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Abstract

In this work, a comparative study about the incorporation of silver nanoparticles (AgNPs) into thin films is presented

using two alternative methods, the in situ synthesis process and the layer-by-layer embedding deposition technique.

The influence of several parameters such as color of the films, thickness evolution, thermal post-treatment, or

distribution of the AgNPs along the coatings has been studied. Thermal post-treatment was used to induce the

formation of hydrogel-like AgNPs-loaded thin films. Cross-sectional transmission electron microscopy micrographs,

atomic force microscopy images, and UV-vis spectra reveal significant differences in the size and distribution of the

AgNPs into the films as well as the maximal absorbance and wavelength position of the localized surface plasmon

resonance absorption bands before and after thermal post-treatment. This work contributes for a better understanding

of these two approaches for the incorporation of AgNPs into thin films using wet chemistry.
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Background
The development of nanostructured advanced materials

based on the incorporation of metal nanoparticles has

attracted the attention of the researchers [1-5]. The

optical spectra of the metal nanostructures show an at-

tractive plasmon resonance band, known as localized

surface plasmon resonance (LSPR), which occurs when

the conductive electrons in metal nanostructures collec-

tively oscillate as a result of their interaction with the inci-

dent electromagnetic radiation [6,7]. Such nanoplasmonic

properties of the metal nanostructures are being investi-

gated because of their unique or improved antibacterial,

catalytic, electronic, or photonics properties [8-15]. In

addition, their excellent optical properties make them

ideal to use in optical fiber sensors in detecting physical or

chemical parameters [16,17].

A wide variety of methodologies are focused on the

synthesis of metal nanoparticles with a fine control of

the resultant morphology [18-24]. Of all them, chemical

reduction methods from metal salts (i.e., AgNO3 or

HAuCl4) are one of the most studied using adequate

protective and reducing agents due to their simplicity

[25-29]. Very recently, the high versatility of the poly

(acrylic acid, sodium salt) (PAA) has been demonstrated

as a protective agent of the silver nanoparticles because

of the possibility of obtaining multicolor silver nano-

particles with a high stability in time by controlling the

variable molar ratio concentration between protective

and reducing agents [30]. This weak polyelectrolyte

(PAA) presents carboxylate and carboxylic acid groups

at a suitable pH, being of great interest for the synthesis

of metal nanoparticles. Specifically, the carboxylate

groups of the PAA can bind silver cations, forming posi-

tively charged complexes, and a further reduction of the

complexes to silver nanoparticles takes place [31-33].

One approach for incorporating metallic nanoparticles

into thin films is based on in situ chemical reduction of

silver cations to zero valent nanoparticles into a previ-

ously fabricated host matrices used as a template. This

in situ synthesis process of metallic nanoparticles can be

applied to several well-known deposition techniques such

as sol-gel process [34], electrospinning [35], or layer-by-

layer (LbL) assembly [36]. Among of all them, LbL assem-

bly shows a higher versatility for tailoring nanoparticles
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due to the use of polyelectrolytes with specific functional

groups [37]. Furthermore, a thermal post-treatment of the

films makes possible the fabrication of chemically stable

hydrogels [35] because a covalent cross-link via amide

bonds between the polymeric chains of the polyelectro-

lytes has been induced [38-40] with a considerable im-

provement of their mechanical stability.

In this work, two weak polyelectrolytes, poly(allylamine

hydrochloride) (PAH) as a cationic polyelectrolyte and

PAA as an anionic polyelectrolyte, have been chosen to

build the multilayer structure. The pH-dependent behav-

ior of the PAA makes possible to control the proportion

of carboxylate and carboxylic acid groups [41-44]. The

carboxylate groups are responsible of the electrostatic

attraction with the positive groups of the PAH, form-

ing ion pairs to build sequentially adsorbed multilayers

in the LbL assembly. In addition, the carboxylic acid

groups are known as nanoreactor host sites which are

available for a subsequent metal ion exchange with the

proton of the acid groups. More specifically, the car-

boxylic acid groups are responsible of binding silver

cations via metal ion exchange (loading solution).

Once silver ions have been immobilized in the films,

a chemical reduction of the silver ions to silver nanoparti-

cles (AgNPs) takes place when the films are immersed in

the reducing solution. Several approaches have been pre-

sented in the bibliography using different loading and re-

duction agents as well as weak or strong polyelectrolytes

[45-49]. Nevertheless, weak polyelectrolyte LbL templates

(such as PAH and PAA) offer the additional advantage

of an adjustable pH-dependent degree of ionization,

which is a key parameter when in situ synthesis process

(ISS) approach is used.

Alternatively, AgNPs-loaded LbL films can be built up

using polyelectrolyte-capped metal nanoparticles. The

use of PAA as a protective agent of the silver nanoparti-

cles (PAA-AgNPs) plays a key role for a further incor-

poration into LbL films [30]. The carboxylate groups at

a specific pH value are used to build the sequentially

adsorbed multilayer structure with a cationic polyelec-

trolyte, preserving their aggregation of the AgNPs into

the LbL films [50]. Henceforward, this approach of a

successive incorporation of AgNPs of a specific morph-

ology into LbL films will be referred as layer-by-layer

embedding (LbL-E) deposition technique.

In this work, a comparative study about the synthesis

and incorporation of AgNPs into thin films obtained by

layer-by-layer assembly is presented using two alterna-

tive chemical methods. The first methodology is the ISS

which is based on a first step of thin film fabrication, and

then a second step where the synthesis of silver nanoparti-

cles into the films is performed. The second methodology

is the LbL-E deposition technique which follows a differ-

ent order because firstly silver nanoparticles of a specific

shape are synthesized, and then their incorporation into

thin films using the LbL assembly is performed. Although

both processes use the same reagents, remarkable differ-

ences related to the size, distribution, or maximal wave-

length position of the LSPR band have been observed.

Additionally, a thermal post-treatment was performed to

fabricate stable hydrogel films with a better chemical sta-

bility via cross-link of the polymeric chains. This compara-

tive study can be useful to the further design of advanced

hybrid coatings based on metallic nanoparticles and poly-

meric materials.

Methods
Materials

Poly(allylamine hydrochloride) (Mw 56,000), poly(acrylic

acid, sodium salt) 35 wt.% solution in water (PAA) (Mw

15,000), silver nitrate solution (> 99% titration, 0.1 N

AgNO3), and dimethylamine borane complex (DMAB)

were purchased from Sigma-Aldrich (St. Louis, MO,

USA) and used without any further purification. Aque-

ous solutions of 0.01 M of both PAH and PAA were pre-

pared using ultrapure deionized water (18.2 MΩ) and

adjusted to pH values 7.0 and 9.0 by the addition of a

few drops of HCl or NaOH 1 M.

Fabrication of the thin films

All the thin films have been fabricated using a 3-axis

Cartesian robot from Nadetech Innovations SL (Sarriguren,

Spain). The LbL assembly was performed by sequentially

exposing the glass slides to cationic and anionic polyelec-

trolytes with an immersion time of 2 min. A rinsing step in

deionized water was performed between the two polyelec-

trolyte baths. The combination of a cationic monolayer

with an anionic monolayer is called bilayer. More details of

the LbL assembly can be found elsewhere [37].

In situ synthesis of the silver nanoparticles

This process starts with a first step of a multilayer coat-

ing fabrication using the LbL assembly of cationic (PAH)

and anionic (PAA) polyelectrolytes. A second step is

where the ISS of the AgNPs into the polymeric coating

was carried out.

The polymeric thin films are firstly immersed in an

aqueous solution of silver nitrate (AgNO3 0.01 N) at

room temperature for 5 min, removed, and rinsed with

ultrapure water. Then, once the silver ions have been in-

corporated into films via ion exchange, a further in situ

chemical reduction of the silver cations (Ag+) to silver

nanoparticles (Ag0) was performed at room temperature.

The films are immersed in an aqueous solution of

dimethylamine borane complex (DMAB 0.01 N) for

5 min, removed, and rinsed with ultrapure water.
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Layer-by-layer embedding deposition technique

This synthesis process is based on a first step of synthe-

sis of silver nanoparticles with a desired shape, and then

a second step where a further incorporation of the syn-

thesized silver nanoparticles into a thin film using the

LbL-E deposition technique is performed.

Silver nanoparticles have been synthesized at room

temperature via chemical reduction process of an aque-

ous solution of silver precursor (AgNO3) with an aque-

ous solution of reducing agent (DMAB). More details of

the synthesis can be found elsewhere [30]. In LbL-E, the

PAA functionalized AgNPs were used as polyanion

(PAA-AgNPs) in the LbL protocol, as it was described in

‘Fabrication of the thin films’ section.

Thermal post-treatment

A thermal post-treatment was carried out in the resultant

LbL films using temperatures from 50°C to 200°C in a fur-

nace for a period of time of 2 h. The heat-treated cross-

linked films have enhanced durability when immersed in

aggressive conditions for several hours (buffer solution

pH 10) and no delamination of the films was observed,

while untreated films were severely damaged.

Characterization of the thin films

UV-vis spectroscopy (UV-vis) was used to characterize

the optical properties of the silver nanoparticles incorpo-

rated into the thin films. Measurements were carried out

with a Jasco V-630 spectrophotometer (Jasco Inc., Easton,

MD, USA).

Atomic force microscopy (AFM) and scanning electron

microscopy (SEM) were used to characterize both the dis-

tribution of the nanoparticles and the morphology of the

resultant thin films. The samples were scanned using a

Veeco Innova AFM (Veeco Instruments, Inc., Plainview,

NY, USA), in tapping mode and a Carl Zeiss UltraPlus

FESEM (Carl Zeiss AG, Oberkochen, Germany).

Transmission electron microscopy (TEM) was used to

characterize the cross section of the thin films. The coat-

ings were performed onto polystyrene coverslips which

were cut off and embedded in an epoxy resin. Then, ul-

trathin cross sections were obtained and immediately

mounted onto 200 mesh copper grids. Measurements

were performed using transmission electron microscope

Carl Zeiss Libra 120 at 80 kV.

Results and discussion
In order to understand the two different chemical syn-

thetic routes (ISS process and LbL-E deposition tech-

nique), a schematic representation is shown in Figure 1.

In this section, a study of the evolution of the UV-vis

absorption bands during the fabrication process, thick-

ness variation, temperature effect, or distribution of the

AgNPs into the thin films will be presented. Firstly, the

results for the ISS process will be studied and secondly,

the results for the LbL-E deposition technique process will

be evaluated. Finally, a comparative study about both pro-

cesses will be shown.

In situ synthesis process of the silver nanoparticles

The weak polyelectrolyte nature of the PAH/PAA matrix

makes the pH of the polyelectrolyte dipping solutions

determine the number of free carboxylic acid present in

the multilayer thin film. The PAA polyanion presents

carboxylate and carboxylic acid groups at a suitable pH

where the carboxylate groups are responsible for the

electrostatic attraction with the cationic groups of the

polycation (PAH), forming ion pairs to build sequentially

adsorbed multilayers in the LbL assembly. However, the

carboxylic acid groups are available for a subsequent

ionic exchange for the introduction of inorganic ions

such as silver (loading AgNO3 solution) and a further in

situ chemical reduction of the silver cations (Ag+) to

AgNPs using a reducing agent (reduction DMAB solu-

tion). This loading/reduction (L/R) cycles have been re-

peated up to four times.

In Figure 2, two different pH values of the PAA, pH 7.0

and 9.0, are used to show how the silver nanoparticles are

synthesized into the LbL films. A color change from trans-

parent to yellow orange with a characteristic absorption

band around 420 nm (see Table 1) has been pointed as an

interesting result to corroborate the ISS of the silver nano-

particles into the polymeric film obtained by the LbL as-

sembly. It is possible to appreciate the difference between

a glass slide with only polymeric coating [PAH/PAA]40 ob-

tained by the LbL assembly at pH 7.0 or 9.0 (totally trans-

parent) and the color evolution after the successive L/R

cycles at these two pH values. When a higher number of

L/R cycles have been performed, a better definition of the

LSPR absorption band around 420 nm can be observed

which is indicative that AgNPs have been synthesized in

the films. It has been demonstrated that LbL films at

pH 9.0 show a dramatically more intense orange color-

ation in comparison with LbL films at pH 7.0 after the

same number of L/R cycles.

In Figure 3, UV-vis spectra of the LbL films are shown

after the ISS process of the AgNPs from 1 to 4 L/R cy-

cles (solid lines) at pH 9.0 and only for 4 L/R cycles

(dash line) at pH 7.0 in order to compare the great dif-

ference in intensity of the LSPR absorption band as a

function of the pH value.

An important consideration is the presence of the

LSPR absorption maximum at a wavelength of 424.6 nm

which is indicative that AgNPs with a spherical shape

have been synthesized into the LbL films. In addition, an

increase in the intensity of the LSPR absorption bands at

this wavelength position is observed when the number

of L/R cycles is increased due to a higher amount of
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AgNPs incorporated into the LbL films. This aspect was

previously corroborated in Figure 2 because the LbL thin

films with a higher number of L/R cycles showed a

better definition of the orange coloration.

A study about the thickness evolution of the LbL films

before and after the ISS process as well as the maximum

wavelength position and absorbance related to the LSPR

absorption band is performed, as it can be observed in

Table 1. An important consideration is that the resultant

thickness after the L/R cycles (from 1 to 4 cycles) is very

similar to that of only polymeric LbL coating. As a con-

clusion, when the number of L/R cycles is increased du-

ring the fabrication process, a higher amount of AgNPs

are synthesized while the overall thickness of the film

remains almost unaltered.

As it was previously commented, a thermal post-treatment

of the thin films for the higher number of L/R cycles was

performed in order to promote a covalent amide bond

Figure 1 Schematic representation of the two alternative methods for the synthesis of AgNPs. (a) ISS process. (b) LbL-E deposition technique.

Figure 2 ISS of the AgNPs into LbL films. ISS of the AgNPs into LbL films as a function of the number of L/R cycles and the pH (7.0 and 9.0) of

the dipping polyelectrolyte solutions (PAH and PAA, respectively).
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cross-linking between the polymeric chains of the poly-

electrolytes (PAH and PAA), yielding the formation of thin

films with a better chemical stability. A variable range of

temperature values (50°C, 100°C, 150°C, and 200°C) will

be studied and significant differences are observed in the

evolution of the LSPR absorption bands, as it can be

shown in Figure 4. When the temperature values are var-

ied from room temperature (ambient conditions) to 50°C

and 100°C, no changes in the maximal wavelength pos-

ition of the LSPR absorption bands are observed. For

these cases, the LSPR absorption band remains at the

same wavelength position (424.6 nm) with a low increase

in the maxima absorbance of the LSPR bands when the

temperature is increased (50°C and 100°C, respectively).

However, a drastic change in the LSPR maximal wave-

length position is observed for the higher temperature

values where LSPR absorption band is located at 436.8 nm

(150°C) and 477.1 nm (200°C) with the corresponding in-

crease in the maxima absorbance values. The films ther-

mally treated at 150°C and 200°C were thinner due to the

formation of cross-links via amide bonds between the

polyelectrolytes monolayers (PAH and PAA) and as a re-

sult, the maxima wavelength position as well as maxima

absorbance were increased. In Table 2, a summary of

thickness evolution of the thin films as well as the LSPR

wavelength positions with their maxima absorbance values

are presented as a function of the temperature values.

Layer-by-layer embedding deposition technique

As it was previously commented in the ‘Methods’ section,

AgNPs with a specific protective agent (PAA-AgNPs) were

firstly synthesized prior to the LbL assembly of the

coating [30].

Once AgNPs have been synthesized, a further incorp-

oration into thin films is performed using the LbL-E de-

position technique [50]. The key of this process is the

presence of free anionic carboxylate groups of the PAA

at a suitable pH which are the responsible of the electro-

static attraction with cationic polyelectrolytes, such as

PAH [41,42]. In this synthetic route, PAA plays a dual

role: firstly, preventing the agglomeration of the AgNPs

in the LbL film and secondly, making possible to ob-

tain thin films into a desired substrate due to the elec-

trostatic attraction between monolayers of opposite

charge [37].

In Figure 5, it is possible to appreciate the aspect of

the colloidal AgNPs' dispersion (PAA-AgNPs) and their

incorporation into thin films using the LbL-E deposition

Table 1 Thickness evolution of the thin films obtained by ISS process

Fabrication process Thickness (nm) LSPR (λmax; Amax)

[PAH(9.0)/PAA(9.0)]40 288 ± 5 -

[PAH(9.0)/PAA(9.0)]40 + 1 L/R cycle 291 ± 4 421.3 nm; 0.04

[PAH(9.0)/PAA(9.0)]40 + 2 L/R cycles 289 ± 16 422.1 nm; 0.09

[PAH(9.0)/PAA(9.0)]40 + 3 L/R cycles 296 ± 8 422.8 nm; 0.79

[PAH(9.0)/PAA(9.0)]40 + 4 L/R cycles 294 ± 8 424.6 nm; 1.07

Thickness evolution of the ISS films and the location of the LSPR absorption bands (λmax) with their maxima absorbance values (Amax).

Figure 3 UV-vis spectra of the ISS process of the AgNPs. UV-vis

spectra of the ISS process of the AgNPs for different number of L/R

cycles (1, 2, 3, and 4 L/R) at pH 9.0 (solid lines) and 4 L/R cycles at

pH 7.0 (dash line).

Figure 4 Evolution of the UV-vis spectra of the thin film [PAH

(9.0)/PAA(9.0)]40 + 4 L/R cycles. Evolution of the UV-vis spectra of

the thin film [PAH(9.0)/PAA(9.0)]40 + 4 L/R cycles for a variable

range of temperatures from room temperature, 50°C, 100°C, 150°C

to 200°C.
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technique as a function of the pH selected (pH 7.0 and

9.0). It is worth noting that UV-vis spectrum correspond-

ing to the PAA-AgNPs shows an intense LSPR absorption

band with these coordinates of wavelength position and

maximum absorbance (430.6 nm; 1.27). The location of

the LSPR absorption band at this specific wavelength pos-

ition indicates that AgNPs with a spherical shape have

been successfully synthesized. In addition, the pH of the

PAA-AgNPs is of great interest in order to understand the

incorporation of the AgNPs into the films. When the pH

is 7.0, the PAA presents less carboxylate groups available

and as a result, a lower number of AgNPs have been em-

bedded into the films. However, this aspect drastically

changes when the pH of the PAA is higher (pH 9.0) where

a higher amount of AgNPs have been incorporated into

the LbL-E thin films. A better definition of the orange col-

oration in the films is observed at pH 9.0 because PAA is

building as a fully charged polyelectrolyte and a higher

number of carboxylate groups are binding with the cat-

ionic polyelectrolyte (PAH) to form ion pairs by electro-

static attraction.

Figure 6 shows the UV-vis spectra of the LbL-E films as

a function of the number of bilayers deposited (10, 20, 30,

and 40) at pH 9.0 (solid lines) and only 40 at pH 7.0 (dash

line). A better definition in the intensity of the LSPR ab-

sorption band around 430 nm is observed when a higher

number of bilayers are deposited from 10 to 40, which it

is indicative that a higher number of AgNPs are incorpo-

rated. In addition, the LSPR of the AgNPs into the LbL-E

films appears at the same wavelength position to that

PAA-AgNPs and as a conclusion, no aggregation of

AgNPs is observed in the LbL films due to PAA acting as

a protective agent and preventing the agglomeration of

the AgNPs during the fabrication process. A study about

the thickness evolution of the LbL-E films during the fab-

rication is performed (see Table 3). As it was expected, an

increase of the resultant thickness is observed when the

number of bilayers is increased for 10 to 40.

The influence of the temperature in the LbL-E thin films

has been studied. As it was previously performed in the

ISS process, the LbL-E films were thermally treated at the

same variable temperature values from 50°C to 200°C in

order to promote an amide bond cross-link of the poly-

meric chains. In Figure 7, it is possible to appreciate the

evolution of the LSPR absorption band which it remains

at the same wavelength position (432.6 nm) from room

temperature to the thermal treatment at 150°C. However,

a shift in the wavelength position of the LSPR absorption

Table 2 Thickness evolution of the thin films obtained by ISS process after thermal treatment

Fabrication process Temperature Thickness (nm) LSPR (λmax; Amax)

[PAH(9.0)/PAA(9.0)]40+ 4 L/R cycle Ambient 294 ± 8 424.6 nm; 1.07

[PAH(9.0)/PAA(9.0)]40+ 4 L/R cycles 50°C 277 ± 9 424.6 nm; 1.10

[PAH(9.0)/PAA(9.0)]40+ 4 L/R cycles 100°C 256 ± 7 424.6 nm; 1.16

[PAH(9.0)/PAA(9.0)]40+ 4 L/R cycles 150°C 212 ± 7 436.8 nm; 1.63

[PAH(9.0)/PAA(9.0)]40+ 4 L/R cycles 200°C 194 ± 7 477.1 nm; 1.57

Thickness evolution of the ISS thin films and the location of the LSPR absorption bands (λmax) with their maxima absorbance values (Amax) as a function of

the temperature.

Figure 5 UV-vis spectroscopy of the PAA-AgNPs and their incorporation into thin films. UV-vis spectroscopy of the PAA-AgNPs (yellow-orange

coloration) and their incorporation into thin films using the LbL-E deposition technique as a function of the pH (7.0 or 9.0) of the

dipping polyelectrolyte solutions (PAH and PAA-AgNPs).
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band is observed from 432.6 to 446.9 nm for the higher

temperature value (200°C) by forming amide bonds

(cross-linked films) with the corresponding partial reduc-

tion thickness in comparison with untreated films. In

addition, in all the cases of the study, an increase in the

maxima absorbance of the LSPR absorption bands is ob-

served after thermal treatment. In Table 4, a summary of

thickness evolution of the LbL-E thin films as well as the

LSPR wavelength positions with their maxima absorbance

values is presented as a function of the temperature.

A comparative study between ISS process and LbL-E

deposition technique

In this section, a comparative study about both pro-

cesses will be shown for a better understanding of the

incorporation of AgNPs into thin films using wet chem-

istry reactions. In order to establish any significant dif-

ferences, the evolution of the thin films will be studied

for the higher number of bilayers and L/R cycles at

room temperature (ambient) and after thermal post-

treatment of 200°C. In addition, a study about the distri-

bution of the AgNPs into the thin films will be necessary

to understand the shift of the LSPR absorption bands.

Figure 8 shows the UV-vis spectra of the thin films ob-

tained by ISS process and LbL-E deposition technique

before and after thermal post-treatment (200°C). First of

all, the location of the LSPR absorption band without

thermal treatment for the ISS process appears at a

shorter wavelength position (424.6 nm) in comparison

with the LbL-E deposition technique (432.6 nm). This

aspect related to the wavelength location of the LSPR

absorption band shows a high dependence with the size

of the AgNPs in the films. When AgNPs of higher size

are incorporated into thin films, LSPR absorption band

is located at higher wavelength position as it occurs in

the LbL-E deposition technique. However, when smaller

AgNPs are incorporated into the films, the LSPR absorp-

tion band is located at a lower wavelength position as it

occurs in the ISS process. In addition, a shift of the

LSPR absorption bands is observed in both processes

after thermal post-treatment, being more notorious for

the ISS process. One of the reasons of this displacement

in wavelength is the better proximity of the AgNPs be-

cause of the partial thickness reduction after thermal

post-treatment (confirmed in Tables 2 and 4) and as a

result, the maxima absorbance values of the LSPR bands

are increased.

In Figure 9, normalized UV-vis spectra for the ISS and

LbL-E films are shown after thermal post-treatment

where it is possible to appreciate their maximal wave-

length shifts respect untreated films (ambient) and the

full width at half maximum (FWHM). The maximal

wavelength shift is only 13 nm for the LbL-E films,

whereas the shift for the ISS process is 46 nm. This great

difference between both processes is associated to the

use of a specific protective agent (PAA-AgNPs) in the

LbL-E films, which prevents the agglomeration of

Figure 6 UV-vis spectra of the LbL-E thin films as a function of

the number of bilayers. UV-vis spectra of the LbL-E thin films as a

function of the number of bilayers from 10 to 40 (solid lines) at

pH 9.0 and only 40 at pH 7.0 (dash line).

Table 3 Thickness evolution of the thin films obtained

LbL-E deposition technique

Fabrication process Thickness (nm) LSPR (λmax; Amax)

[PAH(9.0)/PAA-AgNPs(9.0)]10 63 ± 5 421.3 nm; 0.017

[PAH(9.0)/PAA-AgNPs(9.0)]20 165 ± 4 432.1 nm; 0.13

[PAH(9.0)/PAA-AgNPs(9.0)]30 507 ± 16 432.3 nm; 0.77

[PAH(9.0)/PAA-AgNPs(9.0)]40 642 ± 12 432.6 nm; 1.18

Thickness evolution of the LbL-E thin films and the location of the LSPR

absorption bands (λmax) with their maxima absorbance values (Amax).

Figure 7 Evolution of the UV-vis spectra of the thin film [PAH

(9.0)/PAA-AgNPs(9.0)]40. Evolution of the UV-vis spectra of the thin

film [PAH(9.0)/PAA-AgNPs(9.0)]40 for a variable range of temperatures

from room temperature, 50°C, 100°C, 150°C, to 200°C.
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the AgNPs during the fabrication process and after ther-

mal post-treatment. However, ISS process shows a higher

maximal wavelength shift because AgNPs are randomly

synthesized into the polymeric matrix without any control

in their distribution and aggregation state. This aspect re-

lated to the aggregation of the AgNPs into the films

is corroborated by FWHM which it is duplicated for the

ISS process (224 nm) in comparison with the LbL-E de-

position technique (108 nm). In addition, the widening of

the LSPR absorption band for the ISS is associated to the

presence of AgNPs with a variable size (polydispersity) or

to the presence of silver clusters (aggregates) in the films.

However, LbL-E films show the possibility of incorpor-

ating AgNPs with a desired size (monodispersity) and

perfectly encapsulated PAA-AgNPs and due to this, no

aggregation of the AgNPs is observed after thermal post-

treatment.

In order to corroborate this hypothesis related to the

size, aggregation, and distribution of the AgNPs into

the thin films, cross-sectional TEM micrographs of the

upper part of the thin film close to the surface as well as

AFM phase images (1 × 1 μm) in tapping mode for the

ISS and LbL-E films were taken, as it can be observed in

Figure 10. The cluster formation is perfectly observed in

the cross-sectional TEM micrograph (Figure 10a) for the

ISS process, mostly in the outer surface of the film. In

addition, AFM phase image (Figure 10b) reveals the pres-

ence of AgNPs with variable size and random distribution

which are mixed with clusters in the specific zones of

the topographic distribution. This aggregation in the

film has a significant influence in the maximal wave-

length position of the LSPR absorption band, corrobo-

rated by UV-vis spectra. Finally, the cross-sectional TEM

image (Figure 10c) for the LbL-E film shows a gradual in-

corporation of AgNPs from the inner to the outer surface

of the film, and AFM phase image in Figure 10d reveals

that no aggregation of AgNPs is observed in the topo-

graphic distribution. An important consideration is that

the size of the AgNPs using LbL-E is higher than the size

observed in the ISS process, whereas a high amount of

AgNPs are synthesized using the ISS process.

This aspect related to the amount and size of the

AgNPs is corroborated by SEM images. In Figure 11a, it

is possible to appreciate that a higher amount of smaller

AgNPs size is obtained for the ISS process. In opposition

to this, the LbL-E deposition technique (Figure 11b)

shows the incorporation of AgNPs with a higher size in

the topographic distribution of the films.

As a conclusion of both processes, the use of PAA as a

protective agent of the AgNPs in the LbL-E deposition

technique is of vital importance because it can prevent

cluster formation along the coating, although it is pos-

sible to appreciate nanoparticles of higher size along the

coating thickness. To sum up and according to the

results, LbL-E deposition technique allows the incorpor-

ation of AgNPs of higher size along the film, whereas

cluster formation mixed with AgNPs of small size is only

observed for the ISS process.

Conclusions
This work is based on the synthesis and incorporation

of silver nanoparticles into thin films using two alter-

native techniques with remarkable differences, the ISS

process and the LbL-E deposition technique. Firstly,

both processes are separately analyzed as a function

Table 4 Thickness evolution of the thin films obtained LbL-E deposition technique after thermal treatment

Fabrication process Temperature Thickness (nm) LSPR (λmax; Amax)

[PAH(9.0)/PAA-AgNPs(9.0)]40 Ambient 642 ± 12 432.6 nm; 1.18

[PAH(9.0)/PAA-AgNPs(9.0)]40 50°C 611 ± 16 432.6 nm; 1.20

[PAH(9.0)/PAA-AgNPs(9.0)]40 100°C 600 ± 12 432.6 nm; 1.26

[PAH(9.0)/PAA-AgNPs(9.0)]40 150°C 552 ± 9 432.6 nm; 1.68

[PAH(9.0)/PAA-AgNPs(9.0)]40 200°C 452 ± 10 446.9 nm; 1.66

Thickness evolution of the LbL-E thin films and the location of the LSPR absorption bands (λmax) with their maxima absorbance values (Amax) as a function of

the temperature.

Figure 8 Evolution of the UV-vis spectra of thin films obtained

by ISS and LbL-E deposition technique. Evolution of the UV-vis

spectra of the thin films obtained by ISS process and LbL-E

deposition technique as a function of two temperatures values

(ambient and 200°C).
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of several parameters such as the pH value of the dip-

ping polyelectrolyte solutions, thickness evolution, or

temperature effect. Secondly, a comparative study between

both processes has been performed in order to establish

the difference in the size and distribution of the nanoparti-

cles into the LbL films.

In both methodologies, the presence of a weak poly-

electrolyte such as poly(acrylic acid, sodium salt) is the

key for synthesizing metallic silver nanoparticles due to

its pH-dependent behavior, making possible to obtain

carboxylate and carboxylic acid groups as a function of

the pH value. For the ISS process, the presence of free

Figure 9 Normalized UV-vis spectra for ISS and LbL-E films after thermal post-treatment. Normalized UV-vis spectra for ISS and LbL-E films

after thermal post-treatment (200°C) with their maximal wavelength shift and their FWHM.

Figure 10 Cross-sectional TEM micrographs of the upper part of the thin film and AFM phase images. (a, b) Cross-sectional TEM

micrograph of the upper part of the thin film and AFM surface phase image for the ISS process. (c, d) Cross-sectional TEM micrograph of

the upper part of the thin film and AFM surface phase image for the LbL-E deposition technique.
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carboxylic acid groups is the key for the introduction

of silver ions which are further reduced to silver nanopar-

ticles. However, in the case of the LbL-E deposition tech-

nique, PAA is acting as an encapsulating agent of the

nanoparticles and these AgNPs are incorporated into thin

films by the electrostatic attraction between the polycation

(PAH), and the carboxylate groups of the PAA capped the

nanoparticles (PAA-AgNPs).

The location of the LSPR absorption bands varies from

424.6 nm for the ISS process to 432.6 nm for the LbL-E

deposition technique. However, a post-thermal treat-

ment produces a wavelength shift of the LSPR absorp-

tion bands, being more significant for the ISS process

because the LSPR maximum wavelength position is dis-

placed at 46 nm in comparison with only 13 nm in the

LbL-E deposition technique. In addition, the full width

at half maximum is higher for the ISS film (224 nm) in

comparison with the LbL-E film (108 nm).

A morphological characterization (SEM, TEM, or

AFM) is performed in order to clarify the size and distri-

bution of the nanoparticles in the LbL films. SEM im-

ages indicate that a higher amount of AgNPs with less

size is synthesized for the ISS process. Cross-sectional

TEM micrographs and AFM phase images indicate the

cluster formation of AgNPs in the topographic distribu-

tion of the ISS process which is not observed in the

LbL-E films. These remarkable differences between both

processes related to the distribution, size, and partial ag-

gregation have a considerable influence in the final loca-

tion of the LSPR absorption bands. In addition, the great

importance of using a protective agent such as PAA-

AgNPs in the LbL-E deposition technique is to prevent

the aggregation of the AgNPs during the fabrication

process and after thermal post-treatment. To our know-

ledge, this is the first time that a comparative study of

the synthesis and incorporation of AgNPs into thin films

is presented in the bibliography using two alternative

methods with the same chemical reagents based on wet

chemistry.
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