IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 6, JUNE 2004

A Comparative Study of
Two Boolean Formulations of
FPGA Detailed Routing Constraints

Gi-Joon Nam, Member, IEEE, Fadi Aloul,
Karem A. Sakallah, Fellow, IEEE, and Rob A. Rutenbar, Fellow, IEEE

Abstract—This paper presents empirical analyses of two Boolean Satisfiability (SAT) formulations of FPGA (Field Programmable
Gate Array) detailed routing constraints. Boolean SAT-based routing transforms a routing problem into a Boolean SAT instance by
rendering geometric routing constraints as an atomic Boolean function. The generated Boolean function is satisfiable if and only if the
corresponding routing is possible. Two different Boolean SAT-based routing models are analyzed: the track-based and the route-
basedrouting constraint model. The track-based routing model transforms a routing task into a net-to-track assignment problem,
whereas the route-based routing model reduces it into a routability-checking problem with explicitly enumerated set of detailed routes
for nets. In both models, routing constraints are represented as CNF Boolean Satisfiability clauses. Through comparative experiments,
we demonstrate that the route-based formulation yields an easier-to-evaluate and more scalable routability Boolean function than the
track-based method. This is empirical evidence that a smart/efficient Boolean formulation can achieve significant performance

improvement in real-world applications.

Index Terms—Boolean Satisfiability, FPGAs, routing physical design.

1 INTRODUCTION

THE Boolean Satisfiability problem (SAT) involves finding
an assignment to binary variables that satisfies a given
set of Boolean constraints. Typically, these constraints are
presented in CNF (Conjunctive Normal Form), where each
constraint is a disjunction of literals (either positive or
negative instances of the binary variables). The Boolean
Satisfiability is one of the most fundamental problems in
computer science and a variety of algorithms—including
the well-known search-based SAT algorithms—have been
proposed. The search-based Boolean SAT solvers explore
the Boolean space of the input variables to find just one
satisfying assignment, or search exhaustively to conclude
that no satisfying assignment exists. Most search-based
solvers are basically variations of the Davis-Putnam
procedure [7], [8] and the best well-known version is based
on a backtracking search algorithm that, at each node in the
search tree, elects an assignment and prunes subsequent
search by iteratively applying unit clause and pure literal
rules [31]. These algorithmic advances led to the appearance
of numerous systematic and complete Boolean SAT solvers
such as GRASP [18], RelSAT [3], SATO [32], Li’s solver [17],

o G.-J. Nam is with IBM Austin Research Lab, Bldg. 904-6H006, 1140
Burnet Rd., Austin, TX 78758. E-mail: gnam@us.ibm.com.

e F. Aloul is with the School of Computer Engineering, American
University, Dubai, UAE. E-mail: faloul@aud.edu.

o KA. Sakallah is with the Department of Electrical Engineering and
Computer Science, 1301 Beal Ave., Ann Arbor, MI 48109.
E-mail: karem@umich.edu.

o R.A. Rutenbar is with the Department of Electrical and Computer
Engineering, 5000 Forbes Ave., Pittsburgh, PA 15213.
E-mail: rutenbar@ece.cmu.edu.

Manuscript received 6 June 2003; revised 6 Nov. 2003; accepted 16 Jan. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0057-0603.

0018-9340/04/$20.00 © 2004 IEEE

BerkMin [11], Chaff [20], and made remarkable contribu-
tions to various fields including EDA (Electronic Design
Automation). A variety of problems in the EDA domain—
combinational equivalence checking [13], automatic test
pattern generation [14], processor verification [30], bounded
model checking [5], FPGA detailed routing [21], etc.—were
already tackled with efficient Boolean SAT solvers and
showed great promises.

In this paper, we attack one of EDA problems; FPGA
detailed routing via Boolean SAT. This method is called a
Boolean SAT-based routing. Two Boolean SAT-based
routing models are presented: the track-based and the
route-based routing constraint model. In both models,
routing constraints are represented as CNF Boolean
Satisfiability clauses. Through comparative experiments,
we demonstrate that the route-based formulation yields an
easier-to-evaluate and more scalable routability Boolean
function than the track-based method. This is empirical
evidence that a smart/efficient Boolean formulation can
achieve significant performance improvement in real-world
applications. We also show that the route-based FPGA SAT
routing produces very competitive routing results com-
pared to traditional one-net-at-a-time routing approaches.

The rest of the paper is organized as follows: Section 2
reviews FPGA routing terminologies, conventional FPGA
routing methods, and the basic concept of Boolean SAT-based
routing as preliminaries. In Section 3, the track-based and
route-based routing formulations are described in detail. The
comparative experimental results and analyses are presented
in Section 4 and the conclusion will follow in Section 5.

2 PRELIMINARIES

Routing is the final process of VLSI design implementation
and is concerned with assigning appropriate routing

Published by the IEEE Computer Society

Connection
Block

. | -
s E S
Block < Block

}

CLB TH
= "Block Block [—
= S —x
Routi Wi
T e T e
(a)
i il
In 3—| —3
Out b
CLB CLB — 7?
Out In 0—| —o0
m i

(b) (©)

Fig. 1. FPGA routing configuration and its modeling. (a) FPGA routing
configuration. (b) Connect block model. Input logic pin: Fc = W = 4.
Output logic pin: FC = 2. (c) Switching block model: Fc = 3.

resources (i.e., metal wire segments and vias) to each net in
the placed netlist to establish the required interconnections
[25]. In this paper, we focus on Boolean SAT-based detailed
routing formulations on FPGAs (Field Programmable Gate
Arrays). To facilitate understanding of the rest of the paper,
we first introduce the modeling of FPGA routing architec-
ture and conventional FPGA routing methods. Then, the
general concept of Boolean SAT-based routing formulation
is presented.

2.1 FPGA Architecture and Associated Terminology
A Field-Programmable Gate Array (FPGA) is a program-
mable logic device that can implement a variety of circuit
functions. An FPGA consists of an array of prefabricated
logic blocks and wiring resources which can be easily
configured by end users. The routing configuration of an
FPGA is depicted in Fig. 1. FPGA can be modeled as a two-
dimensional array of Configurable Logic Blocks (CLBs),
Connection Blocks (C-Blocks), and Switching Blocks (S-Blocks).
CLBs are the places where any arbitrary functionality of a
circuit is implemented with combinational and sequential
logics. A vertical (horizontal) channel is defined as a set of
tracks between two consecutive columns (rows) of CLBs;
wire segments connecting CLB pins are aligned into tracks
running in the channel. C-blocks and S-blocks contain
programmable switches and form the routing resources:
C-blocks connect CLB pins to channel tracks; S-blocks are
surrounded by C-blocks and allow signals to either pass
straight through or to make 90-degree turns. Thus, C-blocks
and S-blocks form the basic routing resources. 1/O blocks
reside on the boundary of the array. The routing capacity of
a given FPGA architecture is conveniently expressed by
three parameters, W, Fc, Fs [6]. The channel width W is the
number of tracks in a vertical or horizontal channel. The
C-block flexibility Fc (<= W) is the number of tracks in
adjacent channels that each CLB logic pin may connect to.
The S-block flexibility Fs is the total number of other tracks

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 6, JUNE 2004

(a) (b)

Fig. 2. Routing graph representation in conventional FPGA routers. The
bold lines in (a) represent metal wire segments. (a) FPGA circuit
segment. (b) Routing graph.

that each wire segment entering an S-block can connect to.
For the example FPGA in Fig. 1b and Fig. 1c, these
parameters are W = 4, Fc = 2 for output pins, Fc = 4 for
input pins, and Fs = 3. For the more detailed FPGA
architectures, please refer to [6].

A net is a set of CLB and/or I/O pins that must be
electrically connected and consists of a source (driver) pin
and one or more sink pins. In case a net has 7 sink pins, this
net can be further decomposed into n different (source pin,
sink pin) pairs which we call two-pin connections. A global
route of a two-pin connection is a specification of routing
regions that forms an uninterrupted alternating sequence of
C and S-blocks. A global route of a two-pin connection is
further decomposed into one or more horizontal and/or
vertical net-segments, each of which is an alternating
sequence of C and S-blocks within a single channel. The
detailed route of a two-pin connection is a set of wire
segments and routing switches within the restricted routing
area determined by the global router. Thus, a detailed
router has to assign wire segments and corresponding
routing switches following the topology specified by the
global router such that the detailed routes of different nets
do not overlap.

2.2 Overview of Conventional FPGA Detailed
Routers

Most conventional FPGA routers start by constructing a
routing graph whose topology mirrors the complete FPGA
routing architecture. Fig. 2a shows part of the routing fabric
in an FPGA. It has three logic pins (P1, P2, and P3) and five
transistors that provide programmable interconnection
points (PIPs) between wire segments (metal conductors)
shown in bold lines. Fig. 2b illustrates the corresponding
routing graphs: Logic pins and wire segments are repre-
sented as vertices that are connected by edges which
represent the programmable transistors. Thus, paths in this
graph correspond to feasible routes in the FPGA. Using this
graph, conventional routers use sophisticated cost functions
to search for routing solutions (i.e., paths in the graph) for
all the nets in a circuit.

For example, PathFinder [19], which is one of the most
advanced FPGA routers in the literature, uses an iterative
algorithm that attempts to balance the competing goals of
eliminating congestion and minimizing delay of critical
paths. This algorithm initially routes each net using the
shortest (i.e., lowest cost) path algorithm. The cost of arouting
resource consists of two components: overusage history and
its propagation delay. At the first iteration, any routing
resources can be shared among different nets. However, any

NAM ET AL.: A COMPARATIVE STUDY OF TWO BOOLEAN FORMULATIONS OF FPGA DETAILED ROUTING CONSTRAINTS 3

resource sharing (overusage) affects the cost of the corre-
sponding resource in the subsequent iteration. By gradually
increasing the cost of overused resources, PathFinder forces
nets to take alternative detour routes within permissible
timing delay budgets. Eventually, only the timing critical net
is assigned high cost resources to avoid any detouring. One
iteration of the router consists of sequential ripping up and
rerouting all the nets in the circuit.

If a routing solution exists for a given circuit and
placement, Pathfinder will eventually converge toward it
after a sufficient number of iterations. If the problem is
unroutable, however, the algorithm may not converge and
execution must be aborted after a suitable time limit. This
convergence problem is inherent to all conventional one-net-
at-a-time routing algorithms: These algorithms cannot
decide the routability of the given circuit placement unless
they explore all the possible ordering of nets. Even when
only a few nets are not routed in a circuit, these algorithms
must resort to time-consuming rip-up-reroute procedures
which may or may not lead to a feasible routing solution.

2.3 Boolean SAT-Based VLSI Routing

Boolean SAT-based routing transforms the geometric
routing task into a Boolean Satisfiability (SAT) problem by
rendering the routing constraints as an atomic Boolean
function. The generated Boolean function is satisfiable (has
an assignment of input variables such that the generated
function evaluates to constant “1”) if and only if the design
is routable. Any satisfying assignment to the binary
variables of the Boolean function represents a legal routing
solution. Moreover, by demonstrating the absence of
satisfying assignments for a generated routing Boolean
function, we can prove that no routing solution exists.! A
particular virtue of this method is that much of the
geometric complexity of the interaction among objects
(i.e., nets in routing) is hidden and rendered implicitly in
the Boolean constraint functions so that all the objects are
considered simultaneously. In other words, Boolean-based
routing is a concurrent method allowing higher degrees of
freedom for each object in contrast to the conventional one-
net-at-a-time approach.

In spite of these unique properties, the use of Boolean
Satisfiability to solve VLSI routing is not as common as
other methods using integer linear programming or heur-
istic search. To the best of our knowledge, Szymanski [27]
was the first to establish a link between geometric layouts
and Boolean formulations. In this work, he proves that a
general dogleg channel routing problem belongs to the
NP-complete class by reducing the 3-satisfiability problem to
it, i.e., given a 3-satisfiability formula, he showed how to
construct an instance of the channel routing problem that
can be routed in a certain number of tracks if and only if the
original formula is satisfiable. Capitalizing on this idea,
Devadas [9] devised a formulation of conventional 2-layer
channel routing as a generic Boolean SAT problem by
encoding the information present in a channel’s vertical
constraint graph, horizontal constraint graph, and the
anticipated channel width into Boolean constraint formulas
on a set of n-bit Boolean vectors, one per net to be routed.
Thus, if the generated Boolean formula is satisfiable, then
any satisfying assignment corresponds to a feasible routing

1. Therefore, for this application, we need a complete systematic solver
rather than a stochastic solver such as WalkSAT [24].

4 A= AAy = 24,+4,

c B= BB, = 2B, +B,

C= C,C, =2C+C,

b ! D= DD, =2D,+D,
B =
¢ C¢C — B B

(@) (b) (c)
E=(A#C)A(A#D)A(A%B) A
(C#D) A
(D #B)

V=@A>B)A(A>C)A
(D>B)A(D>C)

o - v oW
—

Ty
4]

(9

Fig. 3. Boolean SAT modeling of channel routing problem. (a) Channel
to be routed. (b) Binary encoding of track numbers. (c) Vertical
Constraint Graph (VCG). (d) Exclusivity constraint. (e) vertical ordering
constraint. (f) Channel routability constraint. (g) Two feasible solutions.

of the channel; otherwise (i.e., the function is proven to be
unsatisfiable) the channel is provably unroutable with the
anticipated channel width. Later, Sulimma and Kuntz [26]
showed that the grid-based channel routing with the
restricted two-layer model is a fixed-parameter tractable
problem which can be solved in linear time with the fixed
channel length. The idea was to record a net which leaves
each track per column while sweeping columns from left to
right in the channel. To represent this information, they
used MDDs [12].

The core idea of applying a Boolean SAT technique to a
simple routing problem is illustrated in Fig. 3. It is a channel
routing problem with four nets labeled A, B, C, and D. The
goal is to assign a track number to each net such that
distinct nets are nonoverlapping both horizontally and
vertically. Assuming a 4-track channel, each net needs two
binary variables (for example, A;, A, for net A) to encode its
track number (Fig. 3b). Two types of constraints are defined
to guarantee a legal channel routing solution. First, an
exclusivity constraint insures that nets whose horizontal
spans overlap are assigned to different tracks. This
constraint is typically represented by a horizontal constraint
graph and can be conveniently expressed as a Boolean
function (Fig. 3d). The other constraint insures that, for any
two nets with pins in the same column on opposite sides of
the channel, the net associated with the top pin is assigned a
higher track number. This constraint is conveniently
captured by the vertical constraint graph (VCG) shown in
Fig. 3c, which in turn is equivalent to the Boolean function V
of Fig. 3e. The conjunction (AND) of these two functions is
the complete routability constraint Boolean function R for
the channel (Fig. 3f). Any binary assignment to the variable
Ay, Ay, ..., Dy that makes R =1 corresponds to a feasible

routing solution and completely specifies the net-to-track
mapping. Two feasible assignments are shown in Fig. 3g.

Boolean-based routing, in general, has the following
advantages over conventional one-net-at-a-time routing
approaches:

e Simultaneous net embedding: The conventional
one-net-at-a-time routing approach is notorious for
being dependent on net ordering because previously
routed nets act as obstacles to the yet-to-be-routed
nets. In Boolean-based routing, all routing con-
straints are considered concurrently by a Boolean
SAT solver, making net ordering irrelevant.

e Routability decision: The unsatisfiability of the
routing Boolean constraint function, as proven by a
Boolean SAT solver, directly implies that there is no
feasible routing solution with the given placement
and global routing configuration. On the other hand,
any assignment to the Boolean variable vector that
satisfies the routability Boolean function corre-
sponds to a complete feasible detailed routing
solution.

However, Boolean SAT-based routing—similarly to
other mathematical formulation-based methods such as
ILP (Integer Linear Programming)>—is known to be less
scalable than conventional routing approaches. In other
words, the size of problems that can be attacked by Boolean
SAT-based routing is smaller than that of conventional
routing. This is why conventional heuristic search-based
methods are more popular in practice.

3 BooLEAN SAT-BASeD FPGA DETAILED
ROUTING FORMULATIONS

In this section, we review two SAT formulations which are
transformed from the exactly same FPGA routing instance.
These are called the track-based and the route-based routing
constraint model, respectively.

3.1 Formulation 1: Track-Based Routing Constraint

Model

The track-based routing constraint model transforms FPGA
detailed routing problem into a net-to-track assignment
problem [21]. Each net is represented by a set of “track”
variables that indicate the indices of the horizontal and
vertical tracks over which the net might be routed. A
routability Boolean function is then defined over these
variables to enforce two types of constraints:

e Connectivity constraints to insure the existence of a
conductive path for each two-pin connection
through the sequence of C and S-blocks specified
by a global router. Basically, these constraints model
the routing flexibility available in the C and S-blocks.

e Exclusivity constraints to guarantee that electrically
distinct nets with overlapping vertical or horizontal
spans in the same channel are assigned to different
tracks. These constraints are essentially instances of
channel routing problems in Fig. 3.

2. We have performed another comparative analysis work between SAT-
based and ILP-based FPGA routing methods. Please refer to [21] for
detailed results.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 6, JUNE 2004

4 Net A: [pin 1 of CLB(2,0), C-block(1,0), S-block(1,1),
C-block(1,2), S-block(1,3), C-block(2,3),
pin 2 of CLB(2,2)]
3
5 Net B: [pin 3 of CLB(0,0), C-block(1,0), S-block(1,1),
|) C-block(0,1), pin 0 of CLB(0,2)]
=
E Net C: [pin 0 of CLB(0,4), C-block(0,3), S-block(1,3),
8 | C-block(1,2), pin 3 of CLB(0,3)]
0 enum {0, 1,2} AV, AH, // Net A track variables
BV, BH, // Net B track variables
CH, CV;, /] Net C track variables
Row Index
(a)
Conn(A) = [(AV=0)v (AV=1)v(AV=2)] A // Vertical channel 1
[AV=AH] A /1 S-block(1,3)
[((AH=0)v(AH=1) v (AH =2)] /I Horizontal channel 3
Conn(B) = [(BV=0)v (BV=1)v(BV=2)] A /I Vertical channel 1
[BV = BH] A 11 S-block(1,1)
[(BH=0)v(BH=1) v (BH=2)] // Horizontal channel 1
Conn(C) = [(CH=0)v (CH=1)v(CH=2)] A // Horizontal channel 3

[CH=CV] A
[(CV=0)v(CV=1)v(CV=2)]

(b)

Excl(VI) = (AV#BV) A
(AV#£CV)

()

1/ S-block(1,3)
1/ Vertical channel 1

Fig. 4. Example of track-based detailed routing constraint formulation.
Prior to constraint evaluation, the integer-valued net variables are
encoded using binary variables and the constraints are transformed to
CNF. (a) Global routing configuration for nets A, B, and C and
corresponding variable declarations. (b) Connectivity constraints.
(c) Exclusivity constraints.

This formulation is named the track-based routing con-
straint model to emphasize the fact that it is defined over a
set of variables that represent the tracks available for
routing.

An example that illustrates this formulation is shown in
Fig. 4 for an FPGA with W = Fc = Fs = 3. Each net is
assumed to have been assigned a global route (sequence of
C and S-blocks) by a global router (Fig. 4a). Track variables
are then created for each net to model its possible assign-
ment to specific tracks in each of the channels specified by
its global route. For instance, two track variables are
associated with net A, AV and AH to indicate their track
assignments in vertical channel 1 and horizontal channel 3,
respectively. These track variables are multivalued with a
domain {0,...,W —1}. In the actual formulation, each of
these multivalued variables is encoded by [log, W7 Boolean
variables using the standard decimal-to-binary encoding.

The construction of the connectivity and exclusivity
constraints is depicted in Fig. 4b. The connectivity constraint
fora given netrestricts the net’s track variables to those values
that insure a continuous conductive path between the net’s
pins. For example, net B can be assigned to any track in
vertical channel 1 as well as horizontal channel 1 aslong as the
same track number is used in both channels. The constraint of
the same track number reflects the requirement through S-
block which has a flexibility Fs = 3. The exclusivity
constraints in this example insure that net pairs (A, B)
and (A, C) are assigned to different track numbers in
vertical channel 1. Fig. 5 shows the actual CNF representa-
tion of connectivity and exclusivity constraints between two
3-valued track variables. The number of CNF clauses
required to express a connectivity constraint type-1 (i.e., a

NAM ET AL.: A COMPARATIVE STUDY OF TWO BOOLEAN FORMULATIONS OF FPGA DETAILED ROUTING CONSTRAINTS 5

fX) = (X=0)v(X=1)v(X=2)

= X=3)
X = [XpX,]=2X;+ X,

= KXo X))
Y = [YyY,1=2Y, + Y, o

= XovX)

(a) (b)
JX6 1) = (X=Y)

= [Xp=YylAalX,=Y,]

= [(X) > V) A (Y = X AL, = V) A (Y, 5 X))

= [(XgV V) AXgA YT AL, VY A X, A Y]

(c)

X Y) = (X=Y)

= (X=0AY=0)v(X=LAY=1)v(X=2A7V=2)

= (X=0AY=0)A(X=TAY=1)A(X=2AY=2)
= Xov X, VYoV YDA vX Vv YD AXgv X vYvY))

(d)

Fig. 5. CNG representation of track-based routing constraints. (a) Track
variable X, Y, and corresponding Boolean variables. (b) Connectivity
constraint (type 1) in CNF. (c) Connectivity constraint (type 2) in CNF.
(d) Exclusivity constraint in CNF.

constraint from C-block) is dependent on the actual value of
W and hard to formulate simply in one equation. For most
cases, a type-1 connectivity constraint requires fewer than
three CNF clauses, each having at most 2[log, W] literals.
The type-2 connectivity constraint from S-block whose form
is an equality between two track variables, however, can be
expressed with exactly 2[log, W7 2-literal CNF clauses. In
general, exclusivity constraints, which are basically inequal-
ities between track variables, can be represented with
W CNF clauses, each having 2[log, W] literals. The Boolean
function that models the routability of these three nets is
simply the conjunction of all the connectivity and exclusiv-
ity requirements:

R(X) = Conn(A) A Conn(B) A Excl(H1),

where X is a vector of Boolean variables that encode the
track variables AH, AV,...,CH, and CV.

3.2 Formulation 2: Route-Based Routing Constraint
Model

In the route-based formulation [22], the routability of a
netlist is directly modeled in terms of Boolean variables that
represent all of the detailed routes admissible by the given
global routing solution. This choice of variables leads to a
simpler set of constraints than those described above and
enables the solution of larger routing instances. This
formulation is illustrated in Fig. 6. Within the global routing
region specified for net A, for example, there are only three
possible detailed routes, indicated by the three Boolean
variables AR0O, AR1, and AR2. This is in contrast to the track-
based formulation where net A was encoded by two
Boolean vector AV and AH, which consists of two Boolean
variables each, to capture the exactly same set of detailed
routes. A similar set of routes and corresponding route
variables is created for net B and C. A particular route is
included in the final routing solution if its corresponding
Boolean variable is assigned the value 1 and is excluded as a

Net A: [pin 1 of CLB(2,0), C-block(1,0), S-block(1,1),
C-block(1,2), S-block(1,3), C-block(2,3),
pin 2 of CLB(2,2)]

Net B: [pin 3 of CLB(0,0), C-block(1,0), S-block(1,1),
C-block(0,1), pin 0 of CLB(0,2)]

Net C: [pin 0 of CLB(0,4), C-block(0,3), S-block(1,3),
C-block(1,2), pin 3 of CLB(0,3)]

Column Index

bool ARO, ARI, AR2, // Net A route variables
BRO, BRI, BR2, // Net B route variables
CRO, CRI, CR2; // Net C route variables

Row Index
(@)
Live(A) = (AROvVARI v AR2) /I At least one detailed route for net A must be selected
Live(B) = (BROv BRI v BR2) J/ Ditto for net B,
Live(C) = (CROv CRI v CR2) // and net C.
(b)

Excl(Resource(l, 1,0)) = (AROv BRO)
Excl(Resource(l, 1,1)) = (ARl v BRI)
Excl(Resource(l, 1,2)) = (AR2v BR2)

1/ Track 0 of C-block(1,1)
// Track 1 of C-block(1,1)
// Track 2 of C-block(1,1)
// Track 0 of C-block(1,2)
// Track 1 of C-block(1,2)
1/ Track 2 of C-block(1,2)

Excl(Resource(l, 2,0)) = (AROv CRO)
Excl(Resource(l,2, 1)) = (ARI v CRI)
Excl(Resource(l,2,2)) = (AR2v CR2)

(c)

Fig. 6. Example of route-based formulation. A Boolean variable is
assigned for each detailed route enumerated for a net. (a) Global routing
configuration for nets A, B, and C with the three possible detailed routes
for net A. The detailed routes for each net are represented by a set of
Boolean route variables. (b) Liveness constraints. (c) Exclusivity
constraints.

routing option otherwise. With this choice of variables, the
FPGA detailed routing problem is transformed from a track
assignment to a “routability checking” problem. The
routability of a netlist in terms of these “route” variables
can now be expressed with two types of constraints:

e Liveness constraints to ensure that each two-pin
connection has at least one detailed route selected in
the final routing solution. The liveness constraint for
a given two-pin connection has a simple form,
namely, an OR over the connection’s Fc route
variables (see Fig. 6b). For a netlist with n two-pin
connections, liveness constraints yield a set of n CNF
clauses, each containing Fc positive literals.

o Exclusivity constraints to guarantee that electrically
distinct nets with overlapping vertical or horizontal
spans in the same channel are assigned to different
tracks. These constraints are semantically identical to
those described earlier for the track-based formula-
tion, but have a much simpler CNF representation
(see Fig. 6¢). For example, Excl(Resource(1,1,0)) =
(—=AR0 V —BRO) indicates that the routing resource,
tack segment 0 of C-block (1, 1), can only be used by
either detailed route 0 of net A or detailed route 0 of
net B, but not both. In general, if k different detailed
routes from different nets are competing for the
same routing resource, a set of k(k — 1)/2 exclusivity
constraints is created to insure that at most one of
those detailed routes is assigned to that resource.
Each of those constraints, in turn, is a simple CNF
clause consisting of two complemented literals.

Since each two-pin connection forms a complete path from
a source pin to a sink pin, no further constraint is needed to
stitch them together into a single multipin net.

The routability of a netlist for a given placement and
global routing configuration is expressed by a single
Boolean function which is the conjunction of all liveness
and exclusivity constraints:

Routable(X) =
N Live;(X)A N Exclj(X)
1<i<n 1<j<r ’

where, assuming there are n nets and r routing resources in
total, Live; (X) is aliveness constraint of two-pin connection 4,
Ezxcl;(X) is an exclusivity constraint of routing resource j,
and X is a vector of Boolean route variables that represent the
possible detailed routes for each of the nets. With F'e = W and
F's = 3 architectural assumption, the route-based formula-
tion is truly equivalent to the track-based formulation since
both of them capture exactly the same set of detailed routes
within given global routing regions. In addition, for most
circuits, it requires fewer variables and is expressed in terms
of a simpler set of CNF constraints.

Currently, the route-based formulation is able to con-
sider only a FPGA routing architecture with a S-block
flexibility Fs = 3. With a more flexible S-block routing
architecture (Fs > 3), the number of detailed routes
enumerated will grow exponentially. Thus, the number of
Boolean variables required in the route-based formulation
also grows exponentially, which makes the method in-
applicable. Although the majority of current FPGA routing
architecture employs Fs = 3, we need to show a practical
solution with routing architectures of Fs >= 3. As a matter of
fact, the route-based formulation doesn’t have to capture all
the admissible detailed routes within a given global routing
region. Instead, multiple detailed routes from several global
routing solutions can be considered for each net simulta-
neously. In other words, for each net, first generate a set of
possible global routing solutions. For each global routing
solution, we can pick a couple of promising detailed routes”
with the global region. Then, all the enumerated detailed
routes from various global routing solutions become a set of
candidate detailed routes for a net under consideration. The
benefits of this scheme are two-fold: 1) More timing
appropriate detailed routes can be chosen for critical nets
and 2) the detailed router is able to escape from a decision,
particularly a bad one, made from global routing solutions.
This remains as future work.

For a fair comparison with the track-based formulation,
however, we only consider all the admissible detailed
routes within global routing regions for experiments.

4 EXPERIMENTAL RESULTS

We experimentally tested the effectiveness of the route-
based formulation method on the standard MCNC bench-
mark circuits. The relevant properties of these circuits,
listed in Table 1, include the size of the target FPGA CLB
arrays (column “X x Y”), the actual number of CLBs used by
the circuit (“#CLBs”), the number of multipin nets
(“#Nets”), the corresponding number of two-pin connec-
tions that are routed individually (“#2pin Conns”), and the

3. This is possible in real FPGAs because, typically, there are various
lengths of wire segments per channel.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 6, JUNE 2004

TABLE 1
Benchmark Circuits

Cireuit XxY #CLBs #Nets éiz;"s S’:g;;,?:g‘(‘)flln
9symml 9x9 70 79 259 10.99
alu2| 12x12 143 153 510 8.46
apex7 | 1l1x11 77 126 300 5.25
C499| 10x 10 74 115 312 6.00
C880| 14x14 174 234 656 6.59
C1355| 10x10 74 115 312 6.31
example2 | 19x19 120 205 444 5.86
k2| 19x19 358 404 1257 8.15
term1 8x8 54 88 202 4.24
too_large| 13x13 148 186 519 7.12
vda| 15x15 208 225 722 8.26
Average * * 176 499 *

average number of channel segments per 2-pin connection
(column “Ave. Channel Segs/2pin-Net”). The average
number of channel segments per two-pin connection is
important because, in track-based formulation, the number
of Boolean variables required to formulate routing pro-
blems is dependent on this factor.

The first experiment we conducted compares the
performance of the track and route-based detailed routing
formulations. Using the placements and global routing
solutions generated by VPR [4], routing functions from the
track and route-based formulations were produced for
decreasing values of the channel width W until we found an
unroutable routing instance. These routability Boolean
functions were subsequently evaluated by the GRASP
SAT solver [18].

Table 2 summarizes the results of the last two “itera-
tions” (satisfiable and unsatisfiable) for five of the 11 bench-
mark circuits: the minimum channel width for which the
benchmark circuit was still routable and the maximum
channel width for which it was proven to be unroutable. For
the remaining benchmarks not listed in Table 2, the
minimum width for routability could not be found using
the track-based formulation; the performance of the route-
based formulation on these benchmarks is discussed later.

The columns in this table record, for each benchmark
circuit, the following data: the assumed channel width
(“W”), the number of Boolean variables and CNF clauses in
the routability function (“V” and “CL”), the number of
decisions and conflicts during the SAT search for a solution
(“Dec” and “Conf”), and the CPU time in seconds spent for
actual SAT search by GRASP (“Time”). Column “R?”
indicates whether the routability function had a feasible
solution; the computational advantage of the route-based
formulation is shown in column “Speedup” which is the
ratio of the CPU times taken by GRASP to solve the
respective routability functions. The experiment was con-
ducted on a Pentium III PC running Debian Linux 2.2.18
with 512 MB of physical memory. The GRASP SAT solver
was configured to use the “DLCS” decision heuristic.

We can observe immediately that typical solution times
of the route-based formulation are much faster than the
track-based method, achieving 66x speedups on average.
The actual numbers of decisions and conflicts during the
SAT search validate the achieved speedups, as shown in
Fig. 7. The graph illustrates the normalized values of
decisions, conflicts, and SAT solving time of route-based
formulation when those of track-based formulation are

NAM ET AL.: A COMPARATIVE STUDY OF TWO BOOLEAN FORMULATIONS OF FPGA DETAILED ROUTING CONSTRAINTS 7

TABLE 2
Performance Comparison between Two Boolean Formulations
of FPGA Detailed Routing: Time Unit Is in Seconds

cire. |w Track-based Formulation Route-based Formulation R? Speed
v CL Dec | Conf |Time[s]|| V CL Dec | Conf |Timel[s] up
9sym 6 || 2604 36994| 11883 9910(471.12|| 1554 29119| 347 0 1.94Yes 243
5 || 2604| 32450| 13896| 11687| 521.39|| 1295 24309 344 272 6.11{| No 85
5 (| 1983| 15358 606 220/ 3.63|| 1500| 11695 568 0 1.51||Yes 2|
apex 4 || 1322 10940 445 336| 3.59|| 1200{ 9416| 293| 191 1.38|| No 3
6 || 3603| 41023| 1347| 708| 24.12|| 2664| 27684 993 1| 5.65||Yes 4
cxam 5 || 3603| 36344|12613| 11063| 531.42|| 2220| 23144| 1331| 1245 25.16||No 21
e 4 746 3964 322 134/ 0.51|| 808 3290| 207 6| 0.11||Yes 5
3 746 3517 71 48| 0.19|| 606| 2518 12| 12| 0.03]|No 6|
499 6 || 2070| 22470| 11381| 10141| 255.34(| 1872| 18870 395 18 1.51|| Yes 169
5 || 2070 19908| 11755| 10696| 322.76|| 1560| 15777 372| 355 4.66||No 69

considered 100. In both formulations, the number of
Boolean variables of the routability functions can be
computed in the following way: Assuming that the bench-
mark circuit has a total n two-pin connections, the total
number of Boolean variables of the route-based formulation
is exactly nW, whereas it is approximatelyn[log, W|m in
the track-based formulation, where m is the average
number of channels each global route of a two-pin
connection passes through (i.e., the last column in Table 1).
Fig. 8 also empirically demonstrates that the route-based
formulation generates the routability function with fewer
variables and clauses except term1. The circuit terml turns
out to have a smallest m value (average number of channel
segments per 2-pin connection) leading to fewer variables
with the track-based formulation.

The numbers of variables and clauses, however, are not
sufficient to explain the order-of-magnitude reduction in
runtime. The analysis of clause size distribution (Fig. 9)
reveals that the route-based formulation is mostly com-
posed of 2-literal CNF clauses (more than 95 percent on
average), whereas the track-based formulation is composed
mostly of clauses containing three or more literals (i.e., less
than 20 percent of 2-literal CNFs). It is a well-known fact
that 2-SAT has P class complexity while 3-SAT or higher
SAT problems are NP-complete [10]. This is because, in
2-SAT, it is feasible to construct an implication graph to
deduce solutions efficiently, which is impossible with
higher order of SAT problems. Accordingly, the perfor-

100
920
80
70

60 F— @ Dec
50 — m Conf
40 0 Time
30
20
10
0 o | T , <|_E
o o % x © © % > © %
N N A AL 9 ¢ A2 N o o
\\é\& \\é\é\ & ¢ & &S S PP
of of S & & & <8 ¢
< (2

Fig. 7. The normalized number of decisions, conflicts, and normalized
SAT solving time of route-based formulation over those of track-based
formulation. That is, 100 represent the decision, conflict, and runtime of
the track-based formulation.

120

100 B

80 -

[=)%
mCL

60 -

40 |

20

[
© o i) » o
QY Q7 AY A < 3
& & F o Q\éb Q\éb
S S R R &S S
s - & &
< <

Sl ©)
2 ¢ :
QU -

R
N S S

Fig. 8. The normalized number of CNF variable and classes of route-
based formulation over those of track-based formulation. Again, 100
represents the number of variables and clauses of the corresponding
track-based formulation.

mance gain can be justified by the CNF clauses structure of
the route-based constraint function, which is close to a
2-SAT problem (albeit it is not exactly 2-SAT due to liveness
constraint CNF clauses). Overall, this experiment suggests
that it is more straightforward to find solutions for Boolean
SAT instances from the route-based formulation.

In Table 3, we show the performance of the route-based
formulation method over routing problems where the track-
based method was not able to solve them within a 24 hour
limit—i.e., no conclusion was drawn whether given circuits
are routable or not. Each column heading has the same
meaning as those in Table 2. “G.Time” and “S.Time”
represent “Boolean SAT generation time” and “Solution
search time,” all in seconds. The number of decisions and
conflicts are larger than those numbers in Table 2,
suggesting that these are harder SAT instances. For only
two cases—benchmark k2 with W = 9 and W = 8—even the
route-based method could not solve the routability Boolean
SAT problems. One interesting observation is that it is most
difficult to draw the routability decision (either routable or
unroutable) with marginal track counts per channel W. This
is not surprising because, when a target FPGA has ample
routing tracks per channel, the corresponding FPGA
detailed routing is an easy one due to abundant routing
resources. Similarly, if there are significantly insufficient
routing resources, it should be straightforward to prove
unroutability.

Finally, in Table 4, we compare the performance of various
FPGA detailed routers, including our route-based formula-

@ Track
H Route

2-CNF %

Fig. 9. the ratio comparison of size 2 CNF clauses over total CNF
clauses.

TABLE 3
The Route-Based Formulation Results for Cases where the
Track-Based One Was Unable to Solve

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 6, JUNE 2004

TABLE 4
Track Number Comparison with Other Conventional Routers

Placer SPLACE ALTOR [23]

Circuit | W | #Vars #Clause #Dec #Conf | G.Time [s] | S.Time [s] | R? G Router VPR[4] FPR
alu? 8 4080 83902 986 2 87 302 Yes SROUT | TRACER | IKMB | GBP 1]
7 3570 73478 9014 968 1.66 916| No D. Router || R-SAT | VPR |SEGA[16]| [28] [1s] 121 [29]

T80 | 7 7592 61745 1143 81 T4T 1382 Yes
6 3936 33018 30327 39546 21| 5236470] No Osymml < g 6 7 6 8 o o
5 3280 44291 612 598 1.02 2183 No alu2 7 6 9 8 9 9 1 10
K2 11 13827 | 372694 4199 16 303 28061 Yes apexT 5 5 6 6 3 10 11 9
0 12570 338927 7902 3T 801 T86.08 | Yes
g 1313 305160 NC N.C 719 NC|[NC oxam2 @ - 6 7 10 u 13 13
8 10056 271393 N.C N.C 633 NC| NC terml 4 4 6 5 7 8 10 8
7 8799 237626 17823 9873 5.81 4870.56 No too_lig 7 7 9 8 9 10 12 11
oo Trg | 7 3633 50373 328 Iy 1T 863 Yes
g 3114 43251 1669 1184 093 59.01 No 12 L i n 1 14 15 17 17
5 2595 36129 1163 1122 0.82 3693 No vda 8 3 10 10 11 12 13 13
vda 9 6498 | 130097 1387 3 3.00 3178 Yes C499 6 6 7 # * * *
8 5776 116522 25924 24861 2721 614620 Yes C50 7 5 3 = - =
7 5054 102547 23333 22098 228 1238350| No
. - - C1355 6 6 7 * % o
a. N.C stands for “Not Complete”. Thus, the data is not available.
Total TW || 72 68 85 81 93 102 115 109
a. “*” indicates the related data is not available. For “Total W™ calculation, we used the corre

tion shown under the “R-SAT” heading. The table shows the
number of tracks required to successfully route each bench-
mark circuit with the specified placement and global routing
programs under the same track minimization scenario. The
most meaningful comparison in this table is between the
route-based method, VPR, and SEGA because they differ only
in how detailed routing was done. The data for the rest of the
routers are provided only for reference. Our route-based
routing method shows the second best results among them,
next to VPR [4] while beating the rest of them. Interestingly
however, for four cases out of those five circuits (shaded cells
in the table), our method proved unroutability, whereas VPR
was able to successfully route them with the same numbers of
tracks per channel. This difference is due to the fact that our
method performs only detailed routing, while VPR does both
global and detailed routing. Thus, VPR can change the global
routing configuration easily when it cannot find a detailed
routing solution. A more fair comparison is to extract the final
detailed routing results from VPR and use them as a global
routing solution for the route-based detailed routing for-
mulation. Indeed, the route-based formulation method was
able to produce exactly the same results as VPR except k2 with
nine tracks per channel where it couldn’t find a solution after
24 hours.

5 CONCLUSION

In this paper, we conducted comparative analyses of two
Boolean SAT-based FPGA detailed routing methods: track-
based and route-based formulations. The route-based
formulation differs from the track-based formulation
because the routability constraints are expressed in terms
of a set of “route” variables, each of which designated a
specific detailed route for a given net. The experiments
demonstrate that the route-based formulation yields an
easier to evaluate and more scalable routability Boolean
function than the track-based method. This fact shows that
a more efficient Boolean formulation can achieve signifi-
cantly better solution search performance improvement in
real-world applications.

ACKNOWLEDGMENTS

This work was conducted while Gi-Joon Nam and Fadi
Aloul were at the University of Michigan and was

sponding track values of the route-based formulations.

supported by the US National Science Foundation under

grant 9404632.

REFERENCES

[1] M.J. Alexander, J.P. Cohoon, J.L. Ganley, and G. Robins,
“Performance-Oriented Placement and Routing for Field-Pro-
grammable Gate Arrays,” Proc. European Design Automation Conf.,
1995.

[2] M.]. Alexander and G. Robins, “New Performance-Driven FPGA
Routing Algorithms,” IEEE Trans. Computer-Aided Design, vol. 15,
no. 12, pp. 1505-1517, Dec. 1996.

[3] R. Bayardo Jr. and R. Schrag, “Using CSP Look-Back Techniques
to Solve Real World SAT Instances,” Proc. 14th Nat'l Conf. Artificial
Intelligence, pp. 203-208, 1997.

[4] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research,” Proc. Seventh Ann. Workshop
Field Programmable Logic and Applications, pp. 213-222, 1997.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” Proc. Tools and Algorithms for the
Construction and Analysis of Systems, year?

[6] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field Programmable
Gate Arrays. Boston: Kluwer Academic, 1992.

[717 M. Davis and H. Putnam, “A Computing Procedure for
Quantification Theory,” J. ACM, vol. 7, pp. 201-215, 1960.

[8] M. Davis, G. Longeman, and D. Loveland, “A Machine Program
for Theorem Proving,” Comm. ACM, vol. 5, no. 7, 1962.

[9] S. Devadas, “Optimal Layout via Boolean Satisfiability,” Proc.
ACMY/IEEE Int’l Conf. Computer-Aided Design, pp. 294-297, 1989.

[10] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[11] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT-
solver,” Proc. Design, Automation, and Test in Europe (DATE '02,
pp- 142-149, Mar. 2002.

[12] T.Y.K.Kam and R.K. Brayton, “Multi-Valued Decision Diagrams,”
Technical Report UCB/ERL M90/125, Univ. of California at
Berkeley, 1990.

[13] W. Kunz and D. Stoffel, Reasoning in Boolean Networks. Kluwer
Academic, 1997.

[14] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiabil-
ity,” IEEE Trans. Computer-Aided Design, vol. 11, no. 1, pp. 4-15,
1992.

[15] Y.-S. Lee and A. Wu, “A Performance and Routability Driven
Router for FPGAs Considering Path Delays,” Proc. Design
Automation Conf., pp. 557-561, 1995.

[16] G.Lemieux and S. Brown, “A Detailed Router for Allocating Wire
Segments in FPGAs,” Proc. ACM Physical Design Workshop, Apr.
1993.

[17] C.-M. Li, “Integrating Equivalency Reasoning into Davis-Putnam
Procedure,” Proc. Nat'l Conf. Artificial Intelligence, 2000.

NAM ET AL.: A COMPARATIVE STUDY OF TWO BOOLEAN FORMULATIONS OF FPGA DETAILED ROUTING CONSTRAINTS 9

[18]]J.P. Marques-Silva and K. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability,” IEEE Trans. Computers, vol. 48,
no. 5, May 1999.

[19] L.E. McMurchie and C. Ebeling, “PathFinder: A Negotiation-
Based Path-Driven Router for FPGAs,” Proc. ACM/IEEE Int’l
Symp. Field Programmable Gate Arrays, Feb. 1995.

[20] M. Moskewicz, C. Madigan, Y. Zhang, and S. Malik, “Chaff:
Engineering an Efficient SAT Solver,” Proc. Design Automation
Conf., pp. 530-535, 2001.

[21] G.-J. Nam, K.A. Sakallah, and R.A. Rutenbar, “A New FPGA
Detailed Routing Approach via Search-Based Boolean Satisfia-
bility,” IEEE Trans. Computer-Aided Design, vol. 21, no. 6, June
2002.

[22] G.-J.Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative
Study of Two Boolean Formulations of FPGA Detailed Routing
Constraints,” Proc. Int’l Symp. Physical Design, 2001.

[23] J. Rose, W. Snelgrove, and Z. Vranesic, “ALTOR: An Automatic
Standard Cell Layout Program,” Proc. Canadian Conf. Very Large
Scale Integration, pp. 169-173, Nov. 1985.

[24] B. Selman, H. Kautz, and B. Cohen, “Local Search Strategies for
Satisfiability Testing,” DIMACS Series in Discrete Math. and
Theoretical Computer Science, vol. 26, pp. 521-532, 1996.

[25] N. Sherwani, Algorithms for VLSI Physical Design Automation.
Boston: Kluwer Academic, 2000.

[26] K. Sulimma and W. Kunz, “An Exact Algorithm for Solving
Difficult Detailed Routing Problems,” Proc. ACM/IEEE Int’l Symp.
Physical Design, Apr. 2001.

[27] T. Szymanski, “Dogleg Channel Routing Is NP-Complete,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 4, no. 1, 1985.

[28] S. Wilton, “Architectures and Algorithms for Field-Programmable
Gate Arrays with Embedded Memories,” PhD dissertation, Univ.
of Toronto, 1997.

[29] Y.-L. Wu and M. Marek-Sadowska, “Routing for Array-Type
FPGAs,” IEEE Trans. Computer-Aided Design, vol. 16, no. 5, pp. 506-
518, May 1997.

[30] M.V. Velev and R.E. Bryant, “Superscalar Processor Verification
Using Efficient Reductions from the Logic of Equality with
Uninterpreted Functions to Propositional Logic,”, Proc. Correct
Hardware Design and Verification Methods, pp. 37-53, year?

[31] R. Zabih and D.A. Mcallester, “A Rearrangement Search Strategy
for Determining Propositional Satisfiability,” Proc. Nat'l Conf.
Artificial Intelligence, pp. 155-160, 1988.

[32] H. Zhang, “SATO: An Efficient Propositional Prover,” Proc. Int'l
Conf. Automated Deduction, pp. 272-275, 1997.

Gi-Joon Nam received the BS degree in
computer engineering from Seoul National Uni-
versity, Seoul, Korea, in 1995 and the MS and
PhD degrees in computer science and engineer-
ing from the University of Michigan, Ann Arbor,
in 1999 and 2001, respectively. Since August
2001, he has been with IBM Austin Research
and is currently working in the physical design
space, particularly placement/routing and timing
closure tools. His general interests are compu-
ter-aided design algorithms, combinatorial optimizations, VLS| system
designs, and computer architecture. He received a first prize (and the
best paper application) in the VLSI Design Contest of the 2001 ACM/
IEEE Design Automation Conference. In 2004, he is serving on the
technical program committee for the ACM/IEEE International sympo-
sium on Physical Design (ISPD), Great Lake Symposium on VLSI
(GLSVLSI), International Conference on Computer Design (ICCD), and
IEEE International System-On-Chip Conference (SOCC). He is a
member of the |IEEE.

Fadi Aloul received the BS degree in electrical
engineering summa cum laude from Lawrence
Technological University (LTU) in 1997 and the
MS and PhD degrees in computer science and
b engineering from the University of Michigan, Ann
Arbor, in 1999 and 2003, respectively. He was a
postdoctoral research fellow at the University of
W Michigan during the summer of 2003. He is
currently an assistant professor of computer
engineering at the American University in Dubai.
He has received a number of awards, including the Agere/SRC research
fellowship, GANN fellowship, and the LTU presidential scholarship. He
is currently serving on the technical program committee of the 2004
International Workshop on Logic Synthesis (IWLS). He has published
more than 25 papers in international journals, conferences, and
workshops. His current research interests are in the area of computer-
aided design, verification, and Boolean satisfiability.

Karem A. Sakallah received the BE degree in
electrical engineering from the American Uni-
versity of Beirut, Beirut, Lebanon, in 1975 and
the MSEE and PhD degrees in electrical and
computer engineering from Carnegie Mellon
University, Pittsburgh, Pennsylvania, in 1977
and 1981, respectively. In 1981, he was with the
Department of Electrical Engineering at Carne-
gie Mellon University as a visiting assistant

— professor. From 1982 to 1988, he was with the
Semlconductor Engmeermg Computer-Aided Design Group at Digital
Equipment Corporation in Hudson, Massachusetts, where he headed
the Analysis and Simulation Advanced Development Team. Since
September 1988, he has been with the University of Michigan, Ann
Arbor, as a professor of electrical engineering and computer science.
From September 1994 to March 1995, he was with the Cadence
Berkeley Laboratory in Berkeley, California, on a six-month sabbatical
leave. He has authored or coauthored more than 130 papers and has
presented seminars and tutorials at many professional meetings and
various industrial sites. His research interests include the area of
computer-aided design with emphasis on simulation, timing verification
and optimal clocking, logic and layout synthesis, Boolean satisfiability,
and hardware and software verification. He is currently an associate
editor of the IEEE Transactions on Computers. He is a fellow of the IEEE
and a member of the ACM and Sigma Xi.

Rob A. Rutenbar received the PhD degree from
the University of Michigan in 1984 and subse-
quently joined the faculty of Carnegie Mellon
University (CMU). He is currently the Stephen J.
Jatras Professor of Electrical and Computer
Engineering and (by courtesy) of Computer
Science. From 1993 to 1998, he was director
of the CMU Center for Electronic Design
Automation. He cofounded Neolinear, Inc., in
1998 and currently serves as its chief scientist.
He is the founding director of the MARCO/DARPA Center for Circuit &
System Solutions (C2S2), a national consortium of US universities
chartered in 2001 to explore long-term solutions for next-generation
circuit challenges. His research interests focus on circuit and layout
synthesis algorithms for mixed-signal ASICs, for large digital ICs. In
1987, he received a Presidential Young Investigator Award from the US
National Science Foundation. He has won Best/Distinguished Paper
awards from the Design Automation Conference (1987 and 2002), the
International Conference on CAD (1991), and the Semiconductor
Research Corporation TECHCON (1993, 2000, and 2003). In 2001,
he was cowinner of the Semiconductor Research Corporation’s Aristotle
Award for contributions to graduate education. He is a fellow of the IEEE
and a member of the ACM and Eta Kappa Nu.

> For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

