| < 0.05 for UD3 scheme for

spatial discretization.

Time Advancement of NS Equation 233



1.2. Adams–Bashforth Time Integration Scheme

If we use the second order central differencing scheme for the spatial

discretization along with second order Adams–Bashforth scheme (as given

by Eq. (3)) the discrete equation for Eq. (4) is given by,

Un+1m −Unm
Dt

=−
c

2
53 Unm+1−Unm−1

2 Dx
−
Un−1m+1−U

n−1
m−1

2 Dx
6 (16)

The amplification factors GAB2 are the roots of the following quadratic

equation,

(G−1)+2i
Nc
4
sin(k Dx) 13− 1

G
2=0 (17)

If the roots are indicated by l1 and l2 then

l1=F2e
ig2 (13a)

l2=H2e
iC2 (13b)

where,

F2(k)=5C22+D22+2C2D2 cos 1t2
2
−
b̄2

2
26 12 (14a)

H2(k)=5C22+D22−2C2D2 cos 1t2
2
−
b̄2

2
26 12 (14b)

C2=
1

2
51+9

4
(Nc sin(k Dx))

26 12 (14c)

D2=
1

2
51+81

16
(Nc sin(k Dx))

4−
7

2
(Nc sin(k Dx))

26 14 (14d)

tan( b̄2)=−
Nc sin(k Dx)

1− 9
4
(Nc sin(k Dx))

2
(14e)

tan 1t2
2
2=−3

2
Nc sin(k Dx) (14f )

tan(g2)=
C2 sin

1 t2
2
2+D2 sin 1 b̄22 2

C2 cos
1 t2
2
2+D2 cos 1 b̄22 2

(14g)

tan(C2)=
C2 sin

1 t2
2
2−D2 sin 1 b̄22 2

C2 cos
1 t2
2
2−D2 cos 1 b̄22 2

(14h)
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The general solution at any arbitrary time is given by,

Unm=FM2(k)(F2)
n e i(kxm−ng2) dk+FN2(k)(H2)n e i(kxm−nC2) dk (15)

In Eq. (15) the first part is called the physical mode and the second part is

the computational mode. Ideally, one expects the computational part to be

negligibly small at all times. The multiplicative constantsM2 and N2 can be
evaluated from the conditions at t=0 (given by Eq. (6)) and at t=Dt (to
be obtained from Eq. (7) for n=1). Substitution and simplification yields,

M2(k)=A0
1−iNc sin(k Dx)−H2e

iC2

F2e
ig2−H2e

iC2
(16a)

N2(k)=A0
−1+iNc sin(k Dx)+F2e

ig2

F2e
ig2−H2e

iC2
(16b)

For the Adams–Bashforth time integration scheme, there is no other way

the time integration can be started without going through one step of Euler

time integration. Thus the value of M2 and N2 obtained are unique in that
sense. M2 and N2 indicate the fraction of initial condition shared between
the physical and computational modes. In Figs. 4(a) and 4(b) contours of

the time-dependent parts of the physical (F2) and computational mode (H2)
are plotted in (k Dx−w Dt)-plane. It is evident that unlike the Euler time
integration scheme, there is a larger range of w Dt available for which the
scheme is near-neutral for all wave numbers for the physical mode. Also,

for the same range of w Dt the computational mode is negligible. The corre-
sponding spectral weights of the initial condition,M2 and N2, contours are
plotted in Figs. 4(c) and 4(d) respectively. These demonstrate that the phy-

sical and computational modes taken together will produce stable results for

very small w Dt values. These figures also explain why Adams–Bashforth
scheme is not workable for high accuracy computations. The computational

mode by itself has the extremely nice property of being a highly damped

mode. Thus its presence is not going to be felt within a few time step

of integration. The problem originates from this source and the way the

initial condition is partitioned. The initial condition that is used is divided

between the physical and computational mode in the proportion dictated by

M2 and N2. However, the quantity that is carried by N2 is lost within a few
time steps due to the highly damped nature of the computational mode. This

loss of initial condition-information will drastically alter the numerically

obtained solution by the Adams–Bashforth time integration scheme, as

compared to the Euler time integration scheme. The latter does not have

any computational mode and hence does not suffer from associated problem.
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Fig. 4. The amplification factor for solving Eq. (4) using Adams–Bashforth time integration

scheme and CD2 as spatial discretization scheme. (a) The time dependent function F2
(Eq. 14(a)) depicting the physical mode; (b) the time dependent function H2 (Eq. 14(b))

depicting the computational mode; (c) the spectral weight M2 (Eq. 16(a)) of the physical

mode; and (d) the spectral weight N2 (Eq. 16(b)) of the computational mode.

If one replaces the second order central difference by fourth order

central difference scheme, then the amplification factors GAB4 can be

obtained as the roots of the following quadratic

G−1+i
Nc
2
13− 1

G
2 L=0 (17)
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where L=1
3
[4− cos(k Dx)]. The roots of the equation are

l1=F4e
ig4 (18a)

l2=H4e
iC4 (18b)

where,

F4(k)=5C24+D24+2C4D4 cos 1t4
2
−
b̄4

2
26 12 (19a)

H4(k)=5C24+D24−2C4D4 cos 1t4
2
−
b̄4

2
26 12 (19b)

C4=
1

2
51+9

4
(NcL)

26 12 (19c)

D4=
1

2
51+81

16
(NcL)

4−
7

2
(NcL)

26 14 (19d)

tan( b̄4)=−
NcL

1− 9
4
(NcL)

2
(19e)

tan 1t4
2
2=−3

2
NcL (19f )

tan(g4)=
C4 sin

1 t4
2
2+D4 sin 1 b̄42 2

C4 cos
1 t4
2
2+D4 cos 1 b̄42 2

(19g)

tan(C4)=
C4 sin

1 t4
2
2−D4 sin 1 b̄42 2

C4 cos
1 t4
2
2−D4 cos 1 b̄42 2

(19h)

And the general solution at any arbitrary time is given by

Unm=FM4(k)(F4)
n e i(kxm−ng4) dk+FN4(k)(H4)n e i(kxm−nC4) dk (20)

The time-invariant coefficients are similarly found from U0m and U
1
m, as

M4(k)=A0
1−iNcL−H4e

iC4

F4e
ig4−H4e

iC4
(21a)

N4(k)=A0
−1+iNcL+F4e

ig4

F4e
ig4−H4e

iC4
(21b)
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In Figs. 5(a) and 5(b) the time dependent parts of the physical (F4) and
computational mode (H4) contours are plotted in the (k Dx−w Dt)-plane.
Similarly, in Figs. 5(c) and 5(d) the corresponding spectral weights of the

initial condition, M4 and N4, contours are displayed. These results are
qualitatively same as that for the CD2-scheme.
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Fig. 5. The amplification factor for solving Eq. (4) using Adams–Bashforth time integration

scheme and CD4 as spatial discretization scheme. (a) The time dependent function F4
(Eq. 19(a)) depicting the physical mode; (b) the time dependent function H4 (Eq. 19(b))

depicting the computational mode; (c) the spectral weight M4 (Eq. 21(a)) of the physical

mode; and (d) the spectral weight N4 (Eq. 21(b)) of the computational mode.
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When the third order upwind scheme is used for “u
“x
(using Eq. (9)) in

Eq. (4) along with Adams–Bashforth time integration scheme, the amplifi-

cation factors are found as the roots of the following quadratic equation,

G−1+i
Nc
2
13− 1

G
(L2+iL1)2=0 (22)

The roots of this equation can be written as

l1=F3e
ig3 (23a)

l2=H3e
iC3 (23b)

where,

L1=−24 sin
2 1k Dx
2
2 (24a)

L2=(4− cos(k Dx)) sin(k Dx) (24b)

F3(k)=5C23+D23+2C3D3 cos 1t3
2
−
b̄3

2
26 12 (24c)

H3(k)=5C23+D23−2C3D3 cos 1t3
2
−
b̄3

2
26 12 (24d)

C3=
1

2
51+ 1

16
N2c(L

2
1+L

2
2)+
NcL1
2
6 12 (24e)

D3=
1

2
51+NcL1

3
+
1

72
N2c(11L

2
1−7L

2
2)+

1

48
N3cL1(L

2
1+L

2
2)

+
1

64
N4c(L

2
1+L

2
2)
46 14 (24f )

tan( b̄3)=−
NcL2
1 1
3
+
NcL1
4
2

2+1
8
N2c(L

2
1−L

2
2)+

N4c
3

(24g)

tan 1t3
2
2=− NcL2

4+NcL1
(24h)

tan(g3)=
C3 sin

1 t3
2
2+D3 sin 1 b̄32 2

C3 cos
1 t3
2
2+D3 cos 1 b̄32 2

(24i)

tan(C3)=
C3 sin

1 t3
2
2−D3 sin 1 b̄32 2

C3 cos
1 t3
2
2−D3 cos 1 b̄32 2

(24j)
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The general solution in this case is given by,

Unm=FM3(k)(F3)
n e i(kxm−ng3) dk+FN3(k)(H3)n e i(kxm−nC3) dk (25)

whereM3 and N3 are obtained as

M3(k)=A0

11+NcL1
6
2−H3e iC3−NcL26

F3e
ig3−H3e

iC3
(26a)

N3(k)=A0
− 11+NcL1

6
2+F3e ig3+NcL26

F3e
ig3−H3e

iC3
(26b)

In Figs. 6(a) and 6(b) the time dependent parts of the physical (F3) and
the computational mode (H3)-contours are plotted in (k Dx−w Dt)-plane
respectively. Unlike the central schemes, here the computational mode is

not negligible for any combination of k Dx and w Dt. More over, there are
large ranges of k Dx and w Dt for which the computational mode and hence
the whole scheme is unstable. For physical mode there are only limited

ranges of k Dx and w Dt over which this mode will produce acceptable
near-neutral behavior. The physical mode shows instability for practically

the whole range of w Dt when k Dx approaches zero. This feature of the
third order upwind scheme, produces unstable results as grid is refined—

a feature known to users of this scheme (as in [1–3]). The computational

mode in Fig. 6(b) shows that this component is unstable for large ranges

of k Dx and w Dt. The spectral weights of initial condition, M3 and N3,
contours are plotted in Figs. 6(c) and 6(d) respectively. One notices that the

computational mode significantly contributes to the solution. There is also

a region of k Dx and w Dt over which the computational mode has negative
sign.

In Figs. 7(a) and 7(c) the normalized numerical phase speed contours

are shown for the Adams–Bashforth time integration scheme with
cN
c lying

between 0.95 and 1.05, for CD2 and CD4 scheme respectively. It is seen
that the time integration scheme is acceptable only within the shaded

region. The computational mode contours are indicated in Figs. 7(b) and

7(d). It is seen that this mode travels at very high speed for small w Dt
values for all wavelengths. Thus integrating informations from Figs. 6

and 7, one can see that the computational mode will have non-negligible

spurious contributions at all length scales.
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Fig. 6. The amplification factor for solving Eq. (4) using Adams–Bashforth time integration

scheme and UD3 as spatial discretization scheme. (a) The time dependent function F3
(Eq. 24(c)) depicting the physical mode; (b) the time dependent function H3 (Eq. 24(d))

depicting the computational mode; (c) the spectral weight M3 (Eq. 26(a)) of the physical

mode; and (d) the spectral weight N3 (Eq. 26(b)) of the computational mode.

In Figs. 8(a) and 8(b) the
cN
c contours are shown for the physical and

the computational modes respectively for the third order spatial upwinding

scheme. The physical mode is acceptable only in the region where the con-

tours are plotted, with the understanding that 5% tolerance is acceptable.
As the constant CFL number lines pass through the origin, the patch near

the origin is acceptable and the corresponding CFL numbers have to be

very small. Furthermore, across the line AB in Fig. 8(b), the phase speed of

the computational mode has discontinuous jump.
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Fig. 7. The normalized numerical phase speed cN/c for solving Eq. (4) using Adams–

Bashforth time integration scheme; (a) the shaded region where |
cN
c −1| < 0.05 for the physical

mode using CD2 scheme; (b) the contour lines cN/c of the computational mode using CD2
scheme; (c) the shaded region where |

cN
c −1| < 0.05 for the physical mode using CD4 scheme;

and (d) the contour lines cN/c of the computational mode using CD4 scheme.

In Figs. 9(a) and 9(c) the scaled group velocity for the physical mode

are shown for the central spatial schemes used with AB-time integration

scheme. Only the shaded region near origin is acceptable where dispersion

relation is preserved and the energy propagates at the correct speed. The

CD4 scheme has larger k Dx range as compared to CD2-scheme where this
is true. The computational mode contours are plotted in Figs. 9(b) and 9(d)

for CD2 and CD4 schemes respectively. For both the schemes, for a certain
value of k Dx the scheme displays vanishing group velocity for all frequencies.
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Fig. 8. The normalized numerical phase speed cN/c for solving Eq. (4) using Adams–

Bashforth time integration scheme and third order upwind spatial discretization scheme;

(a) the shaded region where |
cN
c −1| < 0.05 for the physical mode and (b) the contour lines

cN/c of the computational mode.

Below this line, the computational mode travels upstream and hence would

produce non-physical effects. Unfortunately, this is also the range where

the physical mode has desirable property—as discussed above. Overall, one

can see by noting Figs. 4, 5, and 9, that the choice of AB-scheme would

lead to unphysical results for the central schemes.

In Fig. 10(a) the scaled group velocity of the physical mode for the

third order upwind scheme is shown. This shows that larger values of w Dt
will produce physically relevant results, as compared to the central

Time Advancement of NS Equation 243



0.95

1.05

ω ∆t

k
∆

x

1 2 3

1

2

3

(a)

-0
.9

-1
-1.1

-0.2

0

0.2

0.9

1
1.1

ω ∆t

k
∆

x

1 2 3

1

2

3

(b)

0.95

1.05

ω ∆t

k
∆

x

1 2 3

1

2

3

(c)

0.9
1 1.1

0.2

0

-0.2-0.9

-1

-1.1

ω ∆t

k
∆

x

1 2 3

1

2

3

(d)

Fig. 9. The normalized numerical group velocity VgN/c for solving Eq. (4) using Adams–

Bashforth time integration scheme; (a) the shaded region where |
VgN
c −1| < 0.05 for the physical

mode using CD2 scheme; (b) the contour lines VgN/c of the computational mode using CD2
scheme; (c) the shaded region where |

VgN
c −1| < 0.05 for the physical mode using CD4 scheme;

and (d) the contour lines VgN/c of the computational mode using CD4 scheme.

schemes. This favors the usage of third order upwind scheme as compared

to the equivalent higher order central schemes. Corresponding computatio-

nal mode group velocity is shown in Fig. 10(b). For small k Dx and w Dt,
this mode travels upstream with high speed for energy propagation. Also

like the central schemes this undesirable feature is for a combination of

small wave numbers and frequencies where the physical mode performs

well. Thus, one can see that the AB-scheme when used with the third order

upwind scheme will also produce erroneous results.
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Fig. 10. The normalized numerical group velocity VgN/c for solving Eq. (4) using Adams–

Bashforth time integration scheme and third order upwind spatial discretization scheme;

(a) the shaded region where |
VgN
c −1| < 0.05 for the physical mode and (b) the contour lines

VgN/c of the computational mode.

2. SOLVING NAVIER–STOKES EQUATION USING THIRD ORDER

UPWIND SCHEME

The discussion in previous section reveals that the central schemes

cannot be used for Euler time integration scheme due to numerical insta-

bility. This was avoided in [14] by switching over to second order

AB-scheme for time integration. However, the presence of the computatio-

nal mode gives rise to spurious contributions for low wave numbers across
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all frequencies. This includes the unphysical upstream propagation of many

low to mid-wave number components—as seen from Fig. 9.

As compared to central schemes third order upwind scheme has

appreciable range of k Dx and w Dt for which the scheme has better dis-
persion relation preservation property for Euler time integration scheme.

This is clearly seen by comparing Fig. 3(c) with Figs. 3(a) and 3(b).

However, one is restricted to very small time steps due to numerical

stability consideration—as can be seen from Fig. 1(c). In contrast, if

AB-scheme is used for time integration, the physical mode allows taking

comparatively larger time steps—as evident in Fig. 6(a) in comparison to

Fig. 1(c). However, for problems where a range of frequencies are excited

—as in flow problems involving instabilities and turbulence—this method

will still require taking very small time steps due to numerical instability

consideration. Additionally, in this case the computational mode is not

negligible as compared to central schemes. This is readily apparent by

comparing Figs. 6(b) and 6(d) with Figs. 4(b), 4(d), 5(b), and 5(d). While

the computational mode is always stable for the central schemes (as seen

in Figs. 4(b) and 5(b)), for the upwind scheme the computational mode is

unstable for high frequencies and high wave numbers, as seen in the right

hand corner region in Fig. 6(b). Furthermore, a comparison between

Figs. 9 and 10 reveal that the computational mode travel upstream across a

large frequency band for physically relevant small wave numbers. This non-

physical upstream propagation of energy will make the solution incorrect.

These observations are demonstrated here by solving Navier–Stokes

equation for flow past a rotating circular cylinder using the third order

upwind scheme for spatial discretization and Euler and AB-schemes for

temporal discretization. The physical problem is chosen for flow at a

Reynolds number of Re=3800 (based on diameter and free-stream speed
as length and velocity scales) and a non-dimensional rotation rate of

W=10, i.e., when the peripheral speed of the cylinder is ten times the free-
stream speed. Flow past rotating cylinder for this type of flow-parameters

display temporal physical instabilities—as reported in the experiments of

[27]. This has also been observed computationally by high accuracy

schemes for Navier–Stokes equation and theoretical explanation provided

for the observed temporal instabilities in [28] by using third order upwind

scheme for spatial discretization and Euler time marching scheme, using

stream function-vorticity formulation for Re=3800 and W=5. Other ref-
erences are cited in [28] where results for other Reynolds numbers and

rotation rates were obtained and reported earlier. In these calculations it

was noted that the flow suffered temporal instabilities at discrete times

after impulsive and non-impulsive start-ups. During these instabilities loads

and moment change abruptly. For the present case of larger rotation rate
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(W=10), the lift and drag coefficients variation with time are shown in
Fig. 11, where Euler and AB-schemes have been used for time-marching

the vorticity transport equation. For the details of numerical methods the

reader is referred to [28]. For the present very high rotation rate case,

Euler time integration once again displays temporal instabilities at discrete

times, as was shown in [28] for lower rotation rates and lower Reynolds

numbers.

This instability was shown in [28] to arise from a receptivity mecha-

nism where a given equilibrium flow (not necessarily a time-independent
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Fig. 11. The calculated lift and drag coefficients for Re=3800 and W=10 as a function

of time for impulsive start case using (a) Euler time integration scheme and (b) Adams–

Bashforth time integration scheme.
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flow) is destabilized by infinitesimal far-field disturbances and as a conse-

quence a lump of vorticity that is confined within the recirculating fluid

around the cylinder is released in the wake of the cylinder. For high rota-

tion rate cases, there is a layer of fluid fluid close to the cylinder surface

rotates along with the cylinder. This is distinguished from the surrounding

flow by an interior layer of fluid that encompasses the full saddle point.

With time, circulation of flow inside the co-rotating region near the surface

of the cylinder keeps increasing. This is the reason for the increase in lift

seen in Fig. 11. This unsteady growth is punctuated by the instability of the

flow in the interior layer and as a consequence a large amount of vorticity

is released from the co-rotating layer to the wake of the cylinder. This

happens almost instantaneously. To capture such instability, it is natural

that one should take very small time steps. This requirement matches per-

fectly well with the numerical stability requirement of the third order

scheme discussed above for the Euler time-marching strategy. However,

when the AB-scheme is used for time-marching, the present computational

mode with negative group velocity for combinations of small values of k Dx
and w Dt, will slow down or even prevent vorticity to be released in the
wake. Additionally, the AB-scheme itself produces numerical dissipation

via the channelizing the initial condition to the computational mode that is

subsequently damped. As a consequence the instabilities are weakened and

in the Cl and Cd vs time plots the discrete jumps in the value are smoothed
out. It is to be realized that the observed instabilities occur over a time

scale that is of the order of micro seconds and in non-dimensional units it

is of the order of 10−5—the time step taken for Euler time integration
scheme.

This is a demonstration of the superiority of Euler time integration

scheme over Adams–Bashforth time integration scheme for capturing flow

instability. For DNS the excited length and time scales are even wider and

the noted feature of the time integration scheme will be felt even more

acutely. The present study shows the spurious behavior of AB-scheme in

solving time dependent problems where large ranges of length and time

scales are excited. But the seemingly stabilizing effects of AB-scheme has

lulled many CFD practitioners in adopting this time integration scheme

and the aim of the present study is to discourage such practices.

3. CONCLUSION

In this work we have compared first the performances of Euler and

Adams–Bashforth time integration schemes by looking at the analytical

solution of one-dimensional wave equation. Subsequently, we have solved

two-dimensional Navier–Stokes equations for flow past a very rapidly

248 Sengupta and Dipankar



rotating cylinder that displays physical temporal instabilities [27, 28]. It is

shown that the Euler time integration scheme captures these instabilities

quite adequately when very small time steps are chosen, but the AB-scheme

either smooths them or mis-predict the instabilities. Hence AB-scheme is

not suitable for problems that display excitation of large bands of length

and time scales, as in DNS. Instead it is preferable to use explicit Euler

time integration scheme with very small time steps.
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