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Abstract—t is well known that the performance of speech  SPEECH PRODUCTION RosusT Seeect RecogNmion
ronments where a speaker is under stress, emotion, or Lombard
effect. This study evaluates the effectiveness of traditional features !
in recognition of speech under stress and formulates new features  LOMBARD __ EnviRONMENT SPEECH FEA
El NOISE PARAMETERIZA]
focus is on formulating robust features which are less dependent / e R
on the speaking conditions rather than applying compensation or SPEECH
adaptation techniques. The stressed speaking styles considerec SIGNAL - i A
actual stressed speech from the SUSAS database which is available K
on CD-ROM through the NATO IST/TG-01 research group and  gpees EMOTIONAL
prediction power spectrum and fast Fourier transform power 7
spectrum to the presence of stress. Our results show that unlike s . WIE]
fast Fourier transform’s (FFT) immunity to noise, the linear EECH FEATURE STRESS TRAINED
| PARAMETERIZATION SPEECH RECOGNIZER
as well as to a combination of a noisy and stressful environment. R
Finally, the effect of various parameter processing such as fixed
versus variable preemphasis, liftering, and fixed versus cepstral Fig. 1. Types of distortion which can be addressed for robust speech
partitioning methods are proposed and compared with traditional
mel-frequency cepstral coefficients (MFCC) features for stressed .
speech recognition. It is shown that the alternate filterbank Actual Stress) [9] database. The stress condition referred to
under both simulated and actual stressed conditions. his or her speech production system while speaking in a
Index Terms—tinear prediction, Lombard effect, speech recog- NOISy environment [13], [20]. To improve the performance
nition, speech under stress. of speech recognition algorithms under stress, a humber of
areas of 1) robust features, 2) stress equalization methods,
[. INTRODUCTION . L :
and 3) model adjustment or training methods. Fig. 1 shows
T is well known that the performance of speech recogniticm general speech recognition scenario which considers a
[8], [20]. Stress in this context refers to speech producegproaches to robust speech recognition. For this scenario, we
under environmental, emotional, or workload stress. The stressume that a speaker is exposed to some adverse environment,
conditions considered in this study include simulated angry andhere ambient noise is present and a stress induced task is
all obtained from the SUSAS (Speech Under Simulated afithe adverse environment could be a noisy automobile where
cellular communication is used, high-stress noisy helicopter
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recognition algorithms degrade in the presence of adverse envi- UNDER STRESS
FEATURE NEUTRAL TRAINED
which are shown to improve stressed speech recognition. The  EFFECT RIZATIO! SPEECH RECOGNIZER
R e
are simulated angry and loud, Lombard effect speech, and noisy
. . . - ; . . STRESS
LDC1. In addition, this study investigates the immunity of linear
P
prediction power spectrum is more immune than FFT to stress PA
= s
mean normalization are studied. Two alternative frequency recognition.
frequency partitions are more effective for recognition of speech as Lombard effect results when a speaker attempts to modify
methods have been considered. These fall into three general
systems degrade under the presence of stress [2], [4]-Mriety of speech/speaker distortions, and the three general
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Fig. 2. Sample waveforms and speech spectrograms with formant overlays for theautindpoken by a male speaker in neutral and angry stressed speech
conditions.

[21]; source-generator based adaptive cepstral compensatiomall effected in different ways. The significance of parameter
(MCE-ACC) [18], [21]). Others have also considered alternaariations with respect to neutral, as well as their relationship
tive training methods such as multi-style training [8]. Howevewith other stressed conditions have also been addressed. For
multi-style training has been shown to be less effective thamample, for speech under angry conditions, the distribution of
a neutral trained system when operating in an open speakerdamental frequency expands greatly (width of distribution
recognition task [19]. In general, however, these approachmasre than doubles), the percentage of time spent in vowels and
normally require either a preprocessing stage or collection thie corresponding amount of energy increases significantly at
stressed speech data for training in order to model the statistivs expense of the percentage of time spent in consonants and
of the input stressed speech and to incorporate this knowledgmsonant energy, the glottal spectral slope becomes more flat
in the recognition system. (more high frequency energy), and formant locations are almost
While these approaches have improved the recognition pafways statistically different from neutral (and many formant
formance, they are restricted to the specific stressed conditlmndwidths as well).
or speaking style being addressed. A more general solution td'hese factors clearly show that spectral structure is altered
the problem of speech recognition under stress would be to imhen speech is produced under stress. Therefore, the focus of
prove the signal modeling or parameterization stage as oppo#ad study is to evaluate the effectiveness of features which have
to compensating the feature observation sequence for the lefen shown to be robust to frequency dependent noise for the
fects of stress. The ultimate goal would be to achieve a sigmalrpose of recognition of stressed speech, and to propose alter-
modeling framework or robust features which are immune tative features that could improve stressed speech recognition.
the speech variations due to stress. The majority of previousaddition, since the majority of previous speech recognition
studies on robust features, however, have focused on featwregluations of power spectrum methods have targeted noisy en-
which are robust to noise [22]-[25]. An extensive summary @fronments, this study will also investigate the immunity of the
speech recognition in noisy environments can be found in a T power spectrum to stress, and contrasts its performance to
centsurvey [26]. Moreover, the majority of features employed the linear prediction power spectrum. Finally, the effect of tra-
current speech recognition systems are based on the FFT podigonal parameter processing on the recognition performance is
spectrum due to its reported immunity to noise [27]. There hagéudied and new parameter processing techniques are proposed
been limited studies on robust features tailored to the effectsfof further improving stressed speech recognition. A flow di-
speech undestress While research has been conducted on ttegram of the stressed speech recognition framework is shown
analysis of speech under stress [4], [5], [34] a number of re+ Fig. 3. Sources of speech under high stress or adverse en-
cent studies have begun to more extensively address the issudroihments due to task demands, emotion, or Lombard effect
changes in speech production under stress [10], [11], and tharie shown as effecting the input speech to the hidden Markov
impact on speech systems [12], [1]. Depending on the type mbdel (HMM) recognizer. A summary of the speech features
stress, it is known that fundamental frequency, duration and itensidered in this study is shown on the left [(a) though (e)] of
tensity effects, glottal source, and vocal tract frequency structuig. 3. Finally, we emphasize that neutral speech data is used for
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Fig. 3. A flow diagram of the speech recognition under stress framework. Sources of speech under high stress or adverse environments are shown as input
the HMM speech recognizer. A summary of the speech features considered in this study is shown on the left [(a)—(e)]. Finally, neutral speect fiatalis use
training evaluations (for each feature set). Round-robin open test evaluations are conducted for recognition of speech under angry, loudfeobrabdrdatual

stressed conditions.

all training evaluations (for each feature set). Round-robin opeffect speech. Lombard effect speech was obtained by having
test evaluations are conducted for recognition of speech undpeakers listen to 85 dB SPL pink noise through headphones
various stressed conditions. while speaking (i.e., recordings are noise-free). A common vo-
The remainder of this paper is organized as follows. The databulary set of 35 aircraft communication words make up over
base employed in all of our evaluations is briefly summarize26% of the data base. These words consist of mono- and multi-
in Section II. In Section IIl, we study the effectiveness of tradisyllabic words which are highly confusable. Examples include
tional as well as noise robust features in recognition of speelgo-oh-no/, /wide-white/, and /six-fix/. Twelve tokens of each
under stress. In Section IV, we investigate the recognition pa&verd in the vocabulary were spoken by nine native American
formance across individual frequency bands to determine figpeakers for the neutral conditions, and two tokens for each style
guency regions less affected by stress. Based on these resatirdition. This database has been employed extensively in the
we propose in Section V two new frequency scales which astudy of how speech production and recognition varies when
less sensitive to the effects of stress as compared to the tragieaking under stressed speech conditions [21].
tional mel-frequency scale. In Section VI, we compare the per-To illustrate an example of the effects of stress on speech,
formance of linear prediction and FFT power spectrum basédy. 2 shows time waveforms and speech spectrograms with for-
features in the presence of stress. In Section VII, we summarirant overlays for the word “south” spoken by a male speaker
the effect of various parameter processing methods to recagboth neutral and angry stress conditions. For this example,
nition performance and propose new parameter processing eyerall word duration decreased by 42%, while the voiced du-
proaches based on the variable impact of stress on speech clasgem is 218 ms for angry and 203 ms for neutral. The resulting
for improving recognition performance. A final summary and apectral response is more intense for the voiced speech section,

series of conclusions are drawn in Section VIII. with a change in formant bandwidth (especially the second);
while only slight changes in overall formant location tracks were
II. RECOGNIZER AND DATABASE noted. Finally, there is a clear change in overall spectral slope

: . . note significantly higher energy levels in high frequency por-
The speech data employed in this study is a subset of ¥h of spectrogram for thangrytoken).

SUSAS (Speech Under Simulated and Actual Stress) da_‘ta'lnthis study, all recognition evaluations are speaker-indepen-
base [9]. Approximately half of the SUSAS database consq}gnt’ and consider only male speakers. A 30-word HMM-based
of styled data (such asormal, angry, soft, loud, slow, fast, recognizer is formulated using a variable-state-size, left-to-right

clear) donated by the Lincoln Laboratory [8], and I‘Omb"’lr(ilnodel, with two continuous mixtures per state. The HMM

models are trained with neutral speech of eight speakers while

2The SUSAS Stressed Speech Database from RSPL is available . h ker is left f . A | of K
from the Linguistics Data Consortium at the following web location® ninth speaker Is leit for open testing. total ot ten tokens

http://morph.ldc.upenn.edu/Catalog/LDC99S78.html. per speaker are employed for training each neutral HMM word
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COMPARISON OF LP-BASED STATIC FEATURES
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Recognition Performance of Neutral Trained Models Employing
Static Features Derived from LP Power Spectrum

Training/Testing Speaking Styles Tested Overall
Features NEUTRAL | ANGRY | LOUD | LOMBARD || Recognition
LPC 61.65% 37.78% | 43.89% 49.44% . 48.19%
OSALPC 66.06% 43.70% | 50.00% 54.26% 53.51%
LPCC 83.53% 55.19% | 63.52% 72.59% 68.71%
OSALPCC 81.06% 51.85% | 60.93% 69.63% 65.87%
MFCC 83.52% 58.15% | 63.89% 72.22% 69.45%

Fig. 4. Recognition performance of linear prediction power spectrum based static features in the presence of stress. The graph shows theatesogiition
neutral trained models tested with four speaking conditions for five different sets of features: LPC, OSALPC, LPCC, OSALPCC, and MFCC.

model resulting in 80 training tokens per word. The training arstressed speech. The first set of features evaluated in this study
testing are done in a round robin scheme to allow all speakarge the one-sided autocorrelation linear prediction coefficients
and tokens to be tested in an open evaluation. In evaluatif@SALPC) which were shown to outperform linear prediction
each of the neutral trained HMM models, a total of 2160 tokersefficients (LPC) as well as two other noise robust methods,
are tested from the four speaking styles. the short-time modified coherence method (SMC) and the
The last evaluation in this work employs actual stresséehst-squares modified Yule Walker equations (LSMYWE),
speech from the SUSAS database. The actual speech unidesevere noisy conditions [25]. The second set of features
stress data employed in this evaluation consists of speech prealuated are the cepstral-based OSALPC, referred to as
duced during the completion of two types of subject motion-fe@SALPCC in the tables and figures, which are compared to
tasks. The speakers produced speech while participating in tilie performance of traditional cepstral-based LPC and mel-fre-
amusement park rides (e.g., a traditional roller-coaster ride amuency scale coefficients (MFCC). Therefore, the recognition
a free-fall ride consisting of a 130 ft vertical drop machineperformance of the following set of features will be compared
These two rides were chosen in an attempt to simulate the linear prediction coefficients (LPC), 2) linear prediction
sudden change in altitude or direction which could be expedepstral coefficients (LPCC), 3) one-sided autocorrelation
enced in an aircraft cockpit under emergency conditions [9]. linear prediction coefficients (OSALPC), 4) cepstral-based
OSALPC (OSALPCC), and 5) mel-scale filter bank cepstral
parameters (MFCC). We briefly discuss these features before
Ill. PERFORMANCE OFTRADITIONAL AND NoISERoBuUsT ~ Presenting the evaluation results.
FEATURES IN STRESS The OSALPC technique is based on the application of the
windowed autocorrelation method of linear prediction to the
The majority of previous research on robust features have ahe-sided autocorrelation sequence as discussed in [28], [25].
dressed robustness in noisy or channel corrupted environmefitse one-sided autocorrelation (OSA) is obtained by computing
The goal in this section is to investigate the effectiveness #f = N/2 autocorrelation lags from a speech frame of length
previously proposed noise robust features in the recognition 8f A Hamming window fromm = 0 to M is then applied to the
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COMPARISON OF LP-BASED STATIC AND DYNAMIC FEATURES
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" Training/Testing Speaking Styles Tested Overall
Features NEUTRAL | ANGRY | LOUD | LOMBARD || Recognition
LPC + A 65.37% 45.56% | 52.04% 53.70% 54.17%
OSALPC + A 74.26% 50.56% | 54.44% 61.11% 60.09%
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Fig.5. Recognition performance of linear prediction power spectrum based static and dynamic features in the presence of stress. The gragteppitisthe r
rates of neutral trained models tested with four speaking conditions for five different sets of features: LPC, OSALPC, LPCC, cepstral-base GOEMERC,.

computed one-sided autocorrelation. This is followed by cofl€MN). In both evaluations, the models are speaker-inde-
puting the firstp+ 1 autocorrelation values of the one-sided aupendentneutral trained and are tested with speech from four
tocorrelation sequence, wherés the prediction order. The au-speaking conditions: neutral, angry, loud, and Lombard effect.
tocorrelation values are used as entries to the Levinson-DurbirThe results plotted in Figs. 4 (static) and 5 (static, and delta
algorithm when estimating the AR parameters. Finally, cepstmaith parameter processing) show that for both evaluations the
coefficients are computed from the linear parameters using thiee-sided autocorrelation linear prediction coefficients (OS-
recursive relation given below. Both LPC and OSALPC basé® PC) performs better than traditional LPC for all three stress
cepstral parameters are derived from the linear spectral paramonditions. OSALPC, however, does not achieve the highest

eters according to the following equation: performance among the evaluated features. In fact, the three
k-1 remaining cepstral features, cepstral-based LPC, cepstral-based

er = ag + (1/k) Z icgap_; 1<k<p (1) OSALPC and MFCC, achieve higher recognition rates than

i=1 OSALPC. In addition, our results show that cepstral-based

wherea,, are eitherthe LPC orthe OSALPC coefficientssthe OSALPC outperforms OSALPC by 12.36% across the four
LPC analysis order, ang are the resulting cepstral coefficientsspeaking conditions for static features (see Fig. 4), and by
The final set of parameters considered in this section are &.67% for static and dynamic feature trained models (see
mel-frequency cepstral coefficients. Fig. 5).

Next, we consider the performance of these features forThe mel-frequency cepstral-based coefficients and the
recognition of speech under stress. Two sets of evaluations eepstral-based linear prediction coefficients achieve the highest
presented. The first compares the performance of HMM modeéscognition rates in both static and combined (static, dynamic,
trained with static features with no parameter processing whiléth parameter processing) evaluations. Their performance
the second compares the performance of models trained w&hvery similar across all four speaking conditions as shown
static and dynamic features in addition to parameter processingFigs. 4 and 5. Both features achieve a higher level of
such as cepstral liftering and cepstral mean normalizatioecognition performance than cepstral-based OSALPC across



434 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 4, JULY 2000

NEUTRAL AND ANGRY SPEECH RECOGNITION BASED ON LINEARLY SPACED FILTER BANK ENERGIES
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Fig. 6. Recognition based on individual linearly spaced filter bank output energies. Neutral trained models are tested with neutral and angiyespleéch
shows the results of both using a linear prediction and a FFT power spectrum.

all four speaking styles in both scenarios. In summary, theBem SUSAS. The results shown in Fig. 6 are across 30 words
results show that while noise-robust features such as OSALBfbken by nine speakers. The training and testing evaluations
may be robust in noise, they are not necessarily robust to tne done twice, once employing an FFT power spectrum,

presence of speaker stress. These results also suggestahdta second employing a linear prediction spectrum. For

features based on cepstral analysis (LPCC, OSALPCC, MFC&mpleteness, we include below a short description of how the
clearly outperform direct linear predictive based features (LPEFT and LP power spectra were computed.

OSALPC), with overall recognition rates of 65%—-69% versus

48%-53%. It is also recommended that due to the variabiliy FFT-Based Power Spectrum

across the three stress conditions, new feature sets are needgfle g kHz sampled signai(n), is first processed by a simple
for improved stressed speech recognition. preemphasis filter given by

_ -1
IV. SPEECHRECOGNITION BASED ONFILTER BANK OUTPUT H(Z) =1-0972 (@)

Next, we consider the impact of stress for speech recognitihyield a roughly flat average speech spectrum. A 30-ms long
across frequency bands. Evaluations presented in Sectiondgmming window (V. = 240 samples) with 50% overlap
identified the need for a new set of features more robust #/€N bY
the presence of stress. Extensive studies have previously been 2mn
conducted to understand how various types of stress affect w(n) = 0.54—0.16 COS(H)
human speech production. It is known, for example, that n=01,...,.N—-1 (3)
spectral slope varies significantly across stressed speaking ] _ _
styles. We therefore start by studying the impact of stress n a@Pplied to the preemphasized waveform. A 512-point
individual frequency bands. This is achieved by evaluating tif§0rt-time Fourier transform is then computed for the succes-
recognition performance based on the log-energy output of a3¥e overlapping windowed speech as given by

uniformly spaced filter bank. The ultimate goal is to formulate i n jwn
a new frequency scale which is less sensitive to variations S(e) = Z s(n)w(m —n)e 4)
caused by stress without degrading the performance of neutral n=m-N+1

speech recognition. We note that a similar study proved wherew(n) is a Hamming window of lengthV as given previ-

be successful in the formulation of a set of accent sensitiveisly in (3). The magnitude squared power spectiife/* )|?,
frequency features [29]. A speaker-independent HMM modislthen evaluated for frequencies ranging between 0 and 4 kHz.
with variable state-duration is trained with neutral speech fdb compute the FFT-based log energy values, we apply 16 uni-
each of the 16 frequency bands of a word. The neutral trainfamly spaced digital filter banks on the resulting FFT power
word models are tested with tokens of neutral and angry speagiectrum and compute the log energy in each band. The 16 log
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energy values corresponding to each frame are employed fi@guency scale methods targeted at emphasizing the second for-
training as well as recognition. mant in both neutral and stressed speech.

B. LP-Based Power Spectrum V. MFCC VERSUSNEWLY PROPOSEDFREQUENCY SCALES

The speech signai(n), is preemphasized and windowed as o the previous filter bank analysis, it became evident that
was previously described in (2) and (3). A 12th order linegf ey frequency scale is needed that would emphasize mid-fre-
prediction coefficientsg;, are derived using the autocorrela-quencies while de-emphasizing lower and higher frequencies.
tion method which computes the autocorrelation coefficienstore proposing such a scale, we recall how traditional mel-
and then applies the Levinson-Durbin recursion as described,,ency cepstral parameters are computed and then derive two

in [3]. The magnitude squared power spectrum is then direcilyy frequency scales that would achieve the desired frequency
computed from the LPC coefficients according to the fo”OW'n%artitioning.

|H(ej“’)|2 . G? 5) The mel-frequency cepstral coefficients can be computed
from either the FFT or the LP power spectrum which were

= e
. . . ) 9 . derived earlier in Sections IV-A and IV-B. The main difference
wherep is the linear predictor filter order, and- is the gain . . :
between a mel-scale and a linear scale is that a linear scale

squared which is equivalent to the mean squared prediction el s equal emphasis on every part of the frequency scale
[35] as given by b q P yp q Y

’ from zero up to the maximum representable frequency while a
9 _ ' . mel frequency scale places the bins on a nonlinear frequency
G7 = B (0) Z @il (i) () scale. The bands in a mel-scale are made successively broader
with increasing frequency above 1 kHz to reflect the frequency

order of the linear prediction filteg; is theith linear predic- resolution of the human ear. To compute the mel-frequency

. " N . . ..~ cepstral coefficients, we place a set of 16 triangular bandpass
tion coefficient, andr,, (¢) is theith autocorrelation coefficient P P g P

. . filters on the desired power spectrum (either FFT or LP)
for framen. The power spectrum is evaluated for frequencies .
according to a mel frequency scale [38] and compute the log

ranging between 0 and 4 kHz. To compute LP-based log ener : . . . .
values, we apply 16 uniformly spaced digital filter banks on th§r¥ergy in each band. Finally, a cosine transform is applied to

o - convert the set of log energies to a setepstral coefficients
resulting linear prediction power spectrum and compute the |

energy in each band. These log energy values are employed OrIy 12 of these cepstral coefficients are kept for training and

o " recognition.
training and recognition. . . .
As was noted earlier, the mel-frequency scale is basically a

mapping of the linear frequency scale to a scale that resembles

o the frequency resolution of the human ear. The general form of
As shown in Fig. 6, for both power spectral methods thgg logarithmic mapping can be written as
highest recognition performance for neutral speech (top two /

lines) occurs around the first formant location (200-1000 Hz) y=C xlog (1 + —) , f=0,...,4000 Hz (7)
while the highest recognition of angry speech (lower two lines) k

occurs in the neighborhood of the second formant location Wwhere f represents the linear frequency apdepresents the
the range of 1250 to 1750 Hz. This may be attributed to th@lue of the transformed frequency. This equation can also be
observation that the second formant location is more closeéitten as

i=1
where R, (0) is the zeroth autocorrelation coefficieptjs the

C. Recognition Results Based on Filter Bank Log Energy

related to tongue movement, and that the variations in tongue y
movement from neutral to stress conditions are less dramatic = o (1 A L) ‘ (8
than other changes such as excitation for example. Therefore, & k

since the second formant location experiences less variabilli;t

under stress, then it would be more reliable for stressed SPegel Lencies 0 and 4 kHz be equal to the mapped values of the

recognition. Recall that since a mel-scale is almost linear fﬂ{el frequency scale. i.e.. 0 aBd95 x loa(1 4+ 4000/700). we
frequencies below 1000 Hz and increases logarithmically aboye d y co x log(1 + /700),

1000 Hz, then the contribution of the second formant is de-em-taln the following equatg&ge(l;i;@ tok
phasized compared to the first formant. This attribute makes the = 9)
mel-scale ideal for neutral speech recognition but not equally log(l + T)
effective for angry speech recognition. Therefore, a new frée compute the modified mel-scale cepstral coefficients, we
guency scaling is suggested which would emphasize frequgtace a set of 16 triangular bandpass filters on the desired power
cies around the first and second formant locations without dgpectrum according to the modified mel-scale and compute the
grading the recognition performance of neutral speech. log energy in each band. Once again, we apply a cosine trans-
The results based on individual frequency band output enésrm to convert the set of log energies to a set of cepstral co-
gies do not conclusively determine which power spectral eséfficients. Therefore, the main difference between MFCC and
mation method (linear prediction versus FFT) would be more rarodified MFCC is in the frequency placement of the bandpass
bust to stress. In a later section, we investigate the performafiters.
of both spectral estimation methods in stress using whole-wordThe previously derived logarithmic mapping function did not
based models. In the following section, we introduce two neyield the desired effect of heavily concentrating the filters at

rthermore, if we require that the mapped values of the linear
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Fig. 7. This graph shows three mapping functions: (a) mel-frequency, (b) modified mel-frequency, and (c) ExpoLog, employed to warp a linedrescale in t
frequency domain.

mid-frequencies. To achieve this effect, we resort to an expand
nential mapping function for linear frequencies between 0 and f
2000 Hz, and a logarithmic mapping function for linear frequen- %2 = Cy X log<1 + E) 2000 < f <4000 Hz  (11)

cies between 2000 and 4000 Hz. The general form of these fuo\(/:- ve for th | & b C 4 b Wi
tions can be written as e can solve for the values @f, k1, C», and k2 by solving

a set of equations. Once again, if we require that the mapped
y1 = C1 X (10“’“1 —1) 0<f<2000Hz (10) values of the linear frequencies 0 and 4000 Hz be equal to the
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Fig. 8. Performance of the static features of three different frequency mapping functions: MFCC, M-MFCC, and ExpoLog, based on an FFT power spectrum.

mapped values of the mel scale, we obtain the following relationFig. 8 shows results from an evaluation of the three fre-
betweenCs andks guency warping scales in obtaining cepstral parameters (MFCC,
C, = 2146.0645 (12) M-MFCC, ExpoLog). Recognition rates are shown for neutral
2 log (1 4 42&) ' models trained with static features and tested with speech from

neutral and three stressed speaking conditions. Each scaling

In addition, both the exponential and the logarithmic mappingethod was evaluated with a total of 2160 open test tokens.
functions should be equal at the boundary for the linear frgynen static features are employed for recognition, M-MFCC
quencyf = 2000 Hz. This results in the following equation: outperforms traditional MFCC by 4.45% for angry, 1.85%
Oy x (10% _ 1) =y x log<1 4 22&) . (13) for loud, and _5.37% for Lombard effect. The performance of
2 ExpoLog static features also outperforms the mel-scale, for
By using the same logarithmic mapping function derived earliall stress styles, with an average performance improvement
we obtain the following relation betweery and Ky of 4.77%. Note that for angry and loud speech recognition,
2000 2000 ExpoLog exceeds MFCC by as much as 7.59% and 7.77%.
C1x (10 - 1) = 3070 x log (1 T m) (14) " These results clearly show that with a slight modification in
— 1464.76. (15) the manner in which cepstral parameters are obtained, we can

mprove recognition performance in stressed speech conditions.

To compute the ExpolLog cepstral coefficients, we place a d
of 16 triangular bandpass filters on the desired power spectrum
according to the ExpoLog scale and compute the log enerngH'
each band. We apply a cosine transform to convert the set of
log energies to a set of cepstral coefficients. As noted before|n a recent survey of contemporary recognition systems by
the main difference among the three scales is in the frequerRigone [27], it was established that fast Fourier transform based

FAST FOURIER TRANSFORM VERSUSLINEAR PREDICTION
POWER SPECTRUM

placement of the bandpass filters. spectral parameters are preferred to linear prediction based pa-
The modified mel-scale (M-MFCC), the ExpoLog scale, anchmeters since they are believed to be more immune to the pres-

the traditional mel-scale are as follows: ence of noise. Only a third of all the surveyed systems em-
/ ployed linear prediction derived parameters, the remainder used

mel-scale= 2595 x log| 1 + == 16 . . ’

x Og( + 700 (16) FFT based processing. For this reason, a number of systems

. f rely on the FFT-based filter bank analysis. In order to com-

Modified mel-scale= 3070 x log<1 T 1000 (17) pare the immunity of each power spectral estimation to stress,

700 x <1039fT — 1) 0 < f <2000 Hz we conducted two recognition evaluations using parameters de-
¥ rived from FFT and linear prediction power spectral estimation
2595 x log (1 + —) 2000 < f < 4000Hz methods. In addition, we performed an additional recognition
700 (18 evaluation employing actual stressed speech produced in a noisy

These three frequency warping functions are plotted in Fig_ef\vironment in order to determine which power spectral estima-
for comparison. Thej-axis represents the linear scale whicion method would be more robust to the presence of both noise

is warped to the desired scale according to the mapping futd stress. The noise in this case represents time varying me-
tion. Note how for the ExpoLog mapping the filter banks gréhanical and wind noise obtalne_d from speech recorded during
highly concentrated at mid frequencies while they are spars@gusement park roller coaster rides.

distributed at frequencies below 750 Hz and above 2000 Hz. ) ) ] o

In this section, we will contrast the performance of the three Performance in Noise-Free Simulated Stress Conditions
warping functions using an FFT power spectrum. A comparisonOur results show that contrary to their noise immunity,
of their performance using a linear prediction power spectruRFT-based spectral parameters are not equally robust to the
will be discussed in the following section. presence of stress. Fig. 9 compares the performance of linear

ExpoLog=
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RECOGNITION OF LP vs. FFT POWER SPECTRUM BASED FEATURES
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Recognition Performance of Neutral Trained Models Employing Static
MFCC, M-MFCC, and ExpoLog Features Derived from FFT and LP Power Spectrum

Training/Testing Speaking Styles Tested Average
Features NEUTRAL | ANGRY | LOUD | LOMBARD Recognition
MFCC FFT 85.37% 46.48% | 55.56% 68.15% 63.89%
M-MFCC [FFT 86.30% 50.93% | 57.41% 73.52% 67.04%
ExpoLog [FFT 83.33% 54.07% | 63.33% 73.89% 68.66%
MFCC LP 83.52% 58.15% | 63.89% 72.22% 69.45%
M-MFCC [LP 85.37% 59.44% | 63.15% 74.07% 70.51%
ExpoLog [LP 83.52% 61.11% | 65.19% 73.70% 70.88%

Fig. 9. This graph compares the performance of FFT versus linear prediction power spectrum derived features of neutral trained models usingestaficege
performance of MFCC is compared to two different frequency scales.

prediction and FFT power spectrum based features. The doti FFT va. LP PowWER SPECTRLURM
line re i icti iti [ExroLoc ScaLE]
presents linear prediction based recognition and tl e T P
solid line represents FFT based recognition rates. For neut T LS A ————

training and testing, FFT based parameters perform slightis _ e
better than cepstral parameters derived from a linear predicti gy B

spectrum. However, the linear prediction power spectrun"I AP oo
performs significantly better than the FFT power spectrursms: e, ey

when neutral trained models are tested with angry, loud, ai II
Lombard effect speech. We also point out that modified MFC™ u il

(M-MFCC) and ExpolLog based features consistently outpe*L{—; ~ ——

&

FiEuTRAL AsiGny Lowsssrn  OweRALL
formed MFCC parameters using both FFT and linear prediction
based spectra, but that linear prediction derived EXpoLegy. 10. Performance of FFT and linear prediction power spectrum based
produced the highest recognition rates across stressed stipglog static and dynamic features.
using static features. Next, we consider extending the static
features to include time derivatives and feature processiragain, the linear prediction based features outperform FFT by
Time derivatives or delta parameters were shown to grea#y overall 3.94%. For angry speech recognition, the difference
enhance the performance of stressed speech recognition [8Dtecognition is as high as 9.63%.
Having established the ExpolLog frequency scale as beingAn error analysis was also conducted for linear prediction and
superior to mel and modified-mel scales, we now consider tink€-T derived ExpolLog cepstral parameters. For this evaluation,
derivatives and parameter processing. Fig. 10 also compaites database was divided into confusable and nonconfusable
both spectral methods. It shows the performance of ExpoLagrd sets as shown in Table I. For both linear prediction and
static and dynamic features with parameter processing. Oiel power spectrum, the nonconfusable errors account for the
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TABLE | improved speech recognition and speaker identification. Here,

ALIST OF THE30 WORD VOCABULARY EMPLOYED IN ALL EVALUATIONS. THIS  \v:a avaluate their contribution to stressed speech recognition.
TABLE SHOWS THEGROUPING OFCONFUSABLE AND NONCONFUSABLEWORDS

Confusable Words Non-Confusable Words ~ A. Fixed and Slowly-Varying Preemphasis
break/strafe change/gain east/eight enter, hot, mark, on . . .
ﬁxfsix g0 /io//ih hellc{ /hgelp three, point, stand Previous analysis studies on stressed speech have shown that
? ? .
out/south  white/wide degree/freeze/three || nav, steer, ten, zero the spectral structure and overall average spectral slope varies

for different speaking conditions [5], [21], [31]-[34]. In speech
TABLE Il recognition, a preemphasis filter is normally used to raise the
PERFORMANCE OFFFT AND LINEAR PREDICTION Power SpEcTRuMBasep  Digh frequency content by approximately 20 dB per decade.
FEATURES INACTUAL STRESSEDNOISY SPEECH The preemphasis filter has the effect of compressing the dy-
Recognition Performance of Neutral Trained Models Employing hamic range in the frequency domain of the speech signal by

Static and Dynamic MFCC, M-MFCC, and ExpoLog Features Derived flattening the spectral tilt s0as to improve linear mO(_jeIing of
from FFT and LP Power Spectrum in noisy actual stressed conditions ~ the formant structure. This is especially useful for voiced sec-

Feature Set | LP Power Spectrum FFT Power Spectrum tions since they naturally have a negative spectral slope due to
MFCC 36.72% 28.81% physiological characteristics of the speech production. Since the
M-MFCC 36.16% 25.42% average spectral slope of the input speech is different for var-
ExpoLog 37.29% 22.60%

ious stressed speaking styles, then in order to flatten the spec-
tral tilt, it is necessary to vary the filter parameters according to
majority of errors in angry and loud speech recognition. For netie input speech. Therefore, we propose using an adaptive pre-
tral and Lombard conditions, both methods produced compmphasizer where only the spectral slope of voiced speech is
rable word-set error rates. Our findings suggest that the linggaptively flattened while the unvoiced speech sections are not
prediction power spectrum mainly resolves nonconfusable @&€emphasized. The adaptive preemphasizer is a slowly-varying
rors. The error rates for confusable words are comparable fiigt order filter [36] given by

both FFT and linear prediction spectral methods. H(z)=1—ay2"

B. Performance in Actual Noisy Stressful Conditions wherea,, = r,(1)/r,(0). The variable filter coefficient is rep-

Having established that the linear prediction power Speclr&s_ented as aratio of th_e fir§t to th_e zeroth order lag autoco_rre-
outperforms an FFT based power spectra in noise-free simulall%'iﬁon parameter_s. The filter is applied to utterances both during
stress conditions, we now consider a second evaluation usingtﬁ%'-n'ng and t_estlng. ) .
tual noisy stressful speech from the SUSAS database. This evafn evaluation of the MFCC features with preem_pha5|s was
uation is intended to determine which power spectral estimatigﬂndUCted across neutral and thre_e str_essed speaking c_o_nd|t|0ns.
method is most effective when speech is subjected to a combiﬁg-e slowly-varying preemphasis filter improved recognition of
tion of noise and stress. The results, as summarized in Tablef19"Y speech by 2'_41% and that of Lombard effect speech _by
indicate that the linear prediction based features outperform ﬂ'réS%' The recognition of neutral speech dropped by 1% while
FFT-based features not only for noise-free simulated stress cHie same performance was aCh'?Ved fqr loud speech. The_overall
ditions but also for noisy actual stressed speech. We believe tb;%&ogmtlon_performance was slightly improved by applying a
the spectral smoothing inherent in the linear prediction mod%pwly-varylng preemphasis.
provides a more overall smooth set of parameters capable_of
not representing the fine variations caused by excitation changes

Fixed and Variable Cepstral Mean Normalization

(i.e., pitch structure) that exist under stressful conditions. In a study of channel compensation techniques for speaker
identification, simple cepstral mean removal was the best
VIl. PARAMETER PROCESSING channel compensation method versus RASTA processing and

(rJeuadratic trend removal [37]. Cepstral mean normalization

While it is desirable to formulate speech features which a ) . . .
removal is a simple yet effective method which assumes

inherently robust to the variability of speech under stress, thele . .
are a number of possible subsequent parameter procesgﬂ kn_owledge about the enV|ronment and is employe_d _for
methods that could be used which have been shown to be efﬁ&(?ucmg long term differences in channel characteristics.
tive for noise and communication channel effects. We note thef€ channel distortion is computed as a long-term cepstral
other methods such as stress equalization feature proces&@Yjage by estimating the mean of each cepstral value over the
(MCE-ACC [18], and others in [21]) have been shown to b@ntire utterance. It is assumed that the speech signal is rich
effective in reducing the impact of stress. However, such strég§sPhonemic content, so that the estimated mean will reflect
equalization processing requires stress and/or word depend®Hy that spectral structure which is common to all observation
compensation terms. The goal in this section is to consider offgmes (i.e., frequency structure due to microphone or channel
feature processing methods which do not require knowledgegdfects). The channel effects are then removed by subtracting
either word or phoneme class sequence content, or the typdhi$ mean from the cepstral value in each frame.

speaker stress. In this section, we consider the following threeA number of variations on CMN have also been used to
parameter processing methods: preemphasis, liftering, ammmpensate for the variation of cepstral coefficients when
cepstral mean normalization which have been widely used fgpeech is produced with different speaking styles [2], [16].
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EFFECT OF PARAMETER PROCESSING
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Recognition Performance of MFCC Neutral Trained Models Average
Tested with Neutral and Three Stressed Speaking Styles Recognition
Training/Testing Features NEUTRAL | ANGRY | LOUD | LOMBARD || Performance
1 Fixed Preemphasis (FxdP) 83.52% 58.15% | 63.89% 72.22% 69.45%
2 Varying Preemphasis 82.59% 60.56% | 63.89% 73.70% 70.19%
3 FxdP + CMN 88.70% 66.48% | 71.48% 81.11% 76.94%
4 FxdP + Variable CMN 88.52% 70.56% | 75.00% 82.59% 79.17%
5 FxdP + A 93.89% 71.11% | 75.19% 89.44% 82.41%
6 FxdP + A + Variable CMN 92.41% 72.22% | 77.96% 86.67% 82.32%
7 FxdP + A + CMN 94.07% 73.33% | 79.81% 87.41% 83.66%
8 FxdP + A + CMN + Liftering 94.07% 73.33% | 79.81% 87.41% 83.66%

Fig. 11. Effect of preemphasis (fixed and variable), cepstral mean normalization (fixed and variable), time-defvateffiCients), and cepstral liftering on
the recognition performance of linear prediction based MFCC's. Note, “FxdP” refers to “Fixed Preemphasis,tefeds to time-derivative delta coefficients.

Since, the presence of stress impacts voiced and unvoiggdemphasis. If time derivatives are included in the feature set,

speech phonemes differently [5], [6], we propose computingriable CMN is not as effective.

an overall separate cepstral mean for voiced and unvoiced

sections for each token under test instead of computing a sinffie Cepstral Liftering

mean across the entire utterance. This was achieved by firsThe last feature processing method considered is cepstral lif-

using a simple voiced/unvoiced speech detection approatdring. Cepstral liftering is a weighting technique applied to cep-

The average voiced cepstral mean is then subtracted fretral coefficients in order to reduce the spectral slope or the un-

voiced sections, and the unvoiced cepstral mean is subtradedirable broadband noise components of the spectrum, which

from unvoiced sections. Unlike applying a compensaticaffect low order cepstral parameters, while retaining the essen-

vector, this method does not require prior analysis of neutiél characteristics of the formant structure. The low-order cep-

and stress speech data since it computes the mean duringsth@l coefficients are believed to be primarily sensitive to overall

parameterization stage. spectral slope, variations in transmission, speaker characteris-
A series of the recognition evaluations was performed usifi§S: or vocal efforts. The higher order cepstral coefficients rep-

MFCC static parameters, with various configuration of delt€sent fine spectral structure and are therefore more sensitive to

parameters, fixed or variable preemphasis, and fixed or variaBRiS€ and the artifacts of the LPC analysis. The cepstral liftering

cepstral mean normalization (CMN). The results in Fig. 13Pplied here is given by

show that variable cepstral mean normalization performs o= (1 + L sin ﬂ) .

better than traditional CMN when no delta parameters are " 2 L)

employed. The recognition of angry, loud, and Lombard effegthere was set to 12.

speech is improved respectively by 4.08%, 3.52% and 1.48% Cepstral liftering was also evaluated using MFCC parameters

Variable CMN is most effective with static features and fixefbr neutral and three stressed speech conditions. A summary of
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the results is shown in Fig. 11. Our evaluations show that when TABLE Il
; ; ; ; ; At L1ST OF THEPHONEMES IN THESUSAS DNTABASE USING THE Advanced
cepstral liftering is employ_ed .Wlth.tlme derivative parametersA Research Projects Agency uppercase alphabet notation (ARPAbet)
and cepstral mean normalization, it has no effect on the recog-
nition performance of neutral trained models tested with neutral, A List of the Phonemes in the SUSAS Database
angry, loud, and Lombard conditions. fm/ /nf [/ [th/ Jf/  [sh/ jz/ [v/
fiv/ jcb/ fp/ ft/ k[ /b jdf [g/
/bh/ [ih/ Jeh/ [ae/ [aa/ [axx/ [ah/ [ay/
VIll. CONCLUSION foy/ [ey/ [ow/ [aw/ [iy/ [w/ [\ [t/

In this study, we have considered the effectiveness of noise
robust features for recognition of speech under stress, and heggers many but not all phonemes in English. Until more exten-
proposed alternative feature extraction methods for improveiye stress speech databases are available, we can only suggest
stressed speech recognition. Noise robust features, suchthas at least at the phone level, recognition performance should
the one-sided autocorrelation linear prediction (OSALPQe comparable. Further investigations are needed to determine
and cepstral-based OSALPC features, were compared ct@nges in language models and sentence structure when rec-
traditional features such as linear prediction coefficients (LPQ)gnizing continuous speech under stress. The final recommen-
LPC-based cepstral (LPCC) parameters, and mel-frequemnigtion from this study is that for effective speech recognition
cepstral (MFCC) parameters for stressed speech recognitiparformance in both neutral and stressed conditions, speech rec-
Our investigation showed that noise robust features are manizers should 1) employ features derived from alinear predic-
necessarily robust to the presence of stress since the effectiaf as opposed to an FFT based power spectrum and 2) use a
noise on the acoustic speech signal is different than the effewbdified frequency partition such as M-MFCC or ExpoLog if
of stress. possible. In addition, variable preemphasis and variable CMN
In order to formulate features less sensitive to the effedisth improve stressed speech recognition performance, but that
of stress, we studied the recognition performance of stresgbdir impact is reduced if time derivative parameters are also
speech based on individual frequency bands. This evaluatianluded.
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