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Introduction: A composite index (or simply an index) is constructed with an objective to 

obtain a synoptic or comprehensive single number, representing a vast array of measurements 

on the multiple aspects of a ‘conceptual entity’ such as  general price level, cost of living, level 

of economic development and regional disparities (Adelman and Morris, 1967; Pal, 1975; 

Mishra and Chopra, 1978; Mishra and Gaikwad, 1979), quality of life (Mishra and Ngullie, 

2003), human development (Cahill and Sánchez, 2001; OECD, 2003; Jahan, 2005), status of 

social well being (Salzman, 2003), etc.  Following Saltelli (2007), Michalos et al. (2006), 

Nardo, et al. (2005), Booysen (2002) and Michalos (1980) the list of advantages of composite 

indices (enlisted by Michalos et al. 2006) may me presented as follows: 

 
� A single composite index yielding a single numerical value is an excellent communications tool 

for use with practically any constituency, including the news media, general public, and elected 

and un-elected key decision-makers 

� Such indices provide simple targets facilitating the focus of attention 

� The simplicity of a composite index facilitates necessary negotiations about its practical value 

and usefulness 

� Reduced transaction costs of negotiations with such indicators increase the latter’s efficiency 

and effectiveness, probably leading to the development of better policies and programs 

� Such indices provide a means to simplifying complex, multi-dimensional phenomena and 

measures 

� They make it easier to measure and visually represent overall trends in several distinct 

indicators over time and/or across geographic regions 

� Increase in the ease of measuring and representing trends increases our ability to predict and 

possibly manage future trends 

� They provide a means of comparing diverse phenomena and assessing their relative 

importance, status or standing on the basis of some common scale of measurement, across time 

and space.  
 

Such composite indices are often a weighted linear combination of a host of variables 

that may be symbolically expressed as I=Xw, where X is an n m×  matrix of measurements in n  

rows (cases) and m  columns (variables), w is a column vector of m  elements and, therefore, I 

is a column vector of n  index values, one for each case, summarizing all variables for the case 

concerned. Alternatively, it may be expressed as    

1 1 2 2

1

... ; 1,2,...,
m

i j ij i i m im

j

I w x w x w x w x i n
=

= = + + + =∑  

There are two approaches to determining w or weights; first by assessing the 

importance of different variables with regard to the entity, idea or concept that they measure 

(Munda and Nardo, 2005) and secondly by obtaining those weights intrinsically. In the first 

case the weights are obtained from extraneous information. They might be based on the expert 
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opinion or  some other data, say, Y. However, in the second case, weights are derived (on some 

theoretical considerations - often mathematical) from the data (X) itself.  

 

 The Principal Components Analysis (PCA) is perhaps the most-used method to obtain 

weights intrinsically. The PCA determines weights of different variables such that the sum of 

the squared coefficients of (the product moment) correlation between the index (I) and the 

variables (X) is maximized. If we denote by r(I, xj) the coefficient of correlation between I and 

xj, then the PCA weights are obtained such that 2

1
( , )

m

jj
r I x

=∑  is maximized. 

 

 The PCA has excellent mathematically desirable properties (Kendall and Stuart, 1968). 

Among those, the most important property is that the index so obtained relates to the first 

principal component, which explains the largest part of variation in the constituent variables 

(X). Secondly, from the residual, one may obtain the subsequent indices that are orthogonal to 

the first index (as well as to other indices so derived). These indices together explain the 

variations in the data (X) completely.  

 

 However, the PCA has only one objective: to construct an orthogonal index that 

explains the largest portion of variation in the constituent variables. This is obtained by 

maximizing the sum of the squared coefficient of correlation coefficients between the index (I) 

and the variables (X). In so doing, the PCA is not concerned with the question as to which 

particular variables obtain large or small weights, or which variables are only poorly 

represented by the index, etc. As a result what happens in practice is that when a group of 

variables is poorly correlated with others in the entire data set, the PCA index assigns very 

small loadings to some and larger loadings to the other variables if such loadings help in 

maximizing the sum of the squared correlation coefficients between the index (I) and the 

variables (X). Consequently, PCA loadings are highly elitist – preferring highly correlated 

variables to poorly correlated variables, irrespective of the (possible) contextual importance of 

the latter set of variables. On many occasions it is found that some (evidently) very important 

variables are roughly dealt with by the PCA simply because those variables exhibited widely 

distributed scatter or they failed to fall within a narrow band around a straight line. Further, 

although the PCA may permit construction of the subsequent indices (orthogonal to the first 

leading index), it may not be possible to use them for any comprehensive analysis since there is 

no dependable procedure to make an index by merging several principal component indices 

derived from the data (X).   

 

 It is not unusual, therefore, that the PCA performs poorly at constructing 

comprehensive indices from the variables especially if the data pertain to a system that has not 

evolved sufficiently (fully) such that everything determines everything else (and thus the 

variable drawn from the system are highly inter-correlated). It is well known that 

underdeveloped economies characterize underdeveloped intra-systemic interdependence as 

well as underdeveloped data recording mechanism. Therefore, variables drawn from an 

underdeveloped system exhibit widely distributed scatters and poor inter-correlations among 

different measurements. The elitist approach of the PCA therefore does not suit to the 

underdeveloped systems. 
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 Apart from this, data may contain outliers. Those outliers may pull down (or up) 

correlation coefficients of the one set of variables with the rest others and thus affect the index 

unpredictably. The variables favored or disfavored by the PCA may obtain entirely 

unwarranted weights. It could have been proper in such condition to use the absolute analog of 

the product moment correlation coefficient suggested by Bradley (1985) who showed that if 

( , ), 1, 2, ...,
i i

u v i n=  are n pairs of values such that the variables u  and v  have the same 

0median =  and the same mean deviation (from median), 
1 1

(1/ ) (1/ )
n n

i ii i
n u n v

= =
=∑ ∑ , both of 

which conditions may be met by any pair of variables when suitably transformed, the absolute 

correlation may then be defined as 
1 1

( , ) { } / { }
n n

i i i i i ii i
u v u v u v u vρ

= =
= + − − +∑ ∑ that lies between 

[ 1, 1]− .  However, it is a mute question whether the PCA can be carried out on the inter-

correlation matrices containing a row (column) of absolute correlation coefficients while the 

other rows (columns) contain the product moment correlation coefficients.   

 

Alternative Methods for Deriving Objective Weights: To draw more attention to the 

representation of each variable correlated strongly or weakly with the other fellow variables in 

the data to be used for construction of an index, albeit with some compromise on the 

explanatory power of the index regarding variation in the data (X), Mishra (2007) proposed 

two methods. The first, (I1), maximizing the sum of absolute correlation coefficients of the 

index with the constituent variables and the second, (IM), maximizing the minimal correlation 

coefficient of the index with the constituent variables. It was shown that I1 improves the 

representation of weakly correlated variables while IM has a tendency to be almost equally 

correlated with most of the constituent variables in which the weakly correlated variables have 

a secure representation. These two types of index were called ‘inclusive’ and ‘egalitarian’ 

respectively. It was also shown that the inclusive index (I1) has an explanatory power only 

slightly less than the PCA index (I2), which is clearly due to a trade-off between individual 

representation and overall representation or explanatory power. However, the egalitarian index 

(IM) has much larger trade-off.  

 

The Objectives of this Paper:  In this paper we further inquire if inclusive indices (I1) 

improve the representation of weakly correlated variables while the egalitarian indices (IM) are 

almost equally correlated with most of the constituent variables. We also introduce a new index 

that, in some sense, maximizes an analogue of entropy in the data used for constructing the 

index. If we define 
1

( , ) ; ( , ) / , 1, 2, ...,
m

j j jj
B r I x b r I x B j m

=
= = =∑  where ( , )

j
r I x =coefficient of 

correlation between the index (I) and the constituent variable
j

x , an index may be constructed 

so as to maximizes 
1
[ ln( )] ln( )

m

j jj
b b B B

=
+∑ .  We will call such an index IE.  

 

The Computational Aspects: For obtaining the PCA indices one may apply the usual 

procedure (available in many software packages such as STATISTICA or SPSS). The procedure 

runs as follows. First, the (product moment) correlation matrix, 
m m

R ×  is obtained from the data 

on X =(x1, x2,…,xm). Then the largest (first) eigenvalue ( λ ) and the associated eigenvector ( v ) 

of R  are obtained and the eigenvector is standardized such that its squared Euclidean norm is 

equal to the eigenvalue. This standardized eigenvector (call it *
v ) is used to obtain * *

2I X v= , 

where *X is obtained from X such that each variable has zero mean and unit standard 
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deviation. In some cases, however, the eigenvector is standardized such that its Euclidean norm 

is equal to unity. These alternative schemes of standardization of the eigenvector only differ as 

to the scale of the index (I2), but its correlation coefficients with the constituent variables 

remain unaltered. If one desires, the index can have non-zero mean as well and this can be 

done by a suitable transformation of the zero-mean index (I2), without any effect on its 

correlation structure. 

 

 Alternatively, one may maximize 2

2 21
( , );

m

jj
r I x I Xw

=
=∑  directly, without going through 

the matrix operations detailed out above. It requires solving the nonlinear programming 

problem straight away using 1 2( , ,..., )
m

w w w w=  as the vector of decision variables.  Although 

this direct optimization method has seldom been used to construct an index, it has flexibility 

and generality while the matrix method is specific but (possibly) simpler.   

 

 The flexibility of the direct optimization method is very handy when we need I1, IM or 

IE type of index. We obtain  

2I Xw=  by maximization of 2

21
( , )

m

jj
r I x

=∑  

1I Xw=  by maximization of 11
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m

jj
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M j
j

r I x  

E
I Xw=  by maximization of  

  
1 1
[ ln( )] ln( ) : ( , ) ; ( , ) / , 1, 2, ...,

m m

j j j j jj j
b b B B B r I x b r I x B j m

= =
+ = = =∑ ∑  

 We have optimized the functions by direct non-linear programming for which we use 

the Differential Evolution method (Mishra, 2006-a). Particle Swarm optimization (Mishra, 

2006-b) also yields equally good results (not presented here to avoid duplication).  

 

The Main Findings: We have used four sets of eight variables to construct indices. Among 

these sets, the first has the variables that correlate highly among themselves (Table-I.A). The 

other three sets contain some variables that correlate highly with some of their fellow variables, 

but they correlate only poorly with the others (Tables II.A through IV.A).   All the four indices 

are obtained for each set of data. These indices are presented in Tables-I.B, II.B, III.B and 

IV.B. Their correlation coefficients with the constituent variables, the SAR (sum of absolute 

correlation coefficients) and SSR (sum of squared correlation coefficients) are presented in 

Tables-I.C, II.C, III.C and IV.C. The correlation coefficients among the constituent variables, 

among different indices, as well as across the indices and the constituent variables are 

presented in Tables I.D, II.D, III.D and IV.D. Different indices for each set of data have been 

graphically presented in Fig.-I through Fig.-IV. All indices are ordered in conformity with the 

ascending order of values of I2 (the PCA index) to facilitate comparison. Instead of presenting 

the indices as points associated with each case (from 1 to 24), which is more appropriate, 

curves have been drawn only to facilitate comprehension visually.  

 

 First, we find that when all the variables are highly correlated among themselves, I2, I1 

and IE are very close to each other (see Tables-I.B, I.C, I.D and the Fig.-I). However, when the 

set contains some poorly correlated variables, I2 differs from I1 (as well as IE). Interestingly, I1 

and IE are very close to each other irrespective of the pair-wise correlations among the 
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constituent variables. Yet, IE has shown a leaning towards I2  [see Tables in II, III and IV series 

(B, C and D), and the Fig.-II through Fig.-IV].   

 

 Secondly, I1 (as well as IE) has always alleviated the correlation between the index and 

the constituent variables that were poorly dealt with by the PCA I2.  For instance, the variables 

x5 and x6 obtained correlation coefficients –0.17 and 0.38 with I2, which were alleviated to the 

values –0.37 and 0.47 by I1 (see Table-II.D). The trade off for this was a decline in the SSR 

from 3.638772 (of I2) to 3.47997 (of I1), which is about 1.985 percent of the total variation in 

the data. For the third set of data the decline in explanatory power was about 2.1 percent (of the 

total) for alleviating the correlation (representation) of three variables, x4, x6, and x8 (see Table-

III.D). For the fourth set of data, correlation coefficients of five variables, x3,  x4, x6, x7 and x8 

were alleviated (see Table IV.D) for a trade-off of a decline in the explanatory power by 2.178 

percent. From these observations it is clear that I1 alleviates representation of poorly correlated 

variables for only a small trade-off of the overall explanatory power of the index.  

 

 Thirdly, a perusal of Fig.-II through Fig.-IV reveals that alleviation of representation of 

weakly correlated variables by I1 alters the rank order of cases obtained by I2. While all indices 

are ordered in accordance with I2 arranged in an ascending order (increasing monotonically), 

the non-monotonic movements of I1, IE and IM indicate to changes in the rank order suggested 

by the PCA I2. Especially, the ranking of cases by the IM index is highly volatile.   
 

Concluding Remarks: Construction of (composite) indices by the PCA is very common, but 

this method has a preference for highly correlated variables to the poorly correlated variables 

in the data set. Very often it fails to represent the poorly correlated variables. However, poor 

correlation does not entail the marginal importance, since correlation coefficients among the 

variables depend, apart from their linearity, also on their scatter, presence or absence of 

outliers, level of evolution of a system and intra-systemic integration among the different 

constituents of the system. Under-evolved systems often throw up the data with poorly 

correlated variables. If an index gives only marginal representation to the poorly correlated 

variables, it is elitist. The PCA index is often elitist, particularly for an under-evolved system.   

 

 In this paper we considered three alternative indices that determine weights given to 

different constituent variables on the principles different from the PCA. Two of the proposed 

indices, the one that maximizes the sum of absolute correlation coefficient of the index with 

the constituent variables and the other that maximizes the entropy-like function of the 

correlation coefficients between the index and the constituent variables are found to be very 

close to each other. These indices alleviate the representation of poorly correlated variables for 

some small reduction in the overall explanatory power (vis-à-vis the PCA index). These 

indices are inclusive in nature, caring for the representation of the poorly correlated variables. 

The third index obtained by maximization of the minimal correlation between the index and 

the constituent variables cares most for the least correlated variable and in so doing becomes 

egalitarian in nature.  

 

 It appears that neither the PCA index nor the egalitarian index can be fully justified. It 

is more likely that the inclusive indices (I1 and IE) that strike a balance between individual 

representation and overall representation (explanatory power) would perform better in real life. 

Nevertheless, it is dependent on the analyst how to choose among the different indices.   
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Tables and Figures 

 

Table-I.A: Indicator Variables for Construction of Composite Indices [Highly Correlated] 

Sl. No. x1 x2 x3 x4 x5 x6 x7 x8 

1 0.24746 0.62495 0.64798 0.29265 0.31671 0.45131 0.42735 0.08015 

2 0.06005 0.04168 0.04671 0.08230 0.08601 0.06681 0.09165 0.09345 

3 0.21551 0.22392 0.24862 0.43289 0.20651 0.19147 0.25072 0.25365 

4 0.00467 0.00204 0.00207 0.00349 0.00036 0.00000 0.00060 0.00062 

5 0.00492 0.00094 0.00148 0.00339 0.06350 0.04027 0.06567 0.06712 

6 0.00000 0.00000 0.00000 0.00000 0.05235 0.02283 0.03290 0.03377 

7 0.08357 0.05477 0.05515 0.09097 0.04490 0.02572 0.02829 0.02907 

8 0.01201 0.00437 0.00596 0.01215 0.05122 0.02909 0.05154 0.05277 

9 0.37148 0.48721 0.51445 0.86138 0.68763 0.92834 1.00000 1.00000 

10 0.13528 0.13168 0.14674 0.25535 0.21537 0.17546 0.19945 0.20215 

11 0.03036 0.02167 0.02812 0.05547 0.03834 0.04408 0.07854 0.08017 

12 0.00517 0.00247 0.00273 0.00486 0.00093 0.00203 0.00179 0.00185 

13 0.22977 0.23106 0.24024 0.39711 0.32794 0.40115 0.44139 0.44446 

14 0.10075 0.13038 0.13673 0.22851 0.09439 0.09460 0.09475 0.09659 

15 0.24962 0.29629 0.32783 0.57561 0.25105 0.24130 0.28731 0.29034 

16 1.00000 1.00000 1.00000 0.99986 1.00000 1.00000 0.97507 0.31127 

17 0.09500 0.09544 0.11392 0.21605 0.07342 0.14685 0.21159 0.21435 

18 0.00692 0.00531 0.00670 0.01292 0.04406 0.01908 0.03115 0.03199 

19 0.15371 0.23098 0.24742 0.41749 0.12368 0.12069 0.12515 0.12731 

20 0.12861 0.14135 0.16284 0.29275 0.12030 0.15318 0.18549 0.18811 

21 0.48198 0.64806 0.63219 0.99368 0.45382 0.62726 0.56703 0.56978 

22 0.38457 0.58160 0.60495 1.00000 0.33558 0.38847 0.40284 0.40595 

23 0.26555 0.46573 0.46191 0.73598 0.18568 0.29337 0.30829 0.31136 

24 0.00167 0.00766 0.01020 0.02037 0.00000 0.00067 0.00000 0.00000 

 

Table-I.B: Composite Indices Obtained by Different Methods [Ref Variables Table-I.A] 

Sl I2 IM I1 IE Sl I2 IM I1 IE 
1 1.079414 0.36413 1.056081 1.057227 13 0.937040 0.538982 0.943005 0.942854 

2 0.198332 0.118026 0.199657 0.199622 14 0.330894 0.166297 0.330367 0.330430 

3 0.689426 0.378483 0.691368 0.691366 15 0.853914 0.445329 0.855006 0.855063 

4 0.004868 0.003617 0.004838 0.004840 16 2.564157 1.062231 2.519834 2.522082 

5 0.088566 0.05599 0.090258 0.090194 17 0.394920 0.246977 0.400026 0.399850 

6 0.051678 0.026676 0.052226 0.052208 18 0.056314 0.030495 0.056834 0.056818 

7 0.143639 0.083649 0.142771 0.142825 19 0.517690 0.246265 0.516119 0.516253 

8 0.078064 0.049483 0.079316 0.079270 20 0.465196 0.256904 0.467424 0.467383 

9 2.009407 1.123417 2.024317 2.023906 21 1.694556 0.886993 1.694174 1.694394 

10 0.504692 0.269166 0.506018 0.506020 22 1.380812 0.686166 1.379353 1.379588 

11 0.129412 0.085831 0.131575 0.131496 23 1.014063 0.515119 1.014063 1.014188 

12 0.007571 0.00498 0.007550 0.007552 24 0.012471 0.002931 0.012337 0.012345 

 

Table-I.C: Correlation of Variables with Different Composite [Ref Variables Table-I.A & Indices I.B] 

Var x1 x2 x3 x4 x5 x6 x7 x8 SAR SSR 
I2 0.946761 0.952049 0.953948 0.929121 0.966369 0.979891 0.970493 0.788174 7.486806 7.033167 

IM 0.888074 0.888074 0.891592 0.942540 0.931946 0.966049 0.968422 0.888074 7.364771 6.788959 

I1 0.943117 0.948906 0.950980 0.931407 0.964780 0.980130 0.971582 0.796657 7.487560 7.031865 

IE 0.943282 0.949048 0.951116 0.931311 0.964854 0.980123 0.971538 0.796286 7.487558 7.031977 

SAS=Sum of Absolute Correlation Coefficients; SSR=Sum of Squared Correlation Coefficients  
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Table-I.D: Correlation Coefficients Among Variables and Indices [[Ref Variables Table-I.A & Indices I.B] 

 
Off-Diagonal Entries in the Red are Significant at 5% Probability 

 

 

 
Fig.-I. Relationship Among Different Composite Indices [Ref. Indices Table-I.B] 
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Table-II.A: Indicator Variables for Construction of Composite Indices [Poorly Correlated] 

Sl. No. x1 x2 x3 x4 x5 x6 x7 x8 

1 0.24746 0.62495 0.64798 0.98526 0.53466 0.39441 0.20494 0.38059 

2 0.06005 0.04168 0.04671 0.81953 0.34072 0.30900 0.24717 0.42699 

3 0.21551 0.22392 0.24862 0.75169 0.07558 1.00000 0.05978 0.74561 

4 0.00467 0.00204 0.00207 0.62952 0.69993 0.62658 0.08976 0.00000 

5 0.00492 0.00094 0.00148 0.37364 0.40331 0.46080 0.73544 0.14438 

6 0.00000 0.00000 0.00000 0.00382 0.44343 0.80199 0.00000 0.37479 

7 0.08357 0.05477 0.05515 0.14273 0.81714 0.51229 0.66290 0.80686 

8 0.01201 0.00437 0.00596 0.00000 0.78624 0.70126 0.58950 0.33715 

9 0.37148 0.48721 0.51445 0.94753 0.32142 0.83483 1.00000 1.00000 

10 0.13528 0.13168 0.14674 0.75008 0.53330 0.89228 0.75648 0.29370 

11 0.03036 0.02167 0.02812 0.52677 0.50320 0.27864 0.16180 0.28583 

12 0.00517 0.00247 0.00273 0.81192 0.67010 0.13235 0.18545 0.20847 

13 0.22977 0.23106 0.24024 1.00000 0.50611 0.43962 0.72437 0.61293 

14 0.10075 0.13038 0.13673 0.07053 0.60184 0.00000 0.62472 0.34690 

15 0.24962 0.29629 0.32783 0.20606 1.00000 0.48399 0.14823 0.50274 

16 1.00000 1.00000 1.00000 0.84209 0.50033 0.79510 0.79321 0.19507 

17 0.09500 0.09544 0.11392 0.35220 0.52443 0.29656 0.35003 0.25322 

18 0.00692 0.00531 0.00670 0.79915 0.57212 0.51521 0.25717 0.11219 

19 0.15371 0.23098 0.24742 0.21522 0.60198 0.81727 0.56037 0.64080 

20 0.12861 0.14135 0.16284 0.45753 0.00000 0.80053 0.72405 0.61814 

21 0.48198 0.64806 0.63219 0.74621 0.40213 0.62240 0.95548 0.50585 

22 0.38457 0.58160 0.60495 0.63480 0.60728 0.31909 0.90734 0.95641 

23 0.26555 0.46573 0.46191 0.35542 0.84484 0.91816 0.29377 0.41605 

24 0.00167 0.00766 0.01020 0.14215 0.25842 0.18922 0.61566 0.49687 

 

Table-II.B: Composite Indices Obtained by Different Methods [Ref Variables Table-II.A] 

Sl I2 IM I1 IE Sl I2 IM I1 IE 
1 1.125449 0.691817 0.940740 0.956974 13 0.928561 0.945244 0.929377 0.936279 

2 0.437819 0.605365 0.486051 0.487176 14 0.377971 0.117180 0.223698 0.235215 

3 0.881326 1.161851 1.066787 1.062896 15 0.633218 0.160483 0.363657 0.382202 

4 0.210942 0.300350 0.139033 0.144432 16 2.060263 1.067789 1.727033 1.755478 

5 0.348284 0.531365 0.376710 0.378368 17 0.380738 0.293795 0.297690 0.305053 

6 0.195389 0.364572 0.229844 0.229819 18 0.311787 0.475802 0.296464 0.299828 

7 0.499766 0.496664 0.448307 0.456081 19 0.747547 0.725261 0.725769 0.732526 

8 0.291834 0.341532 0.227550 0.233963 20 0.793596 1.142705 1.004999 0.999831 

9 1.505166 1.513450 1.589971 1.596008 21 1.485616 1.098683 1.376886 1.39183 

10 0.745028 0.946549 0.788813 0.791959 22 1.375272 0.931124 1.233855 1.250889 

11 0.263581 0.300388 0.223115 0.227638 23 0.933953 0.580389 0.741194 0.757039 

12 0.232466 0.236987 0.139987 0.147184 24 0.319021 0.447995 0.372676 0.373255 

 

Table-II.C: Correlation of Variables with Different Composite [Ref Variables Table-II.A & Indices II.B] 

Var x1 x2 x3 x4 x5 x6 x7 x8 SAR SSR 
I2 0.936702 0.951937 0.953816 0.511988 -0.166793 0.379617 0.566275 0.436675 4.903802 3.638772 

IM 0.584170 0.577289 0.585303 0.577289 -0.577289 0.577289 0.577289 0.577289 4.633205 2.683408 

I1 0.847254 0.852676 0.857515 0.547537 -0.372181 0.465816 0.600943 0.532267 5.076190 3.479970 

IE 0.853871 0.859913 0.864598 0.546234 -0.360623 0.461316 0.600651 0.528412 5.075618 3.497309 

SAS=Sum of Absolute Correlation Coefficients; SSR=Sum of Squared Correlation Coefficients 
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Table-II.D: Correlation Coefficients Among Variables and Indices [[Ref Variables Table-II.A & Indices II.B] 

 
Off-Diagonal Entries in the Red are Significant at 5% Probability 

 

 

 
Fig.-II. Relationship Among Different Composite Indices [Ref. Indices Table-II.B] 
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Table-III.A: Indicator Variables for Construction of Composite Indices [Poorly Correlated] 

Sl. No. x1 x2 x3 x4 x5 x6 x7 x8 

1 0.24746 0.62495 0.64530 1.00000 0.48439 0.25953 0.10990 0.43327 

2 0.06005 0.04168 0.36793 0.90801 0.37204 0.33344 0.29963 0.48453 

3 0.21551 0.22392 0.12246 0.67552 0.04525 1.00000 0.00000 0.80680 

4 0.00467 0.00204 0.38290 0.73010 0.78395 0.69234 0.13950 0.00000 

5 0.00492 0.00094 0.07724 0.44322 0.44683 0.50271 0.92201 0.14866 

6 0.00000 0.00000 0.09666 0.03003 0.49347 0.86528 0.01387 0.44619 

7 0.08357 0.05477 0.74887 0.14521 0.88956 0.56247 0.84635 0.97911 

8 0.01201 0.00437 0.00000 0.02033 0.85454 0.75777 0.74490 0.39172 

9 0.37148 0.48721 0.89033 0.70394 0.11269 0.51601 0.87274 0.79682 

10 0.13528 0.13168 0.32328 0.75292 0.52323 0.89464 0.89386 0.27378 

11 0.03036 0.02167 0.75736 0.59169 0.56191 0.31146 0.19800 0.31684 

12 0.00517 0.00247 0.39756 0.93403 0.75234 0.17698 0.25891 0.25563 

13 0.22977 0.23106 0.92212 0.96992 0.44989 0.32784 0.75502 0.56130 

14 0.10075 0.13038 0.44711 0.00289 0.64341 0.00000 0.77143 0.38477 

15 0.24962 0.29629 0.97997 0.00000 1.00000 0.44172 0.09592 0.49252 

16 1.00000 1.00000 0.51977 0.52392 0.17676 0.44431 0.62379 0.10544 

17 0.09500 0.09544 0.38364 0.32430 0.57030 0.28660 0.37963 0.21877 

18 0.00692 0.00531 0.51589 0.91611 0.63214 0.56833 0.33681 0.12430 

19 0.15371 0.23098 0.63596 0.08082 0.63192 0.83975 0.67841 0.73261 

20 0.12861 0.14135 1.00000 0.40818 0.00000 0.80856 0.85891 0.67849 

21 0.48198 0.64806 0.23095 0.41917 0.29050 0.42237 0.99341 0.37558 

22 0.38457 0.58160 0.82704 0.29142 0.55329 0.20774 1.00000 1.00000 

23 0.26555 0.46573 0.68763 0.09593 0.86276 0.87165 0.26973 0.37692 

24 0.00167 0.00766 0.05871 0.17606 0.31965 0.23676 0.79869 0.61079 

 

Table-III.B: Composite Indices Obtained by Different Methods [Ref Variables Table-III.A] 

Sl I2 IM I1 IE Sl I2 IM I1 IE 
1 0.651733 0.818771 0.748653 0.743082 13 0.657447 1.036658 0.896935 0.884985 

2 0.213099 0.728379 0.424731 0.409833 14 0.285439 0.478063 0.362768 0.359784 

3 0.385989 0.514145 0.325942 0.328320 15 0.337320 0.272618 0.213000 0.221695 

4 -0.155489 0.136302 -0.166052 -0.170653 16 1.409851 0.770389 1.118269 1.142971 

5 0.069696 0.349755 0.126488 0.121414 17 0.141003 0.325231 0.168031 0.165503 

6 -0.121018 -0.076426 -0.288529 -0.281552 18 0.018980 0.420868 0.134952 0.124445 

7 0.324372 0.697248 0.409374 0.405274 19 0.401334 0.400253 0.305872 0.313528 

8 -0.104151 0.107688 -0.218741 -0.215419 20 0.675407 0.638039 0.747407 0.749557 

9 1.032543 1.064830 1.143588 1.143399 21 0.896517 0.736519 0.808321 0.817525 

10 0.261768 0.488108 0.266733 0.264948 22 1.016361 1.109601 1.107143 1.107846 

11 0.151442 0.460668 0.285860 0.277170 23 0.380115 0.123095 0.117860 0.134196 

12 0.001039 0.624263 0.224154 0.206151 24 0.196108 0.553662 0.322833 0.315328 

 

 

Table-III.C: Correlation of Variables with Different Composite [Ref Variables Table-III.A & Indices III.B] 

Var x1 x2 x3 x4 x5 x6 x7 x8 SAR SSR 
I2 0.892224 0.894489 0.481349 0.103277 -0.523490 -0.169397 0.423706 0.354061 3.841993 2.446160 

IM 0.468925 0.49504 0.468925 0.468925 -0.468930 -0.468930 0.468925 0.468925 3.7775160 1.7843010 

I1 0.719992 0.736127 0.542095 0.296654 -0.557102 -0.360363 0.474812 0.412594 4.099740 2.278047 

IE 0.733698 0.748858 0.541317 0.282511 -0.557073 -0.348860 0.474634 0.411634 4.098585 2.298691 

SAS=Sum of Absolute Correlation Coefficients; SSR=Sum of Squared Correlation Coefficients 
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Table-III.D: Correlation Coefficients Among Variables and Indices [[Ref Variables Table-III.A & Indices III.B] 

 
Off-Diagonal Entries in the Red are Significant at 5% Probability 

 

 

 
Fig.-III. Relationship Among Different Composite Indices [Ref. Indices Table-III.B] 
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Table-IV.A: Indicator Variables for Construction of Composite Indices [Poorly Correlated] 

Sl. No. x1 x2 x3 x4 x5 x6 x7 x8 

1 0.24746 0.62495 0.59656 1.00000 0.47371 0.23122 0.09670 0.43659 

2 0.06005 0.04168 0.36946 0.92859 0.37870 0.33857 0.31651 0.48790 

3 0.21551 0.22392 0.10233 0.67130 0.03881 1.00000 0.00000 0.80370 

4 0.00467 0.00204 0.38867 0.76192 0.80181 0.70615 0.16189 0.00000 

5 0.00492 0.00094 0.07874 0.48210 0.45608 0.51151 0.94886 0.14633 

6 0.00000 0.00000 0.09857 0.07938 0.50411 0.87856 0.03202 0.45392 

7 0.08357 0.05477 0.75502 0.18382 0.90495 0.57300 0.87533 1.00000 

8 0.01201 0.00437 0.00000 0.06887 0.86906 0.76964 0.77069 0.39647 

9 0.37148 0.48721 0.85708 0.66173 0.06831 0.44908 0.82186 0.72743 

10 0.13528 0.13168 0.31517 0.76225 0.52109 0.89514 0.90931 0.26249 

11 0.03036 0.02167 0.76607 0.62239 0.57439 0.31835 0.21469 0.31737 

12 0.00517 0.00247 0.40348 0.96070 0.76983 0.18635 0.28270 0.26163 

13 0.22977 0.23106 0.91405 0.96157 0.43794 0.30438 0.74877 0.53544 

14 0.10075 0.13038 0.44165 0.03303 0.65224 0.00000 0.79399 0.38547 

15 0.24962 0.29629 0.96482 0.00000 1.00000 0.43284 0.09410 0.47866 

16 1.00000 1.00000 0.43752 0.47409 0.10797 0.37067 0.57185 0.08047 

17 0.09500 0.09544 0.37933 0.34760 0.58006 0.28451 0.38762 0.20508 

18 0.00692 0.00531 0.52312 0.94252 0.64490 0.57948 0.35916 0.12449 

19 0.15371 0.23098 0.62319 0.09259 0.63828 0.84447 0.69729 0.73891 

20 0.12861 0.14135 1.00000 0.42275 0.00000 0.81025 0.87508 0.67812 

21 0.48198 0.64806 0.17777 0.37246 0.26676 0.38038 0.97977 0.33419 

22 0.38457 0.58160 0.78475 0.24730 0.54181 0.18436 1.00000 0.98803 

23 0.26555 0.46573 0.65625 0.07961 0.86657 0.86189 0.26836 0.35843 

24 0.00167 0.00766 0.05916 0.22005 0.33267 0.24674 0.82941 0.62545 

 

Table-IV.B: Composite Indices Obtained by Different Methods [Ref Variables Table-IV.A] 

Sl I2 IM I1 IE Sl I2 IM I1 IE 
1 0.531098 0.925353 0.182593 0.221711 13 0.494170 1.150057 0.356003 0.389267 

2 0.094656 0.841262 -0.091308 -0.063412 14 0.213905 0.552373 0.368402 0.376231 

3 0.244917 0.652166 -0.058258 -0.022551 15 0.219757 0.380701 0.229124 0.246618 

4 -0.269473 0.306820 -0.582179 -0.552165 16 1.335452 0.876993 0.845077 0.892770 

5 -0.027031 0.490731 -0.127556 -0.105971 17 0.056142 0.418350 -0.019365 -0.002165 

6 -0.213773 0.074337 -0.307416 -0.290635 18 -0.110342 0.580703 -0.384740 -0.353482 

7 0.159879 0.865343 0.346443 0.364903 19 0.247875 0.563812 0.275847 0.298739 

8 -0.208298 0.278327 -0.226687 -0.207978 20 0.498274 0.793722 0.525584 0.549162 

9 0.861887 1.136477 0.753595 0.787038 21 0.794450 0.813497 0.580709 0.614520 

10 0.109549 0.674369 -0.154601 -0.117721 22 0.866519 1.180156 0.965953 0.991286 

11 0.036302 0.576362 -0.048515 -0.028578 23 0.245266 0.269341 0.075130 0.103762 

12 -0.104548 0.741485 -0.305911 -0.279128 24 0.111973 0.650391 0.223784 0.235157 

 

Table-IV.C: Correlation of Variables with Different Composite [Ref Variables Table-IV.A & Indices IV.B] 

Var x1 x2 x3 x4 x5 x6 x7 x8 SAR SSR 
I2 0.909969 0.907878 0.379255 0.007804 -0.566301 -0.280218 0.359750 0.266566 3.677741 2.395877 

IM 0.448620 0.469218 0.448620 0.448620 -0.484044 -0.448620 0.448620 0.448620 3.644981 1.662023 

I1 0.725619 0.732870 0.466649 -0.265822 -0.432589 -0.350864 0.542376 0.514956 4.031744 2.221633 

IE 0.737322 0.744495 0.466621 -0.250255 -0.440816 -0.345379 0.537675 0.508116 4.030679 2.239160 

SAS=Sum of Absolute Correlation Coefficients; SSR=Sum of Squared Correlation Coefficients 
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Table-IV.D: Correlation Coefficients Among Variables and Indices [[Ref Variables Table-IV.A & Indices IV.B] 

 
Off-Diagonal Entries in the Red are Significant at 5% Probability 

 
Fig.-IV. Relationship Among Different Composite Indices [Ref. Indices Table-IV.B] 

 
 

 

 

 

 

 

 

 

Note: FORTRAN codes for computing inclusive and egalitarian indices may be obtained on 

request to mishrasknehu@yahoo.com 

 


