
A COMPARATIVE STUDY OF UNIT ROOT TESTS
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Simplicity, simplicity, simplicity: I say let your affairs be as two or three and
not a hundred or thousand.
Simplify, simplify.

(H. D. Thoreau: Walden)

I. INTRODUCTION

Since the appearance of the papers by Levin and Lin (1992, 1993), the use
of panel data unit root tests has become very popular among empirical
researchers with access to a panel data set. It is by now a generally accepted
argument that the commonly used unit root tests like the Dickey±Fuller
(DF), augmented Dickey±Fuller (ADF) and Phillips±Perron (PP) tests lack
power in distinguishing the unit root null from stationary alternatives, and
that using panel data unit root tests is one way of increasing the power of
unit root tests based on a single time series. See, for example, the arguments
in Oh (1996), Wu (1996), MacDonald (1996) and Frankel and Rose (1996),
who try to resurrect the purchasing power parity (PPP) theory using panel
data unit root tests.

Such use of panel unit root tests may not be meaningful because different
null hypotheses are being tested in each case. For instance, consider the
simpli®ed model

Äyi, t � ri yi, tÿ1 � åi, t, i � 1, 2, . . . , N , t � 1, 2, . . . , T :

Suppose we are interested in testing r1 � 0 vs. r1 , 0, we apply a single
equation unit root for the ®rst time series. The panel data unit root test tests
a different hypothesis:

H0: ri � 0 vs:H1: ri , 0, for i � 1, 2, . . . , N :

Furthermore, there are now more powerful tests available even in the
single equation context. See, for example, Elliott, Rothenberg and Stock
(1996) and also Perron and Ng (1996) who suggest modi®cations of the PP
test to increase power.
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In the following sections, we shall present a review of the Levin±Lin
tests, their extension by Im, Pesaran and Shin (1997), which will be referred
to as the IPS test, and a simple alternative due to Fisher (1932) which will
be referred to as the Fisher test. We then present some results from Monte
Carlo experiments comparing these three tests and some evidence from the
bootstrap which allows for correlation in the errors. Finally, we consider a
test based on the Bonferroni inequality and conduct a Monte Carlo experi-
ment to compare this test with the Fisher test.

II. PANEL DATA UNIT ROOT TESTS

Some early papers on testing for unit roots based on panel data are by Quah
(1992, 1994) and Breitung and Mayer (1994). Since these have been
superseded by the papers by Levin and Lin (1992, 1993), they are not
discussed here.

2.1. The Levin±Lin (LL) Tests

Levin and Lin (1992) conduct an exhaustive study and develop unit root
tests for the model:

Äyi, t � ryi, tÿ1 � á0 � ät � ái � èt � åi, t, i � 1, 2, . . . , N , t � 1, 2, . . . , T :

Thus, the model incorporates a time trend as well as individual and time-
speci®c effects. Initially, they assume that åi, t � IID(0, ó 2) but they state
that under serial correlation, with the inclusion of lagged ®rst differences as
in the ADF test, the test statistics have the same limiting distributions as
mentioned subsequently, provided the number of lagged differences in-
crease with sample size. Levin and Lin consider several subcases of this
model. In all cases the limiting distributions are as N !1 and T !1.
Also in all cases, the equation is estimated by OLS as a pooled regression
model. The submodels are:

Model 1: Äyi, t � ryi, tÿ1 � åi, t H0: r � 0
Model 2: Äyi, t � ryi, tÿ1 � á0 � åi, t H0: r � 0
Model 3: Äyi, t � ryi, tÿ1 � á0 � ät � åi, t H0: r � 0, ä � 0
Model 4: Äyi, t � ryi, tÿ1 � èt � åi, t H0: r � 0
Model 5: Äyi, t � ryi, tÿ1 � ái � åi, t H0: r � 0, ái � 0 for all i
Model 6: Äyi, t � ryi, tÿ1 � ái � äi t � åi, t H0: r � 0, äi � 0 for all i:

For models 1±4, they show that

(a) T
�����
N
p

r̂) N (0, 2)
(b) tr�0 ) N (0, 1).

For model 5, if
�����
N
p

=T ! 0, then
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(a) T
�����
N
p

r̂� 3
�����
N
p ) N(0, 10:2)

(b)
���������
1:25
p

tr�0 �
���������������
1:875N
p ) N 0,

645

112

� �
.

In model 6, both intercept and time trend vary with individuals.
In the empirical applications, Oh (1996) uses only models 1 and 5. Wu

(1996) uses the complete model with trend, and individual and time-speci®c
effects but uses the distributions derived for model 5. Papell (1997) uses
model 5 with lagged ®rst differences added but computes his own exact
®nite sample critical values using Monte Carlo methods and ®nds them 3 to
15 percent higher than those tabulated in Levin and Lin (1992).

Levin and Lin argue that in contrast to the standard distributions of unit
root test statistics for a single time series, the panel test statistics have
limiting normal distributions. However, the convergence rates are faster as
T !1 (superconsistency) than as N !1.

The paper by Levin and Lin (1993) provides some new results on panel
unit root tests. These tests are designed to take care of the problem of
heteroscedasticity and autocorrelation. They involve the following steps.

(i) Subtract cross-section averages from the data to eliminate the in¯u-
ence of aggregate effects.

(ii) Apply the augmented Dickey±Fuller (ADF) test to each individual
series and normalize the disturbances. For illustration, we use model 5. The
ADF regression

Äyi, t � ri yi, tÿ1 �
Xpi

j�1

èijÄyi, tÿ j � ái � åi, t (1)

is equivalent to performing two auxiliary regressions of Äyit and yi, tÿ1 on
the remaining variables in equation (1). Let the residuals from these two
auxiliary regressions be êi, t and V̂i, tÿ1 respectively. Now regress êi, t on
V̂i, tÿ1:

êi, t � ri V̂i, tÿ1 � åi, t

to get r̂i which is equivalent to the OLS estimator of ri in (1) directly. Since
there is heteroscedasticity in åi, t, they suggest the following normalization
to control it:

ó̂ 2
ei
� 1

T ÿ pi ÿ 1

XT

t� pi�2

(êi, t ÿ r̂i V̂i, tÿ1)2

~ei, t � êi, t

ó̂ e i

~Vi, tÿ1 � V̂i, tÿ1

ó̂ ei

:
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Asymptotically, ~ei, t will be i.i.d. for all individual i.
(iii) Estimate the ratio of long-run to short-run standard deviation for each

individual series and then calculate the average ratio for the panel as:

ŜNT � 1

N

XN

i�1

ó̂ yi

ó̂ ei

where the long-run variance ó̂ 2
yi

is estimated by

ó̂ 2
yi
� 1

T ÿ 1

XT

t�2

Äy2
i, t � 2

XK

L�1

wK L

1

T ÿ 1

XT

t�L�2

Äyi, tÄyi, tÿL

 !
:

K is the lag truncation parameter and wK L is some lag window.
(iv) Compute the panel test statistic. Then consider the following regres-

sion:

~ei, t � r~Vi, tÿ1 � ~åi, t

using all i and t. The resulting t-statistic is

tr�0 � r̂
RSE(r̂)

where

RSE(r̂) � ó̂ å
XN

i�1

XT

t�2� pi

V̂ 2
i, tÿ1

24 35ÿ1=2

ó̂ 2
å �

1

N ~T

XN

i�1

XT

t�2� pi

(~ei, t ÿ r̂~Vi, tÿ1)2

~T � T ÿ pÿ 1 and p � 1

N

XN

i�1

pi

is the average lag length used in the individual ADF regression.
Since the test statistic is not centered at zero, Levin and Lin suggest using

the following adjusted t-statistic:

t�r �
tr�0 ÿ N ~T ŜNT ó̂ÿ2

å RSE(r̂)ì�~T
ó�~T

where ì�~T and ó�~T are the mean and the standard deviation adjustment terms
which are obtained from Monte Carlo simulation and tabulated in their
paper. Under

H0 : r � 0, t�r ) N (0, 1):
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In the simulations reported later we used this procedure.
The major limitation of the Levin±Lin tests is that r is the same for all

observations. Thus, if we denote by ri the value of r for the ith cross-
section unit then the Levin±Lin test speci®es the null H0 and alternative H1

as:

H0 : r1 � r2 � ::: � rN � r � 0

H1 : r1 � r2 � ::: � rN � r, 0:

The null makes sense under some circumstances, but the alternative is too
strong to be held in any interesting empirical cases. For example, in testing
the convergence hypothesis in growth models, one can formulate the null as
implying that none of the economies under study converges and thus r � 0
for all countries. But it does not make any sense to assume that all the
countries will converge at the same rate if they do converge.

2.2. The Im±Pesaran±Shin (IPS) Test (1997)

IPS relax the assumption that r1 � r2 � ::: � rN under H1. The basic idea
of the test is very simple. Take model 5 in Levin and Lin and substitute ri

for r. Essentially what we have is a model with a linear trend for each of the
N cross-section units. Thus, instead of pooling the data, we use separate unit
root tests for the N cross-section units. Consider the t-test for each cross-
section unit based on T observations. Let ti,T (i � 1, 2, . . . , N ) denote the
t-statistics for testing unit roots, and let E(ti,T ) � ì and V (ti,T ) � ó 2. Then�����

N
p (tN ,T ÿ ì)

ó
) N (0, 1), where tN ,T � 1

N

XN

i�1

ti,T :

The problem is computing ì and ó 2. This they do by Monte Carlo methods
and tabulate them for ready reference (Tables 3 and 4 of their paper).

Although IPS talk of their test as a generalization of the LL tests, the
important thing to note is that the IPS test is a way of combining the
evidence on the unit root hypothesis from the N unit root tests performed on
the N cross-section units. Note that implicit in the test is the assumption that
T is the same for all cross-section units and hence E(ti,T ) and V (ti,T ) are the
same for all i. Thus, we are considering only balanced panel data. In
practice, if unbalanced data are used, more simulations have to be carried
out to get critical values.

In the case of serial correlation, IPS propose using the ADF t-test for
individual series. However, E(ti,T ) and V (ti,T ) will vary as the lag length
included in the ADF regression varies. They tabulate E(ti,T ) and V (ti,T ) for
different lag lengths. In practice, however, to make use of their tables, we
are restricted implicitly to using the same lag length for all the ADF
regressions for individual series.

IPS also suggest an LR-bar test based on likelihood ratio statistics, but we
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shall concentrate our discussion on their t-bar test. The same arguments
apply to the LR-bar test.

2.3. Fisher's ( pë) Test

It should be noted that the IPS test is for testing the signi®cance of the
results from N independent tests of a hypothesis. There is a large amount of
literature on this issue dating back to Tippett (1931) and Fisher (1932). This
problem has been studied under the title `Meta Analysis' and the different
tests are reviewed in Hedges and Olkin (1985, Chapter 3). All these
procedures depend on different ways of combining the observed signi®-
cance levels ( p-values) from the different tests. If the test statistics are
continuous, the signi®cance levels ði (i � 1, 2, . . . , N ) are independent
uniform (0, 1) variables, and ÿ2 loge ði has a ÷2 distribution with two
degrees of freedom. Using the additive property of the ÷2 variables, we get
ë � ÿ2

PN
i�1 loge ði has a ÷2 distribution with 2N degrees of freedom. This

is the test suggested by Fisher (1932). Pearson suggested a slight modi®ca-
tion of this and the Fisher test goes under the name of pë test. It is discussed
in Rao (1952, p. 44) and by Maddala (1977, p. 47) but there have not been
many econometric applications of this test.

Tippett suggested using the distribution of the smallest of the p-values,
ði. There have been several other suggestions about the p-value combina-
tions. Becker (1977) lists 16 of them, but no p-value combination is most
powerful. However, the Fisher test based on the sum of the log- p-values has
been widely recommended. In this paper, we shall use the Fisher test. (We
tried the Tippett test as well but it was not as powerful as the Fisher test, and
hence the results are not reported.)

The advantage of this test is that it does not require a balanced panel as in
the case of the IPS test. Also, one can use different lag lengths in the
individual ADF regression. Another advantage of the Fisher test is that it
can also be carried out for any unit root test derived. The disadvantage is
that the p-values have to be derived by Monte Carlo simulation. The IPS
test is easy to use because there are ready tables available in the paper for
E(ti,T ) and V (ti,T ). However, these are valid only for the ADF test.

III. A COMPARISON OF THE DIFFERENT TESTS

Some broad comments on the merits and demerits of the three tests would
be useful in interpreting the results to be presented later. Hence we shall go
through these ®rst.

(1) The LL tests test a very restrictive hypothesis that is rarely of practical
interest.

(2) The IPS test is claimed to be a generalization of the LL tests.
However, it is better viewed as a way of combining the evidence of several
independent unit root tests.
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(3) Im±Pesaran±Shin present a power comparison of the LL and IPS
tests and argue that the IPS test is more powerful than the LL test.
However, strictly speaking, the power comparison is not valid. Although
the null hypothesis is the same in the two tests, the alternative hypothesis
is different. The LL tests are based on homogeneity of the autoregressive
parameter (although there is heterogeneity in the error variances and the
serial correlation structure of the errors). Thus the tests are based on
pooled regressions. The IPS test, on the other hand, is based on hetero-
geneity of the autoregressive parameter. As argued earlier, the test amounts
to a combination of different independent tests. There is no pooling of
data involved as in the LL tests. In the following sections, we shall also
present power comparisons with the LL test but it should be borne in mind
that the LL test will necessarily come out worse because the LL test has to
use the panel estimation method which is not valid if there is no need for
pooling.

(4) The Fisher test and the IPS test are directly comparable. The aim of
both tests is a combination of the signi®cance of different independent tests.
The Fisher test is non-parametric; whatever test statistic we use for testing
for a unit root for each sample, we can get the p-values ði and then
ÿ2
P

loge ði � ÷2 with 2N d.f., where N is the number of separate samples.
The IPS test, on the other hand, is parametric. The distribution of the t-bar
statistic involves the mean and variance of the t-statistics used. IPS compute
this for the ADF test statistic for different values of the number of lags used
and different sample sizes. However, these tables are valid only if the ADF
test is used for the unit root tests. Also, if the length of the time series for
the different samples is different, there is a problem using the tables
prepared by IPS. The Fisher test does not have any such limitations. It can
be used with any unit root test and even if the ADF test is used, the choice
of the lag length for each sample can be separately determined. Also, there
is no restriction of the sample sizes for different samples (they can vary
according to availability of the data).

(5) The Fisher test is an exact test. The IPS test is an asymptotic
test. Note that this does not lead to a huge difference in ®nite sample
results, since the adjustment terms in the IPS test are derived from
simulations while the p-values in the Fisher test are also derived from
simulations. However, the asymptotic validity of the tests depends on
different conditions. For the IPS test the asymptotic results depend on
N going to in®nity while for the Fisher test they depend on T going to
in®nity.

(6) The crucial element that distinguishes the two tests is that the Fisher
test is based on combining the signi®cance levels of the different tests, and
the IPS test is based on combining the test statistics. Which is better is the
question. We conducted Monte Carlo studies with these issues in mind.

(7) Both the Fisher test and IPS test are based on combining independent
tests. So if there is contemporaneous correlation, then there are correlations
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among the individual test statistics. Both tests will need modi®cations in
this case.

IV. DESIGN OF THE MONTE CARLO STUDIES

In this section, we present details on the designs of Monte Carlo simula-
tions. Basically, there are two experiments. The ®rst one studies the size and
power performances of the three unit root tests under the general setup of
the null and the alternative hypotheses, i.e., H0: ri � r � 0 for all i, and
H1: ri � r, 0 for all i. In the second experiment, we change the alter-
native to H1: ri � 0 for some i, and ri , 0 for the other i. We do so due to
the following consideration. In reality, some series in a panel under study
might be stationary while the others are non-stationary. We expect the null
to be rejected for such panels. But due to the masking problems, power
might be relatively low for panel unit root tests. Thus we want to investigate
the powers of the three panel unit root tests in this circumstance. Details of
these two designs are as follows.

4.1. Basic Monte Carlo Simulation Design

In this experiment, we use the following data-generating process (DGP) for
a dynamic panel containing group and time-speci®c effects. The coef®cient
on the lagged dependent variable is denoted by öi in the DGP. Thus,

Drift model: Äyi, t � ÿöiìi � öi yi, tÿ1 � ui, t

Trend model: Äyi, t � ìi ÿ öiìi t � öi yi, tÿ1 � ui, t

where i � 1, 2, . . . , N and t � 1, 2, . . . , T, and yi,0 is random.
The error term ui, t contains a time-speci®c effect èt and random

component åi, t:

ui, t � èt � åi, t

where èt � 0:9ètÿ1 � ù t, ù t � N (0, 1) and åi, t � ëiåi, tÿ1 � ei, t, ëi's are
randomly generated on U[0.2, 0.4] and different for each i where U denotes
the uniform distribution. We assume ei, t to be jointly normal distributed
with

E(ei, t) � 0, E(ei, t, e j,s) � ó ij for t � s

0 for t 6� s:

�
If we let Ó denote (ó ij)

N
i, j�1, then non-zero terms on the off-diagonal terms

in Ó represents the existence of cross-correlations. Here we randomly
generate some positive de®nite matrices for Ó.

In the simulation, ìi is generated randomly from N(0, 1) and then ®xed
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for each model. The randomness of yi,0 is achieved by generating extra y's
and discarding some initial observations.

This experiment is very similar to IPS's experiments. The biggest
difference is that we allow contemporaneous correlation in åi, t.

After the data have been generated, we apply the LL, IPS and Fisher tests.
For the Fisher test, we apply the ADF( p) test for each individual series. The
following two models are estimated.

Drift model: Äyi, t � ái � ri yi, tÿ1 �
Xp

j�1

ãijÄyi, tÿ j � residual

Trend model: Äyi, t � ái � äi t � ri yi, t �
Xp

j�1

ãijÄyi, tÿ j � residual

where p � 0, 1, 2 are used and p-values using the Dickey±Fuller t-distribu-
tions generated by 100,000 simulations for the corresponding ADF t-test
statistics are computed. Consequently, pë � (ÿ2

P
loge ði) is calculated.

For the LL and IPS tests, we follow the procedures described in their papers.
In each experiment, we consider the cases of N � 10, 25, 50, 100 and

T � 10, 25, 50, 100. A total of 2000 trials are used in computing the
empirical size and power of the tests. In analyzing the size, öi is set to be 0,
and in calculating the power, öi is set to be ÿ0:1 for all i. The results are
presented in Tables 1 and 2.

Table 1 reports the simulation results of the model with constant term
only. Overall, the performance of the LL test is the worst but it should be
noted that as argued earlier, the power comparison between the LL test and
the other two tests is not valid. The IPS and the Fisher tests are directly
comparable because they are tests of the same hypothesis. When reading
Table 1, it should be kept in mind that the power comparisons are not
appropriate because there are signi®cant size distortions. However, we have
not computed size-adjusted power because some broad conclusions can be
drawn from the ®gures presented, without looking at the size-adjusted
power.

The major conclusion that one can draw is that for high values of T (50 or
100) and values of N � 50 and 100 the Fisher test dominates the IPS test in
the sense that the Fisher test has smaller size distortions and comparable
power. The same conclusions follow from Table 2, the case with trend. We
shall see that this conclusion about the dominance of the Fisher test is
reinforced in the results presented in Table 3 later.

Another observation in Tables 1 and 2 is the effect of selection of order of
the ADF regressions. We generate the error terms according to an AR(1)
model thus using ADF(1) is appropriate. From the results we can see the
danger of under-selecting the order of ADF regression which is also pointed
out by IPS. Meanwhile, over-selecting the order of ADF regression, i.e.,
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TABLE 1
Size and Power of the Unit Root Tests (Constant Term Only)

ADF(0) ADF(1) ADF(2)

N T Size Power Size Power Size Power

25 25 IPS 0.0065 0.0095 0.1060 0.4235 0.0590 0.2535
Fisher 0.0060 0.0005 0.0440 0.1910 0.0250 0.0875
LL 0.0230 0.0245 0.1585 0.4760 0.0880 0.2575

50 IPS 0.0025 0.0650 0.0880 0.9000 0.0645 0.8085
Fisher 0.0075 0.0175 0.0845 0.7575 0.0665 0.6300
LL 0.0165 0.0205 0.1415 0.7660 0.1030 0.5550

100 IPS 0.0010 0.7725 0.1050 1.0000 0.0920 0.9995
Fisher 0.0015 0.1090 0.0230 0.9975 0.0175 0.9925
LL 0.0220 0.0265 0.1440 0.9905 0.1300 0.9525

50 25 IPS 0.0000 0.0060 0.1040 0.6520 0.0400 0.3705
Fisher 0.0040 0.0025 0.1070 0.4945 0.0575 0.2695
LL 0.0115 0.0170 0.1805 0.6950 0.0840 0.3555
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50 IPS 0.0015 0.0690 0.1035 0.9920 0.0715 0.9620
Fisher 0.0025 0.0040 0.0730 0.9355 0.0510 0.8250
LL 0.0080 0.0105 0.1550 0.9400 0.1030 0.7865

100 IPS 0.0000 0.9880 0.0905 1.0000 0.0745 1.0000
Fisher 0.0005 0.6970 0.0545 1.0000 0.0410 1.0000
LL 0.0025 0.0800 0.1410 1.0000 0.1130 0.9990

100 25 IPS 0.0000 0.0030 0.0985 0.8615 0.0235 0.5415
Fisher 0.0000 0.0005 0.1315 0.7080 0.0495 0.4040
LL 0.0040 0.0070 0.1950 0.8760 0.0660 0.5085

50 IPS 0.0000 0.0830 0.0945 1.0000 0.0545 0.9995
Fisher 0.0005 0.0025 0.0740 0.9970 0.0415 0.9780
LL 0.0010 0.0075 0.1770 0.9990 0.0990 0.9495

100 IPS 0.0000 1.0000 0.0875 1.0000 0.0645 1.0000
Fisher 0.0000 0.9010 0.0460 1.0000 0.0345 1.0000
LL 0.0005 0.0790 0.1575 1.0000 0.1225 1.0000
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TABLE 2
Size and Power of the Unit Root Tests (Time Trend)

ADF(0) ADF(1) ADF(2)

N T Size Power Size Power Size Power

25 25 IPS 0.0010 0.0005 0.1145 0.2000 0.0450 0.0900
Fisher 0.0010 0.0000 0.1060 0.1805 0.0535 0.0765
LL 0.0015 0.0020 0.1090 0.2285 0.0150 0.0320

50 IPS 0.0000 0.0015 0.1055 0.4895 0.0655 0.3340
Fisher 0.0000 0.0000 0.0940 0.3670 0.0525 0.2305
LL 0.0000 0.0030 0.1180 0.5635 0.0365 0.2430

100 IPS 0.0000 0.0190 0.1015 0.9895 0.0780 0.9620
Fisher 0.0000 0.0040 0.0435 0.9210 0.0335 0.8390
LL 0.0000 0.0130 0.1250 0.9665 0.0650 0.8420

50 25 IPS 0.0000 0.0000 0.1320 0.2635 0.0365 0.0790
Fisher 0.0000 0.0000 0.1340 0.2295 0.0465 0.0780
LL 0.0000 0.0005 0.1135 0.2850 0.0065 0.0195

50 IPS 0.0000 0.0000 0.1155 0.6920 0.0705 0.4775
Fisher 0.0000 0.0000 0.0705 0.4560 0.0385 0.2625
LL 0.0000 0.0010 0.1165 0.7420 0.0235 0.3170
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100 IPS 0.0000 0.0275 0.0975 1.0000 0.0720 0.9990
Fisher 0.0000 0.0005 0.0420 0.9970 0.0285 0.9830
LL 0.0000 0.0100 0.1210 0.9990 0.0530 0.9710

100 25 IPS 0.0000 0.0000 0.1265 0.3305 0.0185 0.0700
Fisher 0.0000 0.0000 0.1570 0.2850 0.0360 0.0785
LL 0.0000 0.0000 0.0925 0.3335 0.0010 0.0085

50 IPS 0.0000 0.0000 0.1105 0.9015 0.0470 0.6930
Fisher 0.0000 0.0000 0.0645 0.7100 0.0260 0.4215
LL 0.0000 0.0000 0.1155 0.9220 0.0130 0.4525

100 IPS 0.0000 0.0240 0.0900 1.0000 0.0645 1.0000
Fisher 0.0000 0.0005 0.0355 1.0000 0.0265 0.9995
LL 0.0000 0.0030 0.1255 1.0000 0.0440 0.9990

Note: Empirical size is reported when the nominal size is 5%. Power is reported when ö is set to be ÿ0:1.
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p � 2, seems to alleviate the size distortions for all three tests, the price is
the decline in power, as has been observed often.

4.2. Simulation with a Mixture of Stationary and Non-stationary
Alternatives

In this experiment we generate the data according to the DGP described in
the last section except that we set öi � 0 for some of the individual series
and öi , 0 for the others as our maintained hypothesis. We study the case of
N � 25 and T � 50. First, we consider the case where there is only one
stationary process in the group, and we then increase the number of
stationary processes (k) to 2, 4, 8, 10 and 12. For the cases of k � 1, 2, 4,
we set öi � ÿ0:2, while for cases of k � 8, 10, 12, öi is generated from
U[ÿ0:3, ÿ0:1] and is different for each series. The powers of the three tests
are reported in Table 3. The general result is that the Fisher test has the
highest power in all cases. The more the number of stationary processes
included, the stronger the relative advantage. Thus if only part of the panel
is stationary, the Fisher test is the most likely one to point it out.

Broadly speaking, our conclusions are as follows:

1. In general, when there is no cross-sectional correlation in the errors,
the IPS test is slightly more powerful than the Fisher test, in the sense
that the IPS test has higher power when the two have the same size.
Both tests are more powerful than the LL test.

2. As for the issues of heteroscedasticity and serial correlation in the
errors, all the tests can take care of these problems. But when the
errors in the different samples (or cross-section units) are cross-
correlated (as would often be the case in empirical work) none of the
tests can handle this problem well. However, the Monte Carlo evidence
suggests that this problem is less severe with the Fisher test than with
the LL or the IPS test. More speci®cally, when T is large but N is not
very large, the size distortion with the Fisher test is small. But for

TABLE 3
Power Comparison: Design 2 (N � 25, T � 50)�

Number of
Stationary Units IPS Fisher LL

1 0.0785 0.1085 0.0885
2 0.1270 0.1875 0.1040
4 0.1835 0.2490 0.1350
8 0.4685 0.5900 0.2545

10 0.6165 0.6840 0.3240
12 0.7385 0.8145 0.4045

� In the Monte Carlo simulation design, for the cases of stationary units included is 1, 2, 4, 8, we set
öi to ÿ0:2. In the cases of 10 and 12, the öi are generated at U [ÿ0:3, ÿ0:1].
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medium values of T and large N, the size distortion of the Fisher test is
of the same level as that of the IPS test.

3. For the cases that we include a mixture of stationary and non-
stationary series in the group as an alternative hypothesis, the Fisher
test is the best because it has the highest power in distinguishing the
null and the alternative.

Overall, we can conclude from these results that the Fisher test is better
than the IPS and LL tests.

V. CORRELATED ERRORS AND THE BOOTSTRAP ALTERNATIVE

Recall that the properties of all three tests are based on the assumption that
the error terms are not cross-correlated. When this assumption is violated
the derived distributions for these test statistics are no longer valid. They all
suffer from nuisance parameter problems. More speci®cally, if there is
cross-correlation in the data, as noted earlier, the distributions of the test
statistics are not the same as before and are not known. For the t-bar test in
IPS, the t-statistics are correlated and hence the t-bar statistic does not have
the stated variance in its (asymptotic) normal distribution, and for the Fisher
test, too, we do not have independent tests and hence the pë criterion does
not have the ÷2 distribution. Im, Pesaran and Shin (1997) consider a special
case of correlated errors. They assume that the cross-correlations are caused
by common time-speci®c effects, i.e. in the model Äyi, t � ri yi, tÿ1 � ui, t we
have ui, t � èt � åi, t. They suggest eliminating èt by subtracting out the
mean y � (1=N )

PN
i�1 yi, t from yi, t before applying the unit root tests and

the t-bar test. In many practical applications the cross-correlation is not
likely to be of this simple form. In fact they suggest that if

ui, t � rièt � åi, t

this procedure of demeaning would not work.
O'Connell (1998) assumes cross-sectional dependence of the form

Ù �
1 ù . . . ù
ù 1 . . . ù
: : : :
ù ù . . . 1

2664
3775 ù, 1

but E(ui, t, u j,s) � 0 8i, j if s 6� t.
This sort of covariance matrix would arise with random time effects as in

random effects models, i.e. ui, t � èt � åi, t where èt are i.i.d., åi, t are i.i.d.,
èt and åi, t are mutually independent.

One way out of this problem of cross-correlated errors is to use the
bootstrap method to get the empirical distributions of the test statistics to
make inferences. In what follows, we shall illustrate the bootstrap method
by using an empirical example of testing convergence in real GDPs of 17
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European countries. Please refer to Maddala and Wu (1999) for motivation
of the problem and detailed discussion of the data. We shall discuss the
bootstrap method brie¯y and then present the results. The bootstrap method
for univariate time series is well developed. Readers are referred to Li and
Maddala (1996) for a good introduction. Meanwhile the bootstrap method
for panel data is in its infancy. We shall discuss our proposed method in
detail.

The problem here is to generate the bootstrap distributions of the test
statistics. The bootstrap data were generated using the sampling scheme S3

described in Li and Maddala (1996). Generally speaking, if the null
hypothesis is H0: â � â0, the sampling scheme S3 suggests generating
bootstrap sample y� as y� � xâ0 � å� where å� is the bootstrap sample
from å0 � yÿ xâ0. Since we have panel data here, we should also take care
of special problems arising from the serial correlation. So we get the
bootstrap sample of the error term å0 from

Äyi, t � çiÄyi, tÿ1 � å0
i, t (2)

since under the null hypothesis yi, t has a unit root. Since there are cross-
correlations among å0

i, t, we cannot resample å0
i, t directly. We propose

resampling å0
i, t with the cross-section index ®xed, i.e. instead of resampling

å0
i,t, we resample å0

t � [å0
1, t, å

0
2, t, . . . , å0

N , t]9 to get å�t . In this way, we can
preserve the cross-correlation structure of the error term. Then the bootstrap
sample y� is generated as

y�i, t � y�i, tÿ1 � u�i, t with y�i,0 � 0

u�i, t � ç̂iu
�
i, tÿ1 � å�i,t with u�i,0 �

Xm

j�0

ç̂ j
iå
�
ÿ j

where ç̂i's are from estimation results of (2). The method to get the initial
value of u�i,0 is suggested by Rayner (1990). Here å�ÿ j's are drawn as an
independent bootstrap sample and m is selected as 30. A total of 2000
replications are used to generate the empirical distributions.

We can get the critical values at the 5 percent level based on these
empirical distributions. For the sample of the 17 European countries under
study, these critical values are ÿ0.518, 42.61 and ÿ1.157 for the IPS, Fisher
and LL tests respectively. Now, the test statistics for the same sample are
ÿ0.950, 48.912 and ÿ1.078. In contrast to the non-rejection results based
on the usual critical values (derived from standard normal for the IPS and
LL tests and ÷2 for the Fisher test), we can now strongly reject the unit root
null for the data set by using the critical values at the 5 percent level for the
IPS and the Fisher tests, although for the LL test we fail marginally to reject
the null.

In general, the conclusions from the bootstrap experiments are: In the
case of cross-correlated errors there are substantial size distortions in using
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the conventional test statistics for the IPS, Fisher and LL tests, although the
size distortions are less serious for the Fisher test than for the IPS test.
Using the bootstrap method results in a decrease of these size distortions,
although it does not eliminate them. The Fisher test does better than the IPS
test overall using the bootstrap method.

The size distortions with the Levin±Lin test in the case of cross-
correlated errors have also been discussed in O'Connell (1998). He talks of
dramatic size distortions, the actual size being 50 percent when the nominal
size is 5 percent. The size distortions that we observed with the panel data
unit root tests (including the LL test), under cross-correlations, were not as
dramatic as those noted by O'Connell. It is possible that his results are a
consequence of the equi-correlational error structure he assumed.

VI. TESTS BASED ON BONFERRONI INEQUALITY

For the correlated errors case we argued that, for both the Fisher test statistic
and the IPS test statistic, the distribution involves nuisance parameters, but
bootstrap methods could be used to make inferences. There is, however, one
test statistic that is equally applicable in both the uncorrelated and corre-
lated cases. This is the statistic based on the Bonferroni inequality (see Alt,
1982) and discussed in Dufour and Torres (1996). These tests have also
been discussed earlier in Savin (1984) and Dufour (1990).

The idea behind this test is to break up the hypothesis H0: ri � 0 for all
i, i � 1, 2, . . . , N into a set of sub-hypotheses H0i: ri � 0 and noting that
H0 is wrong if and only if any of its components H0i is wrong. Suppose we
choose the signi®cance level ði for the ith test. Then if we follow the rule
that we reject H0 if at least one of the sub-hypotheses H0i is rejected at
signi®cance level ði for H0i, then the Bonferroni inequality says that the
signi®cance level ð for H0 is given by

ð <
XN

i�1

ði:

One simple rule that Dufour and Torres suggest is to take ði � ð=N , unless
there is an a priori compelling reason that some tests ought to be rejected
at lower (or higher) signi®cance level than the others.

We shall now compare this test with the Fisher test for both the cases of
independent tests and correlated tests. Since the tables of signi®cance values
for unit root tests are readily available at the 1 percent signi®cance level, we
chose N � 5 in our investigation, so that ði � 0:01 and ð � 0:05. Note that
the case of small N is favorable to the test based on the Bonferroni
inequality (see p. 299 of Alt, 1982).

We consider four cases of DGP. The basic DGP is

Äyi, t � ái � ri yi, tÿ1 � åi, t
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ái � U[0, 1]

ri � ÿ0:1 for power

0 for size

�
where assumptions on åi, t are different in each case as follows:

Case 1: No serial correlation and contemporaneous correlation

åi, t � N(0, ó 2
i ), where ó 2

i � U [0:5, 1:5]:

Case 2: There is serial correlation, but no contemporaneous correlation

åi, t � ëiåi, tÿ1 � ei, t, where ëi � U [0:2, 0:4]

and

ei, t � N(0, ó 2
i ), with ó 2

i � U [0:5, 1:5]:

Case 3: There is contemporaneous correlation but no serial correlation

å t � [å1, t, å2, t, . . . , åN , t]9 � N (0, Ó),

where Ó � Ø9Ø withØN3N � U [ÿ1, 1]

Case 4: There are both serial correlation and contemporaneous correlation

åi, t � ëiåi, tÿ1 � ei, t, where ëi � U [0:2, 0:4]

and

et � [e1, t, e2, t, . . . , eN , t]9 � N(0, Ó),

where Ó � Ø9Ø with ØN3N � U [ÿ1, 1]:

Table 4 presents the results from the Monte Carlo studies based on 4000
simulations. The results clearly suggest that the power of the Dufour±Torres
(DT) test is substantially lower than that of the Fisher test, although there is
a slight size distortion for the Fisher test in the case of correlated tests.

VII. PANEL DATA TESTS WITH STATIONARITY AS NULL

Although the use of the Fisher test has been outlined in the previous
sections with reference to the ADF test, to compare it with the IPS test, it
can be used with any of the ef®cient unit root tests suggested in the
literature, such as the Elliott et al. (1996) test or the Perron-Ng (1996) test.
It can also be used for tests of stationarity as the null, like the test by
Kwiatkowski et al. (1992) or Leybourne and McCabe (1994). We suggest
the same procedure of combining the p-values to get a ÷2 test statistic and
using the bootstrap method for obtaining the critical values, to account for
the correlations among the test statistics for the individual cross-section
units.

648 BULLETIN

# Blackwell Publishers 1999



VIII. THE CASE OF PANEL COINTEGRATION TESTS

Again the methodology we suggest is applicable to panel cointegration
tests, whether they are tests using no cointegration as null, or cointegration
as null. (There are several tests in each category ± see Chapter 6 of Maddala
and Kim (1998) for a review.) The procedure we suggest is simple and
universally applicable. There is no need for a separate theory for each type
of test. The only problem is the correlation among the test statistics for the
different cross-section units, for which we suggest using the bootstrap
method to get critical values for the ÷2 test. This is the procedure used by
Wu (1998, Chapter 5) for deriving panel data cointegration tests to test the
PPP (purchasing power parity) hypothesis. There have been several panel
data cointegration tests suggested in the literature. See Pedroni (1995,
1997), Kao (1999) and McCoskey and Kao (1998a). They all allow for
heterogeneity in the cointegrating coef®cients. But the null and alternatives
imply that either all the relationships are cointegrated or all the relation-
ships are not cointegrated. There is no allowance for some relationships to
be cointegrated and others not (the Fisher test allows for this ± the p-values
can be different).

Pedroni (1997) suggests seven test statistics. There is a lot of complicated
algebra in the derivations which depend on the construction of LR covar-

TABLE 4
Size and Power Comparison of the Fisher Test with the Dufour±Torres (DT) Test

Case No. Test Size Power

Case 1 Fisher 0.0505 0.1180
T � 25 DT 0.0460 0.0693

Case 1 Fisher 0.0473 0.3142
T � 50 DT 0.0467 0.1232

Case 2 Fisher 0.0560 0.1135
T � 25 DT 0.0565 0.0760

Case 2 Fisher 0.0480 0.2802
T � 50 DT 0.0493 0.1185

Case 3 Fisher 0.0785 0.1630
T � 25 DT 0.0480 0.0683

Case 3 Fisher 0.0750 0.3448
T � 50 DT 0.0432 0.1215

Case 4 Fisher 0.0858 0.1530
T � 25 DT 0.0578 0.0767

Case 4 Fisher 0.0825 0.3073
T � 50 DT 0.0462 0.1143
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iance matrices of the errors, whose small sample properties are known to be
questionable. His tests are for no cointegration as null.

Kao (1999) suggests tests for no cointegration as the null and McCoskey
and Kao (1998a) suggest tests for the null of cointegration. The method-
ology for the derivation of the test statistics in the two cases is different.

We have outlined brie¯y the de®ciencies of these alternative tests for
cointegration in panel data. A detailed discussion of these tests is beyond
the scope of our paper. This can be found in McCoskey and Kao (1998b)
who present a detailed Monte Carlo study of the tests by Kao, Pedroni and
McCoskey and Kao. Limit theory for non-stationary panel data can be
found in Phillips and Moon (1999).

IX. CONCLUSIONS

The paper compares the Levin±Lin and Im±Pesaran±Shin (IPS) panel data
unit root tests with the Fisher test which was suggested over 60 years ago by
R. A. Fisher and has a celebrated history in the statistical literature. The
main conclusion of the paper is that the Fisher test is simple and straightfor-
ward to use and is a better test than the LL and IPS tests. Some other
conservative tests (applicable in the case of correlated tests) based on the
Bonferroni bounds have also been found to be inferior to the Fisher test.
Our arguments also apply to tests using stationarity as null and to panel
cointegration tests testing the null of no cointegration as well as testing the
null of cointegration. The essential problem there is again one of combining
the evidence from several tests. Also, the same problems of correlated tests
have to be addressed, using bootstrap methods.

One major problem with the literature on unit root and cointegration tests
in panel data is that there is an urge to generalize the tests used in univariate
data to panel data under assumptions that are not likely to be meaningful in
practice. There is more concentration on technical details and less on the
questions being answered. This makes them not very useful in practice. For
instance, the tests are almost all tests for the hypothesis that all series are
stationary vs. all series are non-stationary, or that all series are cointegrated
vs. that none is cointegrated. This is almost always a hypothesis of
questionable value to test.

It is very important to bear in mind Thoreau's admonition quoted at the
beginning of our paper.

The Ohio State University
SUNY at Buffalo

Date of Receipt of Final Manuscript: July 1999
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