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Abstract—It is well known that the performance of speech
recognition algorithms degrade in the presence of adverse envi-
ronments where a speaker is under stress, emotion, or Lombard
effect. This study evaluates the effectiveness of traditional features
in recognition of speech under stress and formulates new features
which are shown to improve stressed speech recognition. The
focus is on formulating robust features which are less dependent
on the speaking conditions rather than applying compensation or
adaptation techniques. The stressed speaking styles considered
are simulated angry and loud, Lombard effect speech, and noisy
actual stressed speech from the SUSAS database which is available
on CD-ROM through the NATO IST/TG-01 research group and
LDC1 . In addition, this study investigates the immunity of linear
prediction power spectrum and fast Fourier transform power
spectrum to the presence of stress. Our results show that unlike
fast Fourier transform’s (FFT) immunity to noise, the linear
prediction power spectrum is more immune than FFT to stress
as well as to a combination of a noisy and stressful environment.
Finally, the effect of various parameter processing such as fixed
versus variable preemphasis, liftering, and fixed versus cepstral
mean normalization are studied. Two alternative frequency
partitioning methods are proposed and compared with traditional
mel-frequency cepstral coefficients (MFCC) features for stressed
speech recognition. It is shown that the alternate filterbank
frequency partitions are more effective for recognition of speech
under both simulated and actual stressed conditions.

Index Terms—Linear prediction, Lombard effect, speech recog-
nition, speech under stress.

I. INTRODUCTION

I T is well known that the performance of speech recognition
systems degrade under the presence of stress [2], [4]–[6],

[8], [20]. Stress in this context refers to speech produced
under environmental, emotional, or workload stress. The stress
conditions considered in this study include simulated angry and
loud, Lombard effect conditions, and actual stressed speech
all obtained from the SUSAS (Speech Under Simulated and
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Fig. 1. Types of distortion which can be addressed for robust speech
recognition.

Actual Stress) [9] database. The stress condition referred to
as Lombard effect results when a speaker attempts to modify
his or her speech production system while speaking in a
noisy environment [13], [20]. To improve the performance
of speech recognition algorithms under stress, a number of
methods have been considered. These fall into three general
areas of 1) robust features, 2) stress equalization methods,
and 3) model adjustment or training methods. Fig. 1 shows
a general speech recognition scenario which considers a
variety of speech/speaker distortions, and the three general
approaches to robust speech recognition. For this scenario, we
assume that a speaker is exposed to some adverse environment,
where ambient noise is present and a stress induced task is
required (or the speaker is experiencing emotional stress).
The adverse environment could be a noisy automobile where
cellular communication is used, high-stress noisy helicopter
or aircraft cockpits, or other environments where hands-free
operation is needed. Since the user task could be demanding,
the speaker is required to divert a measured level of cognitive
processing, leaving formulation of speech for recognition as a
secondary task. Some speech recognition studies have adapted
the recognizer to the input stressed speech during training
[14], or compensated for the effect of stress during recognition
testing phase (e.g., formant location and bandwidth stress
equalization [6], [7], [21]; whole-word cepstral compensation
[2]; slope-dependent weighting [15]; formant shifting [17];
source-generator based codebook stress compensation [16],

1063–6676/00$10.00 © 2000 IEEE
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Fig. 2. Sample waveforms and speech spectrograms with formant overlays for the wordsouthspoken by a male speaker in neutral and angry stressed speech
conditions.

[21]; source-generator based adaptive cepstral compensation
(MCE-ACC) [18], [21]). Others have also considered alterna-
tive training methods such as multi-style training [8]. However,
multi-style training has been shown to be less effective than
a neutral trained system when operating in an open speaker
recognition task [19]. In general, however, these approaches
normally require either a preprocessing stage or collection of
stressed speech data for training in order to model the statistics
of the input stressed speech and to incorporate this knowledge
in the recognition system.

While these approaches have improved the recognition per-
formance, they are restricted to the specific stressed condition
or speaking style being addressed. A more general solution to
the problem of speech recognition under stress would be to im-
prove the signal modeling or parameterization stage as opposed
to compensating the feature observation sequence for the ef-
fects of stress. The ultimate goal would be to achieve a signal
modeling framework or robust features which are immune to
the speech variations due to stress. The majority of previous
studies on robust features, however, have focused on features
which are robust to noise [22]–[25]. An extensive summary of
speech recognition in noisy environments can be found in a re-
cent survey [26]. Moreover, the majority of features employed in
current speech recognition systems are based on the FFT power
spectrum due to its reported immunity to noise [27]. There have
been limited studies on robust features tailored to the effects of
speech understress. While research has been conducted on the
analysis of speech under stress [4], [5], [34] a number of re-
cent studies have begun to more extensively address the issue of
changes in speech production under stress [10], [11], and their
impact on speech systems [12], [1]. Depending on the type of
stress, it is known that fundamental frequency, duration and in-
tensity effects, glottal source, and vocal tract frequency structure

are all effected in different ways. The significance of parameter
variations with respect to neutral, as well as their relationship
with other stressed conditions have also been addressed. For
example, for speech under angry conditions, the distribution of
fundamental frequency expands greatly (width of distribution
more than doubles), the percentage of time spent in vowels and
the corresponding amount of energy increases significantly at
the expense of the percentage of time spent in consonants and
consonant energy, the glottal spectral slope becomes more flat
(more high frequency energy), and formant locations are almost
always statistically different from neutral (and many formant
bandwidths as well).

These factors clearly show that spectral structure is altered
when speech is produced under stress. Therefore, the focus of
this study is to evaluate the effectiveness of features which have
been shown to be robust to frequency dependent noise for the
purpose of recognition of stressed speech, and to propose alter-
native features that could improve stressed speech recognition.
In addition, since the majority of previous speech recognition
evaluations of power spectrum methods have targeted noisy en-
vironments, this study will also investigate the immunity of the
FFT power spectrum to stress, and contrasts its performance to
the linear prediction power spectrum. Finally, the effect of tra-
ditional parameter processing on the recognition performance is
studied and new parameter processing techniques are proposed
for further improving stressed speech recognition. A flow di-
agram of the stressed speech recognition framework is shown
in Fig. 3. Sources of speech under high stress or adverse en-
vironments due to task demands, emotion, or Lombard effect
are shown as effecting the input speech to the hidden Markov
model (HMM) recognizer. A summary of the speech features
considered in this study is shown on the left [(a) though (e)] of
Fig. 3. Finally, we emphasize that neutral speech data is used for
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Fig. 3. A flow diagram of the speech recognition under stress framework. Sources of speech under high stress or adverse environments are shown as inputto
the HMM speech recognizer. A summary of the speech features considered in this study is shown on the left [(a)–(e)]. Finally, neutral speech data is used for all
training evaluations (for each feature set). Round-robin open test evaluations are conducted for recognition of speech under angry, loud, Lombard effect, and actual
stressed conditions.

all training evaluations (for each feature set). Round-robin open
test evaluations are conducted for recognition of speech under
various stressed conditions.

The remainder of this paper is organized as follows. The data-
base employed in all of our evaluations is briefly summarized
in Section II. In Section III, we study the effectiveness of tradi-
tional as well as noise robust features in recognition of speech
under stress. In Section IV, we investigate the recognition per-
formance across individual frequency bands to determine fre-
quency regions less affected by stress. Based on these results,
we propose in Section V two new frequency scales which are
less sensitive to the effects of stress as compared to the tradi-
tional mel-frequency scale. In Section VI, we compare the per-
formance of linear prediction and FFT power spectrum based
features in the presence of stress. In Section VII, we summarize
the effect of various parameter processing methods to recog-
nition performance and propose new parameter processing ap-
proaches based on the variable impact of stress on speech classes
for improving recognition performance. A final summary and a
series of conclusions are drawn in Section VIII.

II. RECOGNIZER ANDDATABASE

The speech data employed in this study is a subset of the
SUSAS2 (Speech Under Simulated and Actual Stress) data-
base [9]. Approximately half of the SUSAS database consists
of styled data (such asnormal, angry, soft, loud, slow, fast,
clear) donated by the Lincoln Laboratory [8], and Lombard

2The SUSAS Stressed Speech Database from RSPL is available
from the Linguistics Data Consortium at the following web location:
http://morph.ldc.upenn.edu/Catalog/LDC99S78.html.

effect speech. Lombard effect speech was obtained by having
speakers listen to 85 dB SPL pink noise through headphones
while speaking (i.e., recordings are noise-free). A common vo-
cabulary set of 35 aircraft communication words make up over
95% of the data base. These words consist of mono- and multi-
syllabic words which are highly confusable. Examples include
/go-oh-no/, /wide-white/, and /six-fix/. Twelve tokens of each
word in the vocabulary were spoken by nine native American
speakers for the neutral conditions, and two tokens for each style
condition. This database has been employed extensively in the
study of how speech production and recognition varies when
speaking under stressed speech conditions [21].

To illustrate an example of the effects of stress on speech,
Fig. 2 shows time waveforms and speech spectrograms with for-
mant overlays for the word “south” spoken by a male speaker
in both neutral and angry stress conditions. For this example,
overall word duration decreased by 42%, while the voiced du-
ration is 218 ms for angry and 203 ms for neutral. The resulting
spectral response is more intense for the voiced speech section,
with a change in formant bandwidth (especially the second);
while only slight changes in overall formant location tracks were
noted. Finally, there is a clear change in overall spectral slope
(note significantly higher energy levels in high frequency por-
tion of spectrogram for theangry token).

In this study, all recognition evaluations are speaker-indepen-
dent, and consider only male speakers. A 30-word HMM-based
recognizer is formulated using a variable-state-size, left-to-right
model, with two continuous mixtures per state. The HMM
models are trained with neutral speech of eight speakers while
a ninth speaker is left for open testing. A total of ten tokens
per speaker are employed for training each neutral HMM word
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Fig. 4. Recognition performance of linear prediction power spectrum based static features in the presence of stress. The graph shows the recognitionrates of
neutral trained models tested with four speaking conditions for five different sets of features: LPC, OSALPC, LPCC, OSALPCC, and MFCC.

model resulting in 80 training tokens per word. The training and
testing are done in a round robin scheme to allow all speakers
and tokens to be tested in an open evaluation. In evaluating
each of the neutral trained HMM models, a total of 2160 tokens
are tested from the four speaking styles.

The last evaluation in this work employs actual stressed
speech from the SUSAS database. The actual speech under
stress data employed in this evaluation consists of speech pro-
duced during the completion of two types of subject motion-fear
tasks. The speakers produced speech while participating in two
amusement park rides (e.g., a traditional roller-coaster ride and
a free-fall ride consisting of a 130 ft vertical drop machine).
These two rides were chosen in an attempt to simulate the
sudden change in altitude or direction which could be experi-
enced in an aircraft cockpit under emergency conditions [9].

III. PERFORMANCE OFTRADITIONAL AND NOISE-ROBUST

FEATURES IN STRESS

The majority of previous research on robust features have ad-
dressed robustness in noisy or channel corrupted environments.
The goal in this section is to investigate the effectiveness of
previously proposed noise robust features in the recognition of

stressed speech. The first set of features evaluated in this study
are the one-sided autocorrelation linear prediction coefficients
(OSALPC) which were shown to outperform linear prediction
coefficients (LPC) as well as two other noise robust methods,
the short-time modified coherence method (SMC) and the
least-squares modified Yule Walker equations (LSMYWE),
in severe noisy conditions [25]. The second set of features
evaluated are the cepstral-based OSALPC, referred to as
OSALPCC in the tables and figures, which are compared to
the performance of traditional cepstral-based LPC and mel-fre-
quency scale coefficients (MFCC). Therefore, the recognition
performance of the following set of features will be compared
1) linear prediction coefficients (LPC), 2) linear prediction
cepstral coefficients (LPCC), 3) one-sided autocorrelation
linear prediction coefficients (OSALPC), 4) cepstral-based
OSALPC (OSALPCC), and 5) mel-scale filter bank cepstral
parameters (MFCC). We briefly discuss these features before
presenting the evaluation results.

The OSALPC technique is based on the application of the
windowed autocorrelation method of linear prediction to the
one-sided autocorrelation sequence as discussed in [28], [25].
The one-sided autocorrelation (OSA) is obtained by computing
M = N=2 autocorrelation lags from a speech frame of length
N . A Hamming window fromm = 0 toM is then applied to the
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Fig. 5. Recognition performance of linear prediction power spectrum based static and dynamic features in the presence of stress. The graph shows the recognition
rates of neutral trained models tested with four speaking conditions for five different sets of features: LPC, OSALPC, LPCC, cepstral-based OSALPC,and MFCC.

computed one-sided autocorrelation. This is followed by com-
puting the firstp+1 autocorrelation values of the one-sided au-
tocorrelation sequence, wherep is the prediction order. The au-
tocorrelation values are used as entries to the Levinson-Durbin
algorithm when estimating the AR parameters. Finally, cepstral
coefficients are computed from the linear parameters using the
recursive relation given below. Both LPC and OSALPC based
cepstral parameters are derived from the linear spectral param-
eters according to the following equation:

ck = ak + (1=k)
k�1X

i=1

iciak�i 1 � k � p (1)

whereak are either the LPC or the OSALPC coefficients,p is the
LPC analysis order, andck are the resulting cepstral coefficients.
The final set of parameters considered in this section are the
mel-frequency cepstral coefficients.

Next, we consider the performance of these features for
recognition of speech under stress. Two sets of evaluations are
presented. The first compares the performance of HMM models
trained with static features with no parameter processing while
the second compares the performance of models trained with
static and dynamic features in addition to parameter processing
such as cepstral liftering and cepstral mean normalization

(CMN). In both evaluations, the models are speaker-inde-
pendentneutral trained and are tested with speech from four
speaking conditions: neutral, angry, loud, and Lombard effect.

The results plotted in Figs. 4 (static) and 5 (static, and delta
with parameter processing) show that for both evaluations the
one-sided autocorrelation linear prediction coefficients (OS-
ALPC) performs better than traditional LPC for all three stress
conditions. OSALPC, however, does not achieve the highest
performance among the evaluated features. In fact, the three
remaining cepstral features, cepstral-based LPC, cepstral-based
OSALPC and MFCC, achieve higher recognition rates than
OSALPC. In addition, our results show that cepstral-based
OSALPC outperforms OSALPC by 12.36% across the four
speaking conditions for static features (see Fig. 4), and by
21.67% for static and dynamic feature trained models (see
Fig. 5).

The mel-frequency cepstral-based coefficients and the
cepstral-based linear prediction coefficients achieve the highest
recognition rates in both static and combined (static, dynamic,
with parameter processing) evaluations. Their performance
is very similar across all four speaking conditions as shown
in Figs. 4 and 5. Both features achieve a higher level of
recognition performance than cepstral-based OSALPC across
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Fig. 6. Recognition based on individual linearly spaced filter bank output energies. Neutral trained models are tested with neutral and angry speech. The plot
shows the results of both using a linear prediction and a FFT power spectrum.

all four speaking styles in both scenarios. In summary, these
results show that while noise-robust features such as OSALPC
may be robust in noise, they are not necessarily robust to the
presence of speaker stress. These results also suggest that
features based on cepstral analysis (LPCC, OSALPCC, MFCC)
clearly outperform direct linear predictive based features (LPC,
OSALPC), with overall recognition rates of 65%–69% versus
48%–53%. It is also recommended that due to the variability
across the three stress conditions, new feature sets are needed
for improved stressed speech recognition.

IV. SPEECHRECOGNITIONBASED ON FILTER BANK OUTPUT

Next, we consider the impact of stress for speech recognition
across frequency bands. Evaluations presented in Section III
identified the need for a new set of features more robust to
the presence of stress. Extensive studies have previously been
conducted to understand how various types of stress affect
human speech production. It is known, for example, that
spectral slope varies significantly across stressed speaking
styles. We therefore start by studying the impact of stress on
individual frequency bands. This is achieved by evaluating the
recognition performance based on the log-energy output of a 16
uniformly spaced filter bank. The ultimate goal is to formulate
a new frequency scale which is less sensitive to variations
caused by stress without degrading the performance of neutral
speech recognition. We note that a similar study proved to
be successful in the formulation of a set of accent sensitive
frequency features [29]. A speaker-independent HMM model
with variable state-duration is trained with neutral speech for
each of the 16 frequency bands of a word. The neutral trained
word models are tested with tokens of neutral and angry speech

from SUSAS. The results shown in Fig. 6 are across 30 words
spoken by nine speakers. The training and testing evaluations
are done twice, once employing an FFT power spectrum,
and a second employing a linear prediction spectrum. For
completeness, we include below a short description of how the
FFT and LP power spectra were computed.

A. FFT-Based Power Spectrum

The 8 kHz sampled signal,s(n), is first processed by a simple
preemphasis filter given by

H(z) = 1� 0:97z�1 (2)

to yield a roughly flat average speech spectrum. A 30-ms long
Hamming window (N = 240 samples) with 50% overlap
given by

w(n) = 0:54� 0:46 cos

�
2�n

N � 1

�

n = 0; 1; . . . ; N � 1 (3)

is applied to the preemphasized waveform. A 512-point
short-time Fourier transform is then computed for the succes-
sive overlapping windowed speech as given by

S(ejw) =
mX

n=m�N+1

s(n)w(m � n)e�jwn (4)

wherew(n) is a Hamming window of lengthN as given previ-
ously in (3). The magnitude squared power spectrum,jS(ejw)j2,
is then evaluated for frequencies ranging between 0 and 4 kHz.
To compute the FFT-based log energy values, we apply 16 uni-
formly spaced digital filter banks on the resulting FFT power
spectrum and compute the log energy in each band. The 16 log
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energy values corresponding to each frame are employed for
training as well as recognition.

B. LP-Based Power Spectrum

The speech signal,s(n), is preemphasized and windowed as
was previously described in (2) and (3). A 12th order linear
prediction coefficients,ai, are derived using the autocorrela-
tion method which computes the autocorrelation coefficients
and then applies the Levinson-Durbin recursion as described
in [3]. The magnitude squared power spectrum is then directly
computed from the LPC coefficients according to the following:

jH(ejw)j2 =
G2

j1�
Pp

i=1 aie
�jwij

2
(5)

wherep is the linear predictor filter order, andG2 is the gain
squared which is equivalent to the mean squared prediction error
[35] as given by

G2 = Rn(0)�

pX
i=1

aiRn(i) (6)

whereRn(0) is the zeroth autocorrelation coefficient,p is the
order of the linear prediction filter,ai is theith linear predic-
tion coefficient, andRn(i) is theith autocorrelation coefficient
for framen. The power spectrum is evaluated for frequencies
ranging between 0 and 4 kHz. To compute LP-based log energy
values, we apply 16 uniformly spaced digital filter banks on the
resulting linear prediction power spectrum and compute the log
energy in each band. These log energy values are employed for
training and recognition.

C. Recognition Results Based on Filter Bank Log Energy

As shown in Fig. 6, for both power spectral methods the
highest recognition performance for neutral speech (top two
lines) occurs around the first formant location (200–1000 Hz)
while the highest recognition of angry speech (lower two lines)
occurs in the neighborhood of the second formant location in
the range of 1250 to 1750 Hz. This may be attributed to the
observation that the second formant location is more closely
related to tongue movement, and that the variations in tongue
movement from neutral to stress conditions are less dramatic
than other changes such as excitation for example. Therefore,
since the second formant location experiences less variability
under stress, then it would be more reliable for stressed speech
recognition. Recall that since a mel-scale is almost linear for
frequencies below 1000 Hz and increases logarithmically above
1000 Hz, then the contribution of the second formant is de-em-
phasized compared to the first formant. This attribute makes the
mel-scale ideal for neutral speech recognition but not equally
effective for angry speech recognition. Therefore, a new fre-
quency scaling is suggested which would emphasize frequen-
cies around the first and second formant locations without de-
grading the recognition performance of neutral speech.

The results based on individual frequency band output ener-
gies do not conclusively determine which power spectral esti-
mation method (linear prediction versus FFT) would be more ro-
bust to stress. In a later section, we investigate the performance
of both spectral estimation methods in stress using whole-word
based models. In the following section, we introduce two new

frequency scale methods targeted at emphasizing the second for-
mant in both neutral and stressed speech.

V. MFCC VERSUSNEWLY PROPOSEDFREQUENCYSCALES

From the previous filter bank analysis, it became evident that
a new frequency scale is needed that would emphasize mid-fre-
quencies while de-emphasizing lower and higher frequencies.
Before proposing such a scale, we recall how traditional mel-
frequency cepstral parameters are computed and then derive two
new frequency scales that would achieve the desired frequency
partitioning.

The mel-frequency cepstral coefficients can be computed
from either the FFT or the LP power spectrum which were
derived earlier in Sections IV-A and IV-B. The main difference
between a mel-scale and a linear scale is that a linear scale
places equal emphasis on every part of the frequency scale
from zero up to the maximum representable frequency while a
mel frequency scale places the bins on a nonlinear frequency
scale. The bands in a mel-scale are made successively broader
with increasing frequency above 1 kHz to reflect the frequency
resolution of the human ear. To compute the mel-frequency
cepstral coefficients, we place a set of 16 triangular bandpass
filters on the desired power spectrum (either FFT or LP)
according to a mel frequency scale [38] and compute the log
energy in each band. Finally, a cosine transform is applied to
convert the set of log energies to a set ofcepstral coefficients.
Only 12 of these cepstral coefficients are kept for training and
recognition.

As was noted earlier, the mel-frequency scale is basically a
mapping of the linear frequency scale to a scale that resembles
the frequency resolution of the human ear. The general form of
this logarithmic mapping can be written as

y = C � log

�
1 +

f

k

�
; f = 0; . . . ; 4000 Hz (7)

wheref represents the linear frequency andy represents the
value of the transformed frequency. This equation can also be
written as

C =
y

log
�
1 + f

k

� : (8)

Furthermore, if we require that the mapped values of the linear
frequencies 0 and 4 kHz be equal to the mapped values of the
mel frequency scale, i.e., 0 and2595� log(1 + 4000=700), we
obtain the following equation relatingC to k

C =
2146:0645

log
�
1 + 4000

k

� : (9)

To compute the modified mel-scale cepstral coefficients, we
place a set of 16 triangular bandpass filters on the desired power
spectrum according to the modified mel-scale and compute the
log energy in each band. Once again, we apply a cosine trans-
form to convert the set of log energies to a set of cepstral co-
efficients. Therefore, the main difference between MFCC and
modified MFCC is in the frequency placement of the bandpass
filters.

The previously derived logarithmic mapping function did not
yield the desired effect of heavily concentrating the filters at



436 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 4, JULY 2000

Fig. 7. This graph shows three mapping functions: (a) mel-frequency, (b) modified mel-frequency, and (c) ExpoLog, employed to warp a linear scale in the
frequency domain.

mid-frequencies. To achieve this effect, we resort to an expo-
nential mapping function for linear frequencies between 0 and
2000 Hz, and a logarithmic mapping function for linear frequen-
cies between 2000 and 4000 Hz. The general form of these func-
tions can be written as

y1 = C1 � (10f=k1 � 1) 0 � f � 2000 Hz (10)

and

y2 = C2 � log

�
1 +

f

k2

�
2000 < f � 4000 Hz (11)

We can solve for the values ofC1; k1; C2; andk2 by solving
a set of equations. Once again, if we require that the mapped
values of the linear frequencies 0 and 4000 Hz be equal to the
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Fig. 8. Performance of the static features of three different frequency mapping functions: MFCC, M-MFCC, and ExpoLog, based on an FFT power spectrum.

mapped values of the mel scale, we obtain the following relation
betweenC2 andk2

C2 =
2146:0645

log
�
1 + 4000

k2

� : (12)

In addition, both the exponential and the logarithmic mapping
functions should be equal at the boundary for the linear fre-
quencyf = 2000 Hz. This results in the following equation:

C1 �

�
10

2000

k1 � 1
�
= C2 � log

�
1 +

2000

k2

�
: (13)

By using the same logarithmic mapping function derived earlier,
we obtain the following relation betweenC1 andK1

C1 �

�
10

2000

k
1 � 1

�
= 3070� log

�
1 +

2000

1000

�
(14)

= 1464:76: (15)

To compute the ExpoLog cepstral coefficients, we place a set
of 16 triangular bandpass filters on the desired power spectrum
according to the ExpoLog scale and compute the log energy in
each band. We apply a cosine transform to convert the set of
log energies to a set of cepstral coefficients. As noted before,
the main difference among the three scales is in the frequency
placement of the bandpass filters.

The modified mel-scale (M-MFCC), the ExpoLog scale, and
the traditional mel-scale are as follows:

mel-scale= 2595� log

�
1 +

f

700

�
(16)

Modified mel-scale= 3070� log

�
1 +

f

1000

�
(17)

ExpoLog=

8><
>:
700�

�
10

f

3988 � 1
�

0 � f � 2000 Hz

2595� log

�
1 +

f

700

�
2000 < f � 4000 Hz

(18)
These three frequency warping functions are plotted in Fig. 7
for comparison. They-axis represents the linear scale which
is warped to the desired scale according to the mapping func-
tion. Note how for the ExpoLog mapping the filter banks are
highly concentrated at mid frequencies while they are sparsely
distributed at frequencies below 750 Hz and above 2000 Hz.
In this section, we will contrast the performance of the three
warping functions using an FFT power spectrum. A comparison
of their performance using a linear prediction power spectrum
will be discussed in the following section.

Fig. 8 shows results from an evaluation of the three fre-
quency warping scales in obtaining cepstral parameters (MFCC,
M-MFCC, ExpoLog). Recognition rates are shown for neutral
models trained with static features and tested with speech from
neutral and three stressed speaking conditions. Each scaling
method was evaluated with a total of 2160 open test tokens.
When static features are employed for recognition, M-MFCC
outperforms traditional MFCC by 4.45% for angry, 1.85%
for loud, and 5.37% for Lombard effect. The performance of
ExpoLog static features also outperforms the mel-scale, for
all stress styles, with an average performance improvement
of 4.77%. Note that for angry and loud speech recognition,
ExpoLog exceeds MFCC by as much as 7.59% and 7.77%.
These results clearly show that with a slight modification in
the manner in which cepstral parameters are obtained, we can
improve recognition performance in stressed speech conditions.

VI. FAST FOURIERTRANSFORM VERSUSLINEAR PREDICTION

POWER SPECTRUM

In a recent survey of contemporary recognition systems by
Picone [27], it was established that fast Fourier transform based
spectral parameters are preferred to linear prediction based pa-
rameters since they are believed to be more immune to the pres-
ence of noise. Only a third of all the surveyed systems em-
ployed linear prediction derived parameters, the remainder used
FFT based processing. For this reason, a number of systems
rely on the FFT-based filter bank analysis. In order to com-
pare the immunity of each power spectral estimation to stress,
we conducted two recognition evaluations using parameters de-
rived from FFT and linear prediction power spectral estimation
methods. In addition, we performed an additional recognition
evaluation employing actual stressed speech produced in a noisy
environment in order to determine which power spectral estima-
tion method would be more robust to the presence of both noise
and stress. The noise in this case represents time varying me-
chanical and wind noise obtained from speech recorded during
amusement park roller coaster rides.

A. Performance in Noise-Free Simulated Stress Conditions

Our results show that contrary to their noise immunity,
FFT-based spectral parameters are not equally robust to the
presence of stress. Fig. 9 compares the performance of linear
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Fig. 9. This graph compares the performance of FFT versus linear prediction power spectrum derived features of neutral trained models using static features. The
performance of MFCC is compared to two different frequency scales.

prediction and FFT power spectrum based features. The dotted
line represents linear prediction based recognition and the
solid line represents FFT based recognition rates. For neutral
training and testing, FFT based parameters perform slightly
better than cepstral parameters derived from a linear prediction
spectrum. However, the linear prediction power spectrum
performs significantly better than the FFT power spectrum
when neutral trained models are tested with angry, loud, and
Lombard effect speech. We also point out that modified MFCC
(M-MFCC) and ExpoLog based features consistently outper-
formed MFCC parameters using both FFT and linear prediction
based spectra, but that linear prediction derived ExpoLog
produced the highest recognition rates across stressed styles
using static features. Next, we consider extending the static
features to include time derivatives and feature processing.
Time derivatives or delta parameters were shown to greatly
enhance the performance of stressed speech recognition [30].
Having established the ExpoLog frequency scale as being
superior to mel and modified-mel scales, we now consider time
derivatives and parameter processing. Fig. 10 also compares
both spectral methods. It shows the performance of ExpoLog
static and dynamic features with parameter processing. Once

Fig. 10. Performance of FFT and linear prediction power spectrum based
ExpoLog static and dynamic features.

again, the linear prediction based features outperform FFT by
an overall 3.94%. For angry speech recognition, the difference
in recognition is as high as 9.63%.

An error analysis was also conducted for linear prediction and
FFT derived ExpoLog cepstral parameters. For this evaluation,
the database was divided into confusable and nonconfusable
word sets as shown in Table I. For both linear prediction and
FFT power spectrum, the nonconfusable errors account for the
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TABLE I
A L IST OF THE30 WORD VOCABULARY EMPLOYED IN ALL EVALUATIONS. THIS

TABLE SHOWS THEGROUPING OFCONFUSABLE AND NONCONFUSABLEWORDS

TABLE II
PERFORMANCE OFFFT AND LINEAR PREDICTION POWER SPECTRUMBASED

FEATURES IN ACTUAL STRESSEDNOISY SPEECH

majority of errors in angry and loud speech recognition. For neu-
tral and Lombard conditions, both methods produced compa-
rable word-set error rates. Our findings suggest that the linear
prediction power spectrum mainly resolves nonconfusable er-
rors. The error rates for confusable words are comparable for
both FFT and linear prediction spectral methods.

B. Performance in Actual Noisy Stressful Conditions

Having established that the linear prediction power spectra
outperforms an FFT based power spectra in noise-free simulated
stress conditions, we now consider a second evaluation using ac-
tual noisy stressful speech from the SUSAS database. This eval-
uation is intended to determine which power spectral estimation
method is most effective when speech is subjected to a combina-
tion of noise and stress. The results, as summarized in Table II,
indicate that the linear prediction based features outperform the
FFT-based features not only for noise-free simulated stress con-
ditions but also for noisy actual stressed speech. We believe that
the spectral smoothing inherent in the linear prediction model
provides a more overall smooth set of parameters capable of
not representing the fine variations caused by excitation changes
(i.e., pitch structure) that exist under stressful conditions.

VII. PARAMETER PROCESSING

While it is desirable to formulate speech features which are
inherently robust to the variability of speech under stress, there
are a number of possible subsequent parameter processing
methods that could be used which have been shown to be effec-
tive for noise and communication channel effects. We note that
other methods such as stress equalization feature processing
(MCE-ACC [18], and others in [21]) have been shown to be
effective in reducing the impact of stress. However, such stress
equalization processing requires stress and/or word dependent
compensation terms. The goal in this section is to consider only
feature processing methods which do not require knowledge of
either word or phoneme class sequence content, or the type of
speaker stress. In this section, we consider the following three
parameter processing methods: preemphasis, liftering, and
cepstral mean normalization which have been widely used for

improved speech recognition and speaker identification. Here,
we evaluate their contribution to stressed speech recognition.

A. Fixed and Slowly-Varying Preemphasis

Previous analysis studies on stressed speech have shown that
the spectral structure and overall average spectral slope varies
for different speaking conditions [5], [21], [31]–[34]. In speech
recognition, a preemphasis filter is normally used to raise the
high frequency content by approximately 20 dB per decade.
The preemphasis filter has the effect of compressing the dy-
namic range in the frequency domain of the speech signal by
flattening the spectral tilt so as to improve linear modeling of
the formant structure. This is especially useful for voiced sec-
tions since they naturally have a negative spectral slope due to
physiological characteristics of the speech production. Since the
average spectral slope of the input speech is different for var-
ious stressed speaking styles, then in order to flatten the spec-
tral tilt, it is necessary to vary the filter parameters according to
the input speech. Therefore, we propose using an adaptive pre-
emphasizer where only the spectral slope of voiced speech is
adaptively flattened while the unvoiced speech sections are not
preemphasized. The adaptive preemphasizer is a slowly-varying
first order filter [36] given by

H(z) = 1� ânz
�1

whereâ
n
= r

n
(1)=r

n
(0). The variable filter coefficient is rep-

resented as a ratio of the first to the zeroth order lag autocorre-
lation parameters. The filter is applied to utterances both during
training and testing.

An evaluation of the MFCC features with preemphasis was
conducted across neutral and three stressed speaking conditions.
The slowly-varying preemphasis filter improved recognition of
angry speech by 2.41% and that of Lombard effect speech by
1.48%. The recognition of neutral speech dropped by 1% while
the same performance was achieved for loud speech. The overall
recognition performance was slightly improved by applying a
slowly-varying preemphasis.

B. Fixed and Variable Cepstral Mean Normalization

In a study of channel compensation techniques for speaker
identification, simple cepstral mean removal was the best
channel compensation method versus RASTA processing and
quadratic trend removal [37]. Cepstral mean normalization
or removal is a simple yet effective method which assumes
no knowledge about the environment and is employed for
reducing long term differences in channel characteristics.
The channel distortion is computed as a long-term cepstral
average by estimating the mean of each cepstral value over the
entire utterance. It is assumed that the speech signal is rich
in phonemic content, so that the estimated mean will reflect
only that spectral structure which is common to all observation
frames (i.e., frequency structure due to microphone or channel
effects). The channel effects are then removed by subtracting
this mean from the cepstral value in each frame.

A number of variations on CMN have also been used to
compensate for the variation of cepstral coefficients when
speech is produced with different speaking styles [2], [16].
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Fig. 11. Effect of preemphasis (fixed and variable), cepstral mean normalization (fixed and variable), time-derivative (� coefficients), and cepstral liftering on
the recognition performance of linear prediction based MFCC’s. Note, “FxdP” refers to “Fixed Preemphasis,” and� refers to time-derivative delta coefficients.

Since, the presence of stress impacts voiced and unvoiced
speech phonemes differently [5], [6], we propose computing
an overall separate cepstral mean for voiced and unvoiced
sections for each token under test instead of computing a single
mean across the entire utterance. This was achieved by first
using a simple voiced/unvoiced speech detection approach.
The average voiced cepstral mean is then subtracted from
voiced sections, and the unvoiced cepstral mean is subtracted
from unvoiced sections. Unlike applying a compensation
vector, this method does not require prior analysis of neutral
and stress speech data since it computes the mean during the
parameterization stage.

A series of the recognition evaluations was performed using
MFCC static parameters, with various configuration of delta
parameters, fixed or variable preemphasis, and fixed or variable
cepstral mean normalization (CMN). The results in Fig. 11
show that variable cepstral mean normalization performs
better than traditional CMN when no delta parameters are
employed. The recognition of angry, loud, and Lombard effect
speech is improved respectively by 4.08%, 3.52% and 1.48%.
Variable CMN is most effective with static features and fixed

preemphasis. If time derivatives are included in the feature set,
variable CMN is not as effective.

C. Cepstral Liftering

The last feature processing method considered is cepstral lif-
tering. Cepstral liftering is a weighting technique applied to cep-
stral coefficients in order to reduce the spectral slope or the un-
desirable broadband noise components of the spectrum, which
affect low order cepstral parameters, while retaining the essen-
tial characteristics of the formant structure. The low-order cep-
stral coefficients are believed to be primarily sensitive to overall
spectral slope, variations in transmission, speaker characteris-
tics, or vocal efforts. The higher order cepstral coefficients rep-
resent fine spectral structure and are therefore more sensitive to
noise and the artifacts of the LPC analysis. The cepstral liftering
applied here is given by

c
0

n
=

�
1 +

L

2
sin

�n

L

�
cn

whereL was set to 12.
Cepstral liftering was also evaluated using MFCC parameters

for neutral and three stressed speech conditions. A summary of
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the results is shown in Fig. 11. Our evaluations show that when
cepstral liftering is employed with time derivative parameters
and cepstral mean normalization, it has no effect on the recog-
nition performance of neutral trained models tested with neutral,
angry, loud, and Lombard conditions.

VIII. C ONCLUSION

In this study, we have considered the effectiveness of noise
robust features for recognition of speech under stress, and have
proposed alternative feature extraction methods for improved
stressed speech recognition. Noise robust features, such as
the one-sided autocorrelation linear prediction (OSALPC)
and cepstral-based OSALPC features, were compared to
traditional features such as linear prediction coefficients (LPC),
LPC-based cepstral (LPCC) parameters, and mel-frequency
cepstral (MFCC) parameters for stressed speech recognition.
Our investigation showed that noise robust features are not
necessarily robust to the presence of stress since the effect of
noise on the acoustic speech signal is different than the effect
of stress.

In order to formulate features less sensitive to the effects
of stress, we studied the recognition performance of stressed
speech based on individual frequency bands. This evaluation
showed that frequencies near the second formant location
achieve the highest recognition rates for angry speech, while
frequencies near the first formant location achieve the highest
recognition rates for neutral speech. From these observa-
tions, we formulated two new feature extraction methods, a
modified mel-frequency scale (M-MFCC), and an exponen-
tial-logarithmic scale (ExpoLog) for improved stressed speech
recognition. Both methods were shown to outperform the
traditional mel-scale for recognition of speech under a variety
of stressed styles.

Since the majority of current commercial speech recognition
systems are based on an FFT power spectrum due to its re-
ported immunity to noise, this study compared the performance
of FFT-based features to linear prediction based power spectrum
features in the presence of stress. Contrary to the FFT’s immu-
nity to noise, the FFT power spectrum was less robust to stress.
Features based on the linear prediction power spectrum outper-
formed the FFT-based features not only for noise-free simulated
stress conditions but also for speech under actual noisy stressful
conditions.

Finally, the effect of parameter processing on stressed speech
recognition was evaluated. The evaluations considered the ef-
fect of liftering, fixed versus variable preemphasis, and fixed
versus variable cepstral mean normalization (CMN) on recog-
nition performance. It was determined that cepstral liftering had
no effect on stressed speech recognition performance. Variable
preemphasis slightly improved recognition over fixed preem-
phasis. Finally, variable CMN improved recognition over fixed
CMN by 3% when static parameters are employed for recog-
nition. Their performance is not equally effective when time
derivative parameters are included. It may also be of interest
to comment on how these results could be extended to large
vocabulary continuous speech recognition systems. As Table III
shows, the phoneme coverage for the vocabulary of SUSAS

TABLE III
A LIST OF THEPHONEMES IN THESUSAS DATABASE USING THE Advanced

Research Projects Agency uppercase alphabet notation (ARPAbet)

covers many but not all phonemes in English. Until more exten-
sive stress speech databases are available, we can only suggest
that at least at the phone level, recognition performance should
be comparable. Further investigations are needed to determine
changes in language models and sentence structure when rec-
ognizing continuous speech under stress. The final recommen-
dation from this study is that for effective speech recognition
performance in both neutral and stressed conditions, speech rec-
ognizers should 1) employ features derived from a linear predic-
tion as opposed to an FFT based power spectrum and 2) use a
modified frequency partition such as M-MFCC or ExpoLog if
possible. In addition, variable preemphasis and variable CMN
both improve stressed speech recognition performance, but that
their impact is reduced if time derivative parameters are also
included.
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