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Abstract

Background: Pathway enrichment analysis is extensively used in the analysis of Omics data for gaining biological

insights into the functional roles of pre-defined subsets of genes, proteins and metabolites. A large number of

methods have been proposed in the literature for this task. The vast majority of these methods use as input

expression levels of the biomolecules under study together with their membership in pathways of interest. The latest

generation of pathway enrichment methods also leverages information on the topology of the underlying pathways,

which as evidence from their evaluation reveals, lead to improved sensitivity and specificity. Nevertheless, a systematic

empirical comparison of such methods is still lacking, making selection of the most suitable method for a specific

experimental setting challenging. This comparative study of nine network-based methods for pathway enrichment

analysis aims to provide a systematic evaluation of their performance based on three real data sets with different

number of features (genes/metabolites) and number of samples.

Results: The findings highlight both methodological and empirical differences across the nine methods. In particular,

certain methods assess pathway enrichment due to differences both across expression levels and in the strength of

the interconnectedness of the members of the pathway, while others only leverage differential expression levels. In

the more challenging setting involving a metabolomics data set, the results show that methods that utilize both

pieces of information (with NetGSA being a prototypical one) exhibit superior statistical power in detecting pathway

enrichment.

Conclusion: The analysis reveals that a number of methods perform equally well when testing large size pathways,

which is the case with genomic data. On the other hand, NetGSA that takes into consideration both differential

expression of the biomolecules in the pathway, as well as changes in the topology exhibits a superior performance

when testing small size pathways, which is usually the case for metabolomics data.
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Background
Pathway enrichment has become a standard tool in the

analytic pipeline for Omics data, since it reduces the

complexity and provides a systems view of the biological

question under investigation [1–5]. Dozens of methods

have been proposed in the literature, ranging in model-

ing sophistication and effectiveness [6–19]. A number of

papers have provided comprehensive reviews of available
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methods [20–22] capturing the evolving technical land-

scape, as well as the range of data types and applications

(genes, proteins, etc.). In [20], existing methods have been

classified into three generations, the first two correspond-

ing respectively to over-representation analysis (ORA)

and functional class scoring (FCS) methods. FCSmethods

weremotivated by the fact that theremay be a coordinated

activity in functionally related sets of genes, even though

each one of them may not be deemed significantly differ-

ential by over-representation analysis. The current review

focuses on the third generation of pathway analysis meth-

ods, namely, topology-based pathway enrichment analysis
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methods, which utilize information about the intercon-

nections of genes (or other biomolecules) within the path-

ways, and offer improved performance over conventional

second generation methods [6, 7].

Despite the plethora of available methods, there has

been a scarcity of systematic comparisons of their per-

formance in controlled settings based on synthetic or

real data sets. In [23] and [24], several pathway analy-

sis methods were compared in case studies by assess-

ing the consistency of selected significant pathways. The

results confirm that nominated enriched pathways can

differ widely across methods, which coupled with absence

of a ground truth, makes it difficult to offer guidance

to practitioners. In [25], pathway enrichment methods

that do not use topology information were compared to

topology-based ones. The conclusion was that topology-

based methods exhibit superior performance when the

pathways under study do not overlap, but not otherwise.

However, the data sets examined correspond to small

scale studies with no more than 50 samples in total. More-

over, existing comparative studies have primarily focused

on methods developed for gene expression data, which

may not be suitable for studies involving metabolomics or

lipidomics data, where quantitation of all biomolecules in

the pathways under study may be incomplete.

Pathway enrichment methods aim to compare the

‘activity’ of pathways of interest across two or more

biological conditions or groups of specimens (patients,

cell lines, etc.). At the technical level, an important fea-

ture is the nature of the statistical null hypothesis being

tested. Most methods can be categorized to those test-

ing (I) self-contained and (II) competitive null hypotheses

[26]. A competitive null hypothesis compares the activ-

ity of each pathway with other biomolecules/pathways. In

contrast, a self-contained null hypothesis compares the

activity of each pathway across the biological conditions

(e.g. normal vs. disease samples), without comparing it

to the other biomolecules/pathways. This difference in

the objective results in differences in procedures used

for evaluating self-contained and competitive hypotheses

(including, e.g., permutation strategies), as well as inter-

pretations of results. In the discussion of methodological

issues concerning analysis of sets of biomolecules in [26],

the authors argued against the competitive null hypoth-

esis, since tests based on it consider biomolecules as the

sampling units which are clearly not independent.

In the current comparative study, we examine nine pop-

ular topology-based pathway analysis methods that inves-

tigate different null hypotheses. Methods considered in

this review have good user interface in R, and include

Pathway-Express [8], SPIA [9], NetGSA [10, 11], topol-

ogyGSA [12], DEGraph [13], CAMERA [14], CePa [15],

PRS [16] and PathNet [17]. Given the importance of avail-

ability of open-source software for conducting simulation

experiments, popular approaches with only web-based

interfaces, such as Ingenuity Pathway Analysis [27], are

not included in our comparison. We assess the perfor-

mance of the above nine methods by performing an

extensive numerical analysis using in silico experiments

that offer advantages over simulation experiments con-

ducted on purely synthetic data [25] or evaluation based

on publicly available data [23, 24]. On the one hand, unlike

commonly used simulation experiments, our experiments

maintain the complexity of real gene/metabolite expres-

sion data sets by generating simulated signals from three

data sets containing gene and metabolite expressions. On

the other hand, unlike comparisons based on publicly

available data, active genes/metabolites and pathways are

well-controlled in our experiments, allowing us to assess

false positive rates and statistical power of the nine path-

way analysis methods. Moreover, our review differs from

previous ones in that we base our comparisons both on

gene expression data and on metabolomic data. The two

gene expression data sets studied contain at least 100 sam-

ples per condition/group, which enable us to includemore

genes and pathways of potential relevance in the enrich-

ment analysis. Themetabolomic data set provides a differ-

ent perspective as enrichment analysis of metabolomics

data presents additional challenges due to the smaller

size of biochemical pathways, their high degrees of over-

lap, as well as their incomplete coverage by many mass

spectrometry acquired data sets.

Experimental design
To systematically evaluate the type I error and power of

the nine pathway enrichmentmethods, we consider a vari-

ety of settings using three different data sets, two from

cancer genomics and one based on metabolomics.

Pathway dysregulation

We analyzed primary metabolic pathways mapped from

KEGG in the metabolomic study, and KEGG pathways

that describe signaling and biochemical functions and

their interactions in the cancer genomic studies (see Addi-

tional file 1 for the complete lists of pathways analyzed).

To obtain synthetic, but realistic omics data, a subset

q < K out of a total K pathways were first randomly

selected as ‘dysregulated’. Next, a pre-specified proportion

of genes/metabolites within each dysregulated pathway

was chosen to be altered. This proportion, referred to as

detection call (DC), was set to be 20% for the metabolomic

study and 10% for the cancer genomic studies. Due to the

smaller pathway sizes and limited number of known inter-

actions within each pathway, affected metabolites were

selected randomly from each dysregulated pathway. Since

genetic pathways are typically larger in size and have

well documented interactions in the graphite package,

we considered three mechanisms to select affected genes
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within each dysregulated pathway following the practice

in [25].

Note that due to the overlap amongst pathways, a 10%

DC threshold may lead to some pathways with more than

10% affected genes/metabolites andmore than q pathways

with at least one affected gene/metabolite.

Betweenness The betweenness of a gene quantifies how

often the gene appears on the shortest path between two

other genes and effectively measures how important a

gene is in the pathway. To select affected genes under this

dysregulation design, pathway members are first ranked

by their degrees of betweenness. Affected genes are set to

be those whose betweenness is above a certain threshold,

which is chosen so that a 10% DC is reached.

Community Biological networks tend to contain mod-

ules (communities) that are densely connected inter-

nally and loosely connected in between. For a pre-

specified pathway with a given topology, we find

the communities within the pathway using a com-

munity detection algorithm, e.g., using the function

cluster_edge_betweenness from the igraph R

package [28]. We then search for a community that

approximately represents the 10% DC level.

Neighborhood Under the neighborhood dysregulation

design, members within a certain shortest path distance

of a randomly chosen gene are used to define the affected

genes. The distance parameter is optimized such that a

10% DC is reached after looping over all members within

the pathway.

Data generating model

The steps for generating simulated data are illustrated in

Fig. 1 and described below. We start with the original log-

transformed expression data from p genes/metabolites

and n samples (left heat map in Fig. 1). Each sample

is assumed to follow a distribution f with mean μ and

covariance �. More specifically, let

Y (i) ∼

{
f (μ1,�1) (i = 1, . . . , n1),

f (μ2,�2) (i = n1 + 1, . . . , n).

Here we do not assume f to be the multivariate normal

distribution not only because the distribution of real data

is far more complex but because we aim for an agnos-

tic mechanism for data generation that does not favor

any method. By assuming a general distribution f, we can

also assess whether the compared methods are sensitive

to normality assumptions.

The data were standardized so that each

gene/metabolite has mean zero and unit variance. This

corresponds to the middle heat map in Fig. 1 and the

model

Ỹ (i) ∼

{
f
(
0, �̃1

)
(i = 1, . . . , n1),

f
(
0, �̃2

)
(i = n1 + 1, . . . , n),

where �̃k (k = 1, 2) is the correlation matrix.

We considered both settings with and without sample

permutation.

(I) Sample labels are fixed to be the original case/control

status. We added mean signals varying from 0.1 to 0.5

to affected genes/metabolites selected according to

different pathway dysregulation designs. This

corresponds to the right heat map in Fig. 1 and the

model

Ỹ (i) ∼

{
f
(
0, �̃1

)
(i = 1, . . . , n1),

f
(
μ̃2, �̃2

)
(i = n1 + 1, . . . , n).

(1)

(II) We permuted the sample labels first and added

varying mean signals to the same set of affected

genes/metabolites as in (I). This corresponds to the

model

˜̃Y (i) ∼

{
f
(
0, �̃

)
(i = π1, . . . ,πn1),

f
(
μ̃2, �̃

)
(i = πn1+1, . . . ,πn),

(2)

where �̃ is the common covariance matrix for both

populations, and π is a random permutation of the

sample index 1, . . . , n.

The main difference between models (1) and (2) is

whether sample labels are permuted. The intuition is that

the permutation version nullifies the difference in covari-

ances, thereby creating a situation where the assumption

of equal covariances is satisfied. The permutation ver-

sion can benefit certain methods, such as DEGraph, but is

not ideal for methods such as CAMERA that exploit dif-

ference in correlations. Theoretical justifications for how

permutation works are available in [29] and [30].

The above data generating mechanism relaxes the dis-

tributional assumptions and allows us to evaluate different

methods with respect to a ground truth. This is in con-

trast to most existing reviews in the literature based on

either publicly available data where the ground truth is

unknown [23, 24], or purely synthetic data from paramet-

ric distributions [25]. In practice, because there is only one

deterministic data matrix, for both (I) and (II) we added

independently and identically distributed Gaussian noise

to each entry in the data matrix to introduce randomness.

The complete set of test designs is summarized in Addi-

tional file 1.

Results
We present the results of our comparative study by assess-

ing the performance of the nine methods in terms of their

type I errors, followed by their statistical powers. A type I

error, also called a false positive, occurs when a true null

hypothesis is rejected, whereas the power quantifies the



Ma et al. BMC Bioinformatics          (2019) 20:546 Page 4 of 14

Fig. 1 Schematics of the simulation design. In each study, real expression data is used to carry out the simulations. From left to right, the original

expression data is first standardized such that each gene/metabolite has mean zero and unit variance. Varying mean signals are then added to

genes/metabolites in the selected pathways in each of the simulation replicates. The top bar indicates the sample labels, which are either the

original case/control status or a random permutation of the original case/control status

probability of a test correctly rejecting the null when the

alternative hypothesis is true. Of course, power compar-

ison is only meaningful if the tests all have valid type I

error control. Due to the large size of the two gene expres-

sion data sets, the type I errors and powers were calculated

as the proportion of null hypotheses rejected among 200

simulation replications, but they were evaluated over 1000

replications in the metabolomic data example.

Several methods require p-value thresholding. To this

end, we used univariate two-sample t-test assuming

unequal variances to calculate the p-value for each

gene/metabolite. These p-values were corrected for mul-

tiple comparisons using the Benjamini & Hochberg

procedure for controlling false discovery rate (FDR)

[31]. The FDR cutoff of 0.05 was used to identify DE

genes/metabolites.

In our analysis, multiple method-specific difficulties

made it impossible to compare all available pathways.

First, in the two gene expression data examples, SPIA

and Pathway-Express returned p-values primarily for sig-

naling pathways, which is expected given their testing

procedures. Second, topologyGSA only works for pathway

Fig. 2 Type I errors for the 11 KEGG (primarily signaling) pathways in the TCGA breast cancer study [33]. The x-axis shows the pathway size and the

y-axis indicates the type I error. Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.01 to the y-axis. Thus the negative values

should be understood as being very close to zero. All methods control type I errors
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whose topology is a DAG and whose size is smaller

than the minimum number of samples in the two condi-

tions/groups. As a result, our comparisons in the two can-

cer genomic applications only include selected pathways

that were analyzed by all methods. Lastly, the network in

the metabolomics data example is not directed acyclic and

the pathways are smaller biochemical pathways that often

have incomplete coverage and high degrees of overlap.

Thus we excluded topologyGSA, Pathway-Express, SPIA

and PRS in the metabolomics data example.

Ranking empirical powers

In power comparisons, we summarize the relative perfor-

mance of all nine methods based on the ranking of each

pathway’s empirical power. Specifically, for each pathway,

we rank the empirical powers of all methods at each level

of mean change from low (indicating higher power) to

high (indicating lower power). Methods that produce ‘NA’

(e.g. ORA methods when there are too few DE genes) are

ranked the highest. For each pathway, the geometric mean

of all rankings across different mean changes is taken as

the final measure of relative performance. Spreadsheets

with disaggregated empirical powers for each pathway,

across all the experimental settings, are provided in [32].

Analysis of gene expression data

There are 11 KEGG pathways (primarily on signaling)

whose topologies satisfy the input requirement needed for

topologyGSA and Pathway-Express. We thus focused on

type I error and power comparisons on this subset of path-

ways under the betweenness dysregulation design. Details

on the pathways and more comparisons are available in

Additional file 1.
The scatter plot in Fig. 2 shows the type I error for each

of the 11 KEGG pathways using the TCGA breast can-

cer data [33]. Each point indicates the type I error rate

for one pathway. Overlapping points were re-positioned

by adding ± 1 to the x-axis and ± 0.01 to the y-axis, which

explains why some values are less than zero—these should

be understood as being close to zero. Because the number

of DE genes under the self-contained null is zero even with

liberal FDR cutoffs, ORA-type methods such as SPIA,

CePa, PRS and PE.Cut (Pathway-Express with p-value

cutoff ) can not assess the pathway significance. These

methods have thus been excluded from type I error com-

parison. On the other hand, PE.noCut does not require

p-value thresholding and is therefore included in Fig. 2.

Across the 11 pathways, all methods control the type I

error rate at 0.05 significance level. It is worth noting that

most of the type I error rates from PE.noCut and Path-

Net are close to the nominal level 0.05, whereas all other

methods seem to have conservative type I error rates.
Figure 3 presents the relative performance of differ-

ent methods in terms of average ranking of empirical

powers for the 11 pathways, both with and without sam-

ple label permutation. Lower rankings indicate better

Fig. 3 Average ranking of empirical powers on the 11 KEGG (primarily signaling) pathways using sample labels from the original study (a) and

shuffled sample labels (b) based on the betweenness dysregulation design for the TCGA breast cancer study [33]. The x-axis shows the pathway

size, and the y-axis indicates the average ranking of empirical power over different mean changes. Lower ranking indicates better performance.

Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.1 to the y-axis. PathNet, CAMERA and PE.noCut perform the best when

using the original sample labels (a), whereas DEGraph, PE.noCut and topologyGSA yield the best performance with permuted sample labels (b)
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performance. Again we re-positioned overlapping points

by adding± 1 to the x-axis and± 0.1 to the y-axis for visu-

alization purpose, which explains why some rankings in

Fig. 3a are below 1. Among all methods, PathNet, CAM-

ERA and PE.noCut seem to perform the best when using

the original sample labels (Fig. 3a). NetGSA and DEGraph

have similar performance. On the other hand, when sam-

ple labels are permuted, DEGraph, PE.noCut and topol-

ogyGSA have the best performance (Fig. 3b). This is not

surprising because the permutation version nullifies the

difference in covariances asymptotically, thereby creating

a situation where the assumption of equal covariances

and shared graph structure is approximately satisfied.

DEGraph and topologyGSA thus performed better rela-

tive to the others, whereas the performance of CAMERA

deteriorated, especially for large pathways, because it can-

not leverage the difference in correlations. Sample permu-

tation does not affect PE.noCut because its significance

is evaluated based on gene permutation. All ORA-type

methods (SPIA, PE.Cut, CePa and PRS) have relatively

higher ranking and hence poorer performance because

they only work when the magnitude of mean changes

between conditions is large.

Similar figures for other dysregulation designs and other

pathways, including those for the prostate cancer study,

are available in Additional file 1. It is worth noting that

PathNet shows inflated type I error rates on several KEGG

metabolic pathways (Additional file 1: Figures S1 and S4),

which could be due to the inaccurate coverage in pathway

topology in graphite. Methods such as topologyGSA,

SPIA, Pathway-Express and PRS are not applicable to

those metabolic pathways due to constraints in their

topology. Among the methods compared, DEGraph has

the best overall performance.

Analysis of metabolomics data

The findings in the metabolomics data example differ

qualitatively from those in genomic examples. This differ-

ence can be attributed to the relatively small number of

edges in the metabolic network and small pathway sizes,

which are due to the incomplete coverage of metabolomic

assays. Note because SPIA, Pathway-Express and PRS

were proposed specifically for genetic pathways, and the

metabolic network is not directed acyclic, we only com-

pared NetGSA, DEGraph, CAMERA, CePa and PathNet

in this example. In addition, CePa requires the presence of

DEmetabolites, which only appear when themean change

is greater than 0.5. The mean signal in this example was

thus allowed to vary from 0.1 to 1.0. To run all 5 methods,

we filtered out 33 of the 65 KEGG pathways whose topolo-

gies are too sparse—fewer than two edges—and focused

on type I error and power comparisons on the remaining

32 pathways.

Figure 4 shows that all four methods control type I

errors, although NetGSA and CAMERA exhibit slightly

inflated type I errors for some pathways, which is likely

due to the small sample sizes available. This will be less

of an issue for NetGSA if more samples are available for

Fig. 4 Type I errors for KEGG metabolic pathways in the metabolomics data [39]. The x-axis shows the pathway size and the y-axis indicates the type

I error. Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.01 to the y-axis. CAMERA, DEGraph and PathNet have controlled

type I errors, but NetGSA’s type I errors are slightly inflated for several pathways
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network estimation; such samples can be obtained from

other related studies. The conservative type I errors of

DEGraph is again due to its assumption that the net-

works for the two conditions are the same. Since there are

very few pathway interactions available in the metabolic

network, PathNet also exhibits conservative type I errors.

Figure 5 compares the relative performance of differ-

ent methods in ranking of empirical powers out of 1000

replications. It is evident that DEGraph and NetGSA per-

form the best (lowest rankings), regardless of whether

the sample labels are shuffled. DEGraph performs slightly

better than NetGSA, especially under permuted sample

labels (Fig. 5b), because the Hotelling’s T-squared test

works well for small pathways. In comparison, the lin-

ear mixed effects model underlying NetGSA considers

an additional random effects, resulting in slightly lower

power when samples are permuted. The other methods

CAMERA, CePa and PathNet have comparable perfor-

mances both with and without permuting sample labels.

The poor performance of PathNet and CePa is due to the

sparse metabolic network, whereas CAMERA does not

work well because there is high overlap among metabolic

pathways (Figure S7 in Additional file 1).

Discussion
The methods considered in this study exhibit differences

in terms of the network information that they incorporate.

For example, CePa, PathNet, Pathway-Express, PRS and

SPIA only account for the pathway topology. CAMERA

does not directly take into account the pathway topology,

but estimates the correlations among the biomolecules

from data. In contrast, NetGSA, DEGraph and topol-

ogyGSA assume the underlying networks come from a

known class of graphs, whose parameters are inferred

from data. NetGSA can also incorporate existing network

information from user-provided sources for improved

power. The downside with the more flexible version of

NetGSA that accounts for differences in networks is that

the type I errors may be slightly inflated, if too few samples

are available for the estimation of the network parameters,

corresponding to network edges. This was observed in the

metabolomics data example. This issue can be addressed

by aggregating data frommultiple related studies for more

accurate network estimation.

Taking a broader view point, NetGSA is capable of

assessing pathway enrichment due to changes both in the

mean levels of the biomolecules, as well as their con-

nectivity; it can thus be more suitable for studies involv-

ing comparisons across different disease states, where

a possible strong dysregulation of the interactome can

occur. It can also seamlessly accommodate more than

two conditions [34], as well as multiple types of Omics

data for integrated analysis of pathway enrichment [35].

Although fairly robust in the examples shown above, a

Fig. 5 Average ranking of empirical powers using sample labels from the original study (a) and shuffled sample labels (b) for the metabolomics data

[39]. The x-axis shows the pathway size, and the y-axis indicates the average ranking of empirical power over different mean changes. Lower ranking

indicates better performance. Overlapping points were re-positioned by adding ± 1 to the x-axis and ± 0.1 to the y-axis. DEGraph and NetGSA

perform the best regardless of sample permutation
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disadvantage of DEGraph is that it is not particularly

suitable in settings where one expects a strong dysreg-

ulation of the underlying interactome, since it assumes

the underlying networks in different conditions have

the same structure. Consider, e.g., the two networks in

Figure S8 of Additional file 1. The proportion of nodes

in pathways 8, 4 and 7 that have nonzero mean changes

is 0.2, 0.4 and 0.6, respectively. In contrast, pathways

3, 5, and 2 have not only the corresponding level of

mean changes, but also complete rewiring of the path-

way topology. In this simulated setting, NetGSA is able

to identify pathways 5, 3 and 7 as the most signifi-

cantly enriched pathways (with empirical power at least

0.9), followed by pathway 2 (0.89). DEGraph identi-

fies pathways 2, 3 and 5 as being enriched, but misses

pathway 7 (0.62).

Importantly, existing methods such as CAMERA, CePa,

DEGraph, PathNet, Pathway-Express, PRS, SPIA and

topologyGSA often analyze one pathway at a time

while ignoring the fact that pathways overlap with each

other. This practice is common because it is concep-

tually and computationally convenient, yet it may lead

to undesirable consequences as the interactions between

genes/metabolites that show up in multiple pathways

may be different when analyzing these pathways sepa-

rately. Separate analysis is particularly problematic for

metabolomic studies where the pathways are consider-

ably smaller in size and exhibit a high degree of overlap

(Additional file 1: Figure S7). In contrast to thesemethods,

NetGSA can combine all metabolites by inferring a joint

network, and is thusmore powerful for detecting enriched

pathways. However, simultaneous analysis of all pathways

using NetGSA could become computationally expensive,

if the study contains a very large number of biomolecules.

Conclusions
Significant progress has been made in developing

topology-based methods for pathway enrichment analy-

sis. In this study, we undertook a systematic comparison

of nine popular such methods using three data sets from

gene expression and metabolomics profiling. Compared

to existing reviews [23–25, 36], our comparison leverages

the large sample sizes in the two cancer genomic studies,

and, in particular, offers important insights for how the

nine competitors perform in metabolomics studies, where

the focus is on smaller biochemical pathways. Results in

Additional file 1: Figures S2, S3, S5 and S6 suggest simi-

lar findings as those observed in Fig. 3, and confirm the

overall robust performance of DEGraph. In general, when

the methods examined are used for pathway enrichment

purposes in studies based on genomic data and focus-

ing on large signaling pathways, most exhibit a satisfac-

tory overall performance, with DEGraph being the most

robust, followed by PathNet, Pathway-Express without p-

value cutoff (PE.noCut) and topologyGSA. In comparison,

ORA-typemethods (SPIA, PE.Cut, CePa and PRS) require

the presence of DE genes and perform well only in spe-

cific settings. Our experience with Pathway-Express is

that PE.noCut (without p-value cutoff ) seems to dominate

PE.Cut (with p-value cutoff ). Additionally, due to inaccu-

rate coverage and special features of topology informa-

tion on smaller metabolic pathways, only DEGraph shows

robust performance (Additional file 1: Figures S3 and S6).

On the other hand, in studies involvingmetabolomics data

and pathway enrichment of relatively small biochemical

pathways, NetGSA and DEGraph clearly outperform all

competitors.

Methods
In this section, we describe the three data sets used in

our comparative study and then provide an overview of

the nine topology-based pathway enrichment methods

analyzed.

Data sets

Our first comparison considers a breast cancer

gene expression study from The Cancer Genome

Atlas ([33], TCGA). We focused on 114 signaling

and metabolic pathways from the Kyoto Encyclo-

pedia of Genes and Genomes ([37], KEGG), and

expression data from 2784 genes that have matched

Entrez IDs. The data set consists of 520 samples in

total, 117 estrogen-receptor-negative (ER-) and 403

estrogen-receptor-positive (ER+).

Our second comparison is based on a TCGA gene

expression data on prostate cancer from [38]. The data

contained Affymetrix probe IDs, which were first mapped

to gene Entrez IDs. When multiple probes mapped

to a single gene (i.e., to the same gene Entrez ID),

their mean profile was used to avoid duplicated gene

IDs. To reduce the dimensionality, genes in 112 KEGG

signaling and metabolic pathways were considered for

the final analysis. The final data set contains expres-

sion levels of 2952 genes across 264 case and 160

control subjects.

The third and final data set comes from a metabolomics

study on non-obese diabetic mice, where the metabolic

profiles of 41 non-diabetic and 30 diabetic animals of

100 named metabolites were collected, with the goal of

identifying metabolic signatures of Type I diabetes pro-

gression [39].

Pathway enrichment methods

Pathway-express

The Pathway-Express method [8] for analyzing signaling

pathways is implemented in the ROntoTools Biocon-

ductor package [40]. Its null hypothesis is that the list of

DE genes on a given pathway is completely random; this
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hypothesis is tested by calculating an impact factor for

each pathway G defined as

IF(G) = log

(
1

PNDE

)
+

∑
j∈G |PF(gj)|

Nde(G) · |�E|
. (3)

Here, PNDE in the first term on the right hand side of (3)

evaluates the significance of the pathway G as measured

by an over-representation analysis, whereas the second

term incorporates the DE genes in the data and the inter-

actions among genes inside the pathway. The perturbation

factor (PF) for each gene is defined as

PF(gi) = �E(gi) +
∑

j:j→i

βij
PF(gj)

Nds(gj)
. (4)

In Eq. 4, �E(gi) is the signed normalized expression

change of biomolecule gi. The denominator Nds(gj) repre-

sents the number of downstream biomolecules of gj and

the sum is only over biomolecules gj directly upstream of

gi. The interactions between gi and gj are encoded in the

coefficients βij, e.g. + 1 for activation, − 1 for inhibition.

Therefore, the second term on the right hand side of (3)

can be thought of as the total perturbation factor normal-

ized by (i) the number of DE genes in pathway G, which is

Nde(G), and (ii) the mean absolute fold changes among all

DE genes in the data, which is |�E|. Normalization with

respect to |�E| is to account for the potential differences

in estimating the fold changes among various technolo-

gies. The randomquantity IF(G) is shown to have aŴ(2, 1)

distribution, such that for any realization of IF(G) = f the

significance of a pathway can be calculated as

PG = {f + 1}e−f .

Pathway-Express is implemented in the R package

ROntoTools. The latest version of this package (2.10.0)

also permits a cutoff-free version which eliminates the

need to select DE genes [41]. In this version, Pathway-

Express does not calculate the ORA significance, but only

reports the significance from pathway perturbation.

SPIA

Signaling pathway impact analysis ([9], SPIA) tests the

same null hypothesis as Pathway-Express; it combines one

evidence based on PNDE with a second evidence, PPB, that

quantifies the amount of perturbation in each pathway. To

calculate the second type of evidence, the total net per-

turbation accumulation for a given pathway G is defined

as

tA(G) =
∑

i∈G

{PF(gi) − �E(gi)},

where the perturbation factor PF(gi) is defined in (4). A

bootstrap approach is used to obtain the perturbation p-

value PPB, which is the probability of observing a total

accumulated perturbation of a pathway more extreme

than tA(G) just by chance.

The overall significance of pathway G is calculated as

PG = PNDEPPB − PNDEPPB log{PNDEPPB}.

It is worth noting that Eq. 4 imposes an implicit con-

straint on the pathway topology, in that a pathway with a

singular matrix I − B for Bij = βij/Nds(gj) cannot be ana-

lyzed using Pathway-Express and SPIA. In addition, both

Pathway-Express and SPIA require the presence of DE

genes to define the impact of pathways. Hence pathways

that do not have any DE genes will not be analyzed. This

phenomenon was observed in [9, 36] and in our compar-

isons, where Pathway-Express and SPIA often only return

the significance of half of all pathways considered.

NetGSA

The NetGSA method [10, 11] employs as input directed

and/or undirected networks that define pathway inter-

connectedness. If the network information is incomplete,

it uses a probabilistic graphical model to complete the

pathway topology based on the available data, while using

the existing topology information as constraints. As a

result, not only can NetGSA estimate novel interactions,

but also validate existing network information. Next, we

present the statistical model used in NetGSA assuming

the underlying networks are undirected.

Given the adjacency matrix A of the network, Net-

GSA defines the propagated effect of genes on each other

through the influence matrix �, defined as ��′ = (I −

A)−1 with I denoting the identity matrix. It then decom-

poses the measurements in the ith sample, Y (i), into signal

X(i) and noise ε(i). The multivariate signal’s interactions

are captured through a Gaussian Markov random field

encoded by A. Formally, let γ (i) be the baseline expression

levels of all biomolecules and µ be their mean expression

levels. NetGSA decomposes X(i) = �γ (i) so that the sig-

nal for the jth gene, X
(i)
j , combines both its baseline activ-

ity γ
(i)
j and those propagated from its neighbors. Given

data from K conditions, NetGSA allows for the K net-

works to be different and for each condition k considers a

linear mixed effects model

Y (i) = �kµk + �kγ
(i) + ε(i) (k = 1, . . . ,K),

where the random effects γ (i) ∼ N
(
0, σ 2

γ I
)
are indepen-

dent from noise ε(i).

Let β be the concatenated vector of the baseline means

µ1, . . . ,µK . To test for enrichment of any pathway G,

NetGSA uses a Wald test statistic,

TS(G) =
ℓβ̂

s.e.(ℓβ̂)
,
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for K = 2 or an F statistic for K ≥ 3 to test the null ℓβ =

0; here, β̂ denotes the estimate of β based on the data,

s.e.(ℓβ̂) represents the standard error of ℓβ̂ , and ℓ is a con-

trast vector optimally defined to allow for simultaneous

testing of differences in the mean structure across the K

conditions, as well as differences in interaction networks.

NetGSA can be computationally slow in the presence

of a large number of biomolecules, which is the case for

the two studies involving gene expression data. In those

instances, enrichment analysis is carried out separately for

each pathway. On the other hand, since the metabolomic

data set contains only 100 metabolites, enrichment analy-

sis of all pathways is performed simultaneously.

topologyGSA

The pathway topology information in the topologyGSA

method [12] is first converted into a directed acyclic graph

(DAG) and then to its moral graph, which represents

its corresponding Markov equivalence class [42]. Let the

data be organized such that the first n1 columns corre-

spond to samples from condition 1, and the last n − n1
columns from condition 2. Given the graph structure,

topologyGSA models each sample Y (i) using a probabilis-

tic graphical model approach:

Y (i) ∼

{
N(µ1,�1) (i = 1, . . . , n1),

N(µ2,�2) (i = n1 + 1, . . . , n),
(5)

where µk is the mean expression level for condition k,

and �k is the corresponding covariance. Note �1 and

�2 are constrained to have the same structure as spec-

ified a priori. topologyGSA first tests the hypothesis of

equal variances �1 = �2 using a likelihood ratio test.

Depending on the conclusion from testing the equality

of variances, the test of differential expression µ1 = µ2

is performed through a multivariate analysis of variance

(MANOVA) [43] if �1 = �2, or based on the Behrens-

Fisher problem [44] if �1 �= �2. The method is designed

specifically for gene expression data.

topologyGSA has several limitations. First, it requires

the pathway topology to be organized as a DAG, which

may not be possible for, e.g., metabolomics studies. In

addition, topologyGSA relies on the likelihood ratio statis-

tic for testing equal covariances, which restricts its use to

relatively small pathways. For large pathways with more

members than the sample size—which are frequently

observed in studies involving gene expression data—

topologyGSA can become computationally very ineffi-

cient. Lastly, differential network and differential expres-

sion are tested separately in topologyGSA, which may also

limit the power of the test when the two populations differ

in both means and variances.

In our data examples, we implemented both test on dif-

ferential network using pathway.var.test and test

on differential expression using pathway.mean.test

from the R package topologyGSA. Since naive combina-

tion of the two tests (e.g. by taking the minimum p-value)

resulted in inflated type I errors in our numerical analy-

ses, we used the p-value for testing equality of means as

representing significance for pathway enrichment.

DEGraph

DEGraph was introduced in [13] to conduct a two-sample

test of means, while incorporating topology informa-

tion of the biomolecules. It considers a special case of

the model in (5) with �1 = �2 and tests the null

µ1 = µ2. The motivation underlying DEGraph is that

the classical Hotelling’s T2-test [45], which is known

to be uniformly most powerful against global mean-

shift alternatives for multivariate normal distributions

and may behave poorly in high dimensions. When the

graph G capturing interactions of the biomolecules in

the two conditions is known, [13] derived an equiva-

lent expression for Hotelling’s T2 statistic in the graph-

Fourier space [46]. It further proposed to approximate

Hotelling’s T2 by filtering out high frequencies of the

Fourier coefficients when the dimension is high. The

statistic after filtering is shown to yield a test that is

more powerful than testing in the original unfiltered

space.

Because DEGraph is a test in the graph-Fourier space,

it requires knowledge of a connected graph, which is

assumed to be the same between the two conditions

under consideration. If a pathway consists of more than

one connected component, DEGraph will test whether

the means are different for each connected subgraph,

and correct for multiple comparisons using a permuta-

tion procedure. In addition, if the input pathway topology

can not be immediately used in constructing a test in

the graph-Fourier space, DEGraph offers the function-

ality of subgraph discovery. In our implementation, we

supplied DEGraph with the pathway information from

KEGG and let the method decide whether to undertake

subgraph discovery.

CAMERA

Correlation Adjusted MEan RAnk gene set test ([14],

CAMERA) is a competitive biomolecule set testing proce-

dure and is available as a function in the limma package

[47]. CAMERA assumes that the log-expression value Yg
for biomolecule g is linear in the design variables spec-

ifying the conditions with coefficients αg . Enrichment

analysis of a given pathway G is done by testing the null

ℓαg = 0, where ℓ is a contrast vector specified by the

user. Denote by zg the biomolecule-level statistic for g.

Given m such statistics zG = (z1, . . . , zm) in pathway G,

CAMERA tests whether their mean expression z̄G inside

a pathway is significantly different from the mean expres-

sion of biomolecules outside the pathway. Let p be the
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total number of biomolecules, both inside and outside

the pathway, and z̄ be the mean of all biomolecule-level

statistics. CAMERA uses the statistic

TS(G) =
δ

spool

√
VIF
m + 1

p−m

to test the competitive null hypothesis; here, δ = (z̄G −

z̄)p/(p − m) is the adjusted mean difference, spool is the

pooled residual standard deviation and VIF = 1 + (m −

1)ρ̄ denotes the variance inflation factor. The param-

eter ρ̄ is defined as the average correlation amongst

the biomolecule-level statistics inside the pathway and

is estimated from the data. Note that CAMERA incor-

porates the pathway membership information and does

not take interconnectedness inside the pathway into

account. However, it does account for correlation among

biomolecules in the pathway.

CePa

CePa is a centrality-based pathway enrichment analysis

method [15, 48]. CePa allows multiple centrality measures

to capture the topology of a given pathway from differ-

ent aspects. It also maps genes to pathway nodes and

considers the node as the basic pathway unit, which is par-

ticularly useful for enrichment analysis of complexes or

protein families.

For a given pathway with m nodes, the CePa score is

defined as

s =

m∑

i=1

widi, (6)

where di = 1 if the ith node is differentially expressed

and di = 0 otherwise, and wi corresponds to the ith

node’s weight defined based on various centrality mea-

sures. A small offset of 0.01 is added to each wi to ensure

positive weights. CePa allows equal weights and weights

defined from centrality measures such as node degree,

betweenness [49] and the largest reach. The degree cen-

trality measures the number of neighbors a node has,

betweenness quantifies how often a node appears on the

shortest path between two other nodes, and the largest

reach centrality defines how far a node can send or receive

information within the pathway.

CePa uses gene permutation to test whether genes

inside the pathway are at most as differentially expressed

as those outside the pathway given its score. In our numer-

ical results, we took theminimumof the p-values obtained

using different weights as representing significance for

pathway enrichment. The score definition in (6) is a vari-

ant of ORA, but can also be extended to incorporate

gene-level statistics as in FCS methods [15, 50].

PRS

The Pathway Regulation Score ([16], PRS) enrichment

method was developed in parallel to CePa and the two

share some similarities. Specifically, PRS assigns a value vi
and weight wi to each node i, which may contain one or

more genes. The node value vi is 0 if the corresponding

gene(s) are not expressed, 1 if they are expressed but not

differential, or the maximum fold-change value if one or

more genes in node i are differential. If vi > 1, node i is

then assigned a weight wi, which is the number of down-

stream DE nodes (either directly or via other significant

nodes, including the starting node itself ). The score for a

pathway withm nodes is defined as

PRS =

m∑

i=1

si, (7)

where node score si = wivi if node value vi > 1 and 0 oth-

erwise. The pathway score PRS is then normalized with

respect to pathway size by multiplying the proportion of

DE genes over the total number of expressed genes.

PRS assesses the significance of each pathway using

gene permutation. The raw and permuted scores, calcu-

lated respectively from the original data and permuted

data, are first standardized with respect to the permuted

scores in order to derive the empirical null distribution.

The p-value of each pathway is determined as the propor-

tion of normalized permuted scores greater than or equal

to the normalized raw scores.

PathNet

PathNet [17] combines all pathways under consideration

into a pooled pathway, defined as the union of all path-

ways. The interactions among genes in the pooled path-

way are represented by an adjacency matrix A, which is

a binary matrix with 1 and 0 indicating the presence and

absence of an interaction. Given the network A, PathNet

calculates the biomolecule-level significance pCi by com-

bining the direct evidence pDi with the indirect one pIi
based on Fisher’s method. It then uses a hypergeomet-

ric test to evaluate the significance of a given pathway.

While the direct evidence pDi accounts for the differential

expression of each biomolecule gi, the indirect evidence p
I
i

incorporates the effects on gi from its neighbors. Specif-

ically, PathNet defines the indirect evidence score for gi
as

SIi =
∑

j:j �=i

Aij ∗
{
− log10

(
pDj

)}
,

where the sum is over all biomolecules in the pooled path-

way. The significance of the indirect evidence pIi is then

determined by testing if the observed SIi is greater than

expected by chance. Similar to SPIA, PathNet accounts

for biomolecule interactions only through the topology

information available in the database, e.g., KEGG.
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Methodological considerations

Table 1 provides an overview of all methods in terms

of their null hypotheses and input requirements. These

methods differ in two main aspects.

The first distinction is in the type of null hypothesis.

CAMERA and PathNet test a competitive null hypothe-

sis of whether the genes in a given pathway are at most

as differentially expressed as those outside the pathway.

Pathway-Express, SPIA, CePa and PRS test the competi-

tive null by comparing the pathway of interest to a random

pathway (while holding the sample labels fixed). In con-

trast, NetGSA, topologyGSA and DEGraph consider the

self-contained null hypothesis by testing a pathway against

itself. Although the competitive null hypothesis can have

an appealing interpretation, assessing the significance of

the competitive null is challenging, as it corresponds to a

gene sampling framework which treats genes as indepen-

dent (see discussion in [26]).

Another major difference among these methods is

whether the method takes as input expression data or

thresholded gene p-values. With the exception of CAM-

ERA, all methods based on testing the competitive null

need to determine DE genes based on a pre-specified

threshold of corrected p-values. While the thresholding

may seem intuitive, the resulting enrichment results may

be sensitive to the p-value cutoff. The emphasis on p-value

thresholding also implies that thesemethods will not work

in settings where there are too few DE genes, i.e. when

gene-wise expression change is too small, as illustrated in

the “Results” section. All self-contained tests directly use

expression data and thus avoid making subjective choices

about DE genes.

Network information

In evaluating these methods, we also make the distinc-

tion between pathway topology and pathwaymembership,

where the former refers to both pathway membership and

the interactions amongst pathway members.

Importantly, the pathway topology information

required by different methods can be quite different,

which may affect the user experience. CAMERA only uses

pathway membership and requires the least effort. The

R package graphite provides functionality to retrieve

the list of KEGG pathways, and the resulting topology

information can be readily passed to Pathway-Express,

SPIA, topologyGSA, DEGraph and PRS (as implemented

in ToPASeq).

In comparison, NetGSA, CePa and PathNet require

additional steps of processing before graphite path-

ways can be analyzed. However, this additional step also

implies flexibility in the sense that the user can spec-

ify desired network information. For example, NetGSA

requires a weighted network, where the weights reflect

the interactions between genes/metabolites. This can be

either available network connectivity information from a

database, or estimated from data based on partial cor-

relations complemented with connectivity information

from a database. In the gene expression data exam-

ples, we used gene-gene interactions available in BioGrid

3.5.170 [52] compiled on February 25, 2019 as known

structural constraints and estimated the weights from

data. In the metabolomic data example, we took the

metabolic network from KEGGmetabolic reactions using

the KEGGgraph R package (version 1.38.0).

Finally, although NetGSA allows condition-specific net-

works, we implemented NetGSA assuming equal net-

works to ensure fair comparisons with topologyGSA and

DEGraph.

Implementation and availability

Allmethods tested have well-maintainedR packages avail-

able on CRAN or Bioconductor. Input genes are named

by Entrez IDs in all methods with the exception of

topologyGSA and CePa, which use instead gene sym-

bols. Pathway topology information was obtained from

the KEGG database [37], extracted using the R package

Table 1 Overview of tested pathway enrichment methods

Method Null hypothesis Gene p-value thresholding Expression data Pathway R/Bioconductor Reference

Pathway-Express Competitive Optional No Topology ROntoTools 2.10.0 [8]

SPIA Competitive Yes No Topology graphite 1.28.2 [9]

NetGSA Self-contained No Yes Topology netgsa 3.1.0 [10, 11]

topologyGSA Self-contained No Yes Topology topologyGSA 1.4.6 [12]

DEGraph Self-contained No Yes Topology DEGraph 1.34.0 [13]

CAMERA Competitive No Yes Membership limma 3.38.3 [14]

CePa Competitive Yes No Topology CePa 0.6 [15, 48]

PRS Competitive Yes No Topology ToPASeq 1.16.1 [16, 51]

PathNet Competitive Yes No Topology PathNet 1.22.0 [17]

All methods return the p-values before and/or after correcting for multiple comparisons
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graphite on November 28, 2018 for cancer genomic

studies, and from KEGG metabolic interactions using the

KEGGgraph R package in the metabolomic study.
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https://doi.org/10.1186/s12859-019-3146-1.

Additional file 1: Supplementary materials. Supplementary Materials
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